营口市七年级数学试卷有理数解答题复习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

营口市七年级数学试卷有理数解答题复习题(含答案)
一、解答题
1.先阅读下列材料,再解决问题:
学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的
数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =
.
解决问题:根据上述规律完成下列各题:
(1)到表示数50和数150距离相等的点表示的数是________
(2)到表示数和数距离相等的点表示的数是________
(3)到表示数 12和数 26距离相等的点表示的数是________
(4)到表示数a和数b距离相等的点表示的数是________
2.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:
(1)数轴上表示1和-3的两点之间的距离是________:
(2)若AB=8,|b|=3|a|,求a,b的值.
(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值
3.在学习绝对值后,我们知道,表示数在数轴上的对应点与原点的距离. 如:
表示5在数轴上的对应点到原点的距离.而,即表示5、0在数轴上对应的两点之间的距离.类似的,有:表示5、3在数轴上对应的两点之间的距离;,所以表示5、在数轴上对应的两点之间的距离. 一般地,点A、B在数轴上分别表示有理数、,那么A、B之间的距离可表示为.
请根据绝对值的意义并结合数轴解答下列问题:
(1)数轴上表示2和5的两点之间的距离是________;数轴上表示1和-3的两点之间的距离是________;
(2)数轴上P、Q两点的距离为3,且点P表示的数是2,则点Q表示的数是________. (3)点A、B、C在数轴上分别表示有理数、、1,那么A到B的距离与A到C的距离之和可表示为________;
(4)满足的整数的值为________.
(5)的最小值为________.
4.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数
在数轴上所对的两点之间的距离.试探索:
(1)求|5-(-2)|=________.
(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.
(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.
5.(1)阅读下面材料:
点、在数轴上分别表示实数,,、两点之间的距高表示为
当、两点中有一点在原点时,不妨设点在原点,如图1,

当、都不在原点时,
①如图2,点、都在原点的右侧,

②如图3,点、都在原点的左侧,

③如图4,点、在原点的两侧,

(1)回答下列问题:
①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;
②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;
③当代数式取最小值时,相应的的取值范围是________;
④求的最小值,提示:
.
6.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动
点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为
t秒.
(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示).
(2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.
①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.
②当点P是线段AQ的三等分点时,求t的值.
7.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒
(1)数轴上点B表示的数是________;点P表示的数是________(用含t的代数式表示) (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?
(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长。

8.如图,点A从原点出发沿数轴向左运动,同时点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒)
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上点A时,C点立即停止运动,若C点一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
9.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.
(1)求时,求点P和点Q表示的有理数;
(2)求点P与点Q第一次重合时的t值;
(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?10.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x所对应的点与-1所对应的点之间的距离.
⑴发现问题:代数式的最小值是多少?
⑵探究问题:如图,点分别表示的是,.
∵的几何意义是线段与的长度之和
∴当点在线段上时, ;当点点在点的左侧或点的右侧时
∴的最小值是3.
⑶解决问题:
①. 的最小值是 ________ ;
②.利用上述思想方法解不等式:
________
③.当为何值时,代数式的最小值是2________.
11.阅读下列材料:
1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),
3×4=(3×4×5-2×3×4),
由以上三个等式相加,可得1×2+2×3+3×4= ×3×4×5=20.
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+10×11(写出过程);
(2)1×2+2×3+3×4+…+ n×( n+1)=________;
(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.
12.阅读材料,回答下列问题:
数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题。

例如,两个有理数在数轴上对应的点之间的距离可以用这
两个数的差的绝对值表示;
在数轴上,有理数3与1对应的两点之间的距离为|3−1|=2;
在数轴上,有理数5与−2对应的两点之间的距离为|5−(−2)|=7;
在数轴上,有理数−2与3对应的两点之间的距离为|−2−3|=5;
在数轴上,有理数−8与−5对应的两点之间的距离为|−8−(−5)|=3;……
如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a−b|或|b−a|,记为|AB|=|a−b|=|b−a|.
(1)数轴上有理数−10与−5对应的两点之间的距离等于________;数轴上有理数x与−5对应的两点之间的距离用含x的式子表示为________;若数轴上有理数x与−1对应的两点A,B之间的距离|AB|=2,则x等于________;
(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为−2,动点P表示的数为x.
①若点P在点M,N之间,则|x+2|+|x−4|=________;若|x+2|+|x−4|═10,则x=________;
②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x−2|+|x−4|的最小值等于________ . 13.平移和翻折是初中数学两种重要的图形变化.
(1)平移运动
①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)
A. B.
C. D.
②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.
(2)翻折变换
①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;
②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且
A、B两点经折叠后重合,则A点表示________B点表示________.
③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有
a,b的式子表示)
14.如图,点A、B、C在数轴上表示的数分别是-3、1、5。

动点P、Q同时出发,动点P 从点A出发,以每秒4个单位的速度沿A→B→A匀速运动回到点A停止运动.动点Q从点C出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t(s)。

(1)当点P到达点B时,点Q表示的数为________。

(2)当t=1时,求点P、Q之间的距离。

(3)当点P在A→B上运动时,用含t的代数式表示点P、Q之间的距离。

(4)当点P、Q到点C的距离相等时,直接写出t的值。

15.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.
比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…
(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;
(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值________;
②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).
16.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,
(1)写出数轴上点B表示的数________;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:
①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.
①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当
t=________,P,Q之间的距离为4.
17.如图A在数轴上对应的数为-2.
(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.
18.观察下面的式子:
, , ,
(1)你发现规律了吗?下一个式子应该是________;
(2)利用你发现的规律,计算:
19.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.
(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.
20.阅读理解:
若A,B,C为数轴上的三点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点。

例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点,又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点。

知识运用:
(1)如图2,M,N为数轴上的两点,点M所表示的数为-2,点N所表示的数为4.
①在点M和点N中间,数________所表示的点是【M,N】的好点;
②在数轴上,数________和数________所表示的点都是【N,M】的好点。

(2)如图3,A,B为数轴上的两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以每秒4个单位长度的速度向左运动,到达点A时停止,则经过几秒后,P,A和B中恰有一个点为其余两点的好点?
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)100
(2)148
(3)-14
(4)a+b2
【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数 23 和数距离相等的
解析:(1)100
(2)
(3)-14
(4)
【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:
(2)到表示数和数距离相等的点表示的数为:
(3)到表示数 -12 和数 -26 距离相等的点表示的数为:
(4)到表示数a和数b距离相等的点表示的数为: .
故答案为:100,, -14,.
【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律
到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.
2.(1)4
(2)解:∵|b|=3|a|
∴b=±3a
∵AB=8
∴|a-b|=8
当b=3a时,|a-b|=|-2a|=8
∴a=4,b=12或a=-4,b=-12
当b=-3a时,|a-b
解析:(1)4
(2)解:∵|b|=3|a|
∴b=±3a
∵AB=8
∴|a-b|=8
当b=3a时,|a-b|=|-2a|=8
∴a=4,b=12或a=-4,b=-12
当b=-3a时,|a-b|=|4a|=8
∴a=2,b=-6或a=-2,b=6
综上所述:a=4,b=12或a=-4,b=-12或a=2,b=-6或a=-2,b=6.
(3)解:由线段上的点到线段两端点的距离的和最小,
①当点b在a的右侧时,
得P在3点与b点的线段上,|x−3|+|x−b|的值最小为4,
|x−3|+|x−b|最小=x−3+b−x=4,
解得:b=7;
②当点b在a的左侧时,
得P在3点与b点的线段上,|x−3|+|x−b|的值最小为4,
|x−3|+|x−b|最小=3−x+x−b=4,
解得:b=−1;
故答案为:7或−1.
【解析】【解答】解:(1)1和-3两点之间的距离为|1-(-3)|=4
【分析】(1)根据数轴上两点间的距离公式即可求解;(2)根据|b|=3|a|,分类讨论b=3a和b=-3a时的情况,分别求解a、b即可;(3)根据|x−a|+|x−b|的最小值为4可知,a、b对应点在数轴上距离为4,再根据a的取值可解得b.
3.(1)3;4
(2)5或-1
(3)|x+3|+|x-1|
(4)正确的整数 x 的值为-2、-1、0、1、2、3;
(5)2500
【解析】【解答】解:(1)根据题意,得:|5-2|=3;
解析:(1)3;4
(2)5或-1
(3)
(4)正确的整数的值为-2、-1、0、1、2、3;
(5)2500
【解析】【解答】解:(1)根据题意,得:|5-2|=3;|1-(-3)|=4,(2)设点Q表示的点为x,根据题意,得:|x-2|=3,
∴x-2=3,或x-2=-3,
解得:x=5或x=-1,
故答案为:5或-1;(3)A到B的距离与A到C的距离之和可表示为|x+3|+|x-1|;(4)∵|x-3|+|x+2|=5,
∴当x>3时,化简得:x-3+x+2=5,得x=3;
当-2≤x≤3时,化简得:3-x+x+2=5,所以整数的值为-2、-1、0、1、2、3;
当x<-2时,3-x-x-2=5,得x=-2;
所以正确的整数的值为-2、-1、0、1、2、3.(5)|x-1|+|x-2|+|x-3|+…+|x-100|=(|x-1|+|x-100|)+(|x-2|+|x-99|)+…+(|x-50|+|x-51|),其中:|x-1|+|x-100|表示数轴上数x 的对应点到表示1、100两点的距离之和,所以当1≤x≤100时,|x-1|+|x-100|值最小,当1≤x≤100时,|x-1|+|x-100|=x-1+100-x=99,故有最小值为|100-1|=99;
同理:|x-2|+|x-99|表示数轴上数x的对应点到表示2、99两点的距离之和,
当2≤x≤99时,|x-2|+|x-99|=x-2+99-x=97,故有最小值为|99-2|=97;…
|x-50|+|x-51|表示数轴上数x的对应点到表示50、51两点的距离之和,
当50≤x≤51时,|x-50|+|x-51|有最小值为|51-50|=1.
综上所述,当50≤x≤51时,每个括号里两个绝对值式子的和的值最小,所以,|x-1|+|x-2|+|x-3|+…+|x-100|有最小值为:99+97+95+…+3+1=(99+1)+(97+3)+…+(51+49)=100×25=2500.
【分析】(1)根据两点之间的距离公式直接计算即可;(2)设点Q表示的点为x,根据两点间的距离公式得到关于x的方程,解方程即可;(3)根据数轴上两点之间的距离公式可求A到B的距离与A到C的距离之和;(4)利用分类讨论的方法可以解答本题;(5)当绝对值的个数为奇数时,取得最小值x是其中间项,而当绝对值的个数为偶数时,则x 取中间两项结果一样.从而得出对于|x-1|+|x-2|+|x-3|+…+|x-100|,当50≤x≤51时取得最小值.
4.(1)7
(2)-5,-4,-3,-2,-1, 0, 1, 2
(3)解:|x﹣3|+|x﹣6|有最小值,最小值是3.理由如下:
当x>6时,|x﹣3|+|x﹣6|=x﹣3+x﹣6=2x﹣9
解析:(1)7
(2)-5,-4,-3,-2,-1, 0, 1, 2
(3)解:|x﹣3|+|x﹣6|有最小值,最小值是3.理由如下:
当x>6时,|x﹣3|+|x﹣6|=x﹣3+x﹣6=2x﹣9>3;
当3≤x≤6时,|x﹣3|+|x﹣6|=x﹣3+6﹣x=3;
当x<3时,|x﹣3|+|x﹣6|=3﹣x+6﹣x=9﹣2x>3.
故|x﹣3|+|x﹣6|有最小值,最小值是3
【解析】【解答】(1)|5﹣(﹣2)|=|5+2|=7.
故答案为:7;(2)当x>2时,|x+5|+|x﹣2|=x+5+x﹣2=7,解得:x=2与x>2矛盾,故此种情况不存在;
当﹣5≤x≤2时,|x+5|+|x﹣2|=x+5+2﹣x=7,故﹣5≤x≤2时,使得|x+5|+|x﹣2|=7,故使得|x+5|+|x﹣2|=7的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;
当x<﹣5时,|x+5|+|x﹣2|=﹣x﹣5+2﹣x=﹣2x+3=7,得x=﹣5与x<﹣5矛盾,故此种情况不存在.
故答案为:﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;
【分析】(1)根据题目中的式子和绝对值可以解答本题;(2)利用分类讨论的数学思想可以解答本题;(3)根据题意,利用分类讨论的数学思想可以解答本题.
5.(1)3;3;4;|x+1|;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则 x 在1和2015之间即可,要使最小,则 x 在2和2014之间即可…… 以此类推,要使最小,
解析:(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,
则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式
【解析】【解答】解:①表示2和5的两点间的距离为,
表示-2和-5的两点之间的距离为,
表示1和-3的两点之间的距离为;
②表示和-1的两点和之间的距离为,
若,则,∴,∴或
③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是
【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;
6.(1)9;
(2)解:①根据题意,得:(1+2)t=12,
解得:t=4,
∴P回到A需8s,当t=8时,点P与点A重合,此时点Q表示的数为1;
②P与Q重合前(即t<4):
当2AP=P
解析:(1)9;
(2)解:①根据题意,得:(1+2)t=12,
解得:t=4,
∴P回到A需8s,当t=8时,点P与点A重合,此时点Q表示的数为1;
②P与Q重合前(即t<4):
当2AP=PQ时,有2t+4t+t=12,解得t=;
当AP=2PQ时,有2t+t+t=12,解得t=3;
P与Q重合后(即4<t<8):
当AP=2PQ时,有2(8﹣t)=2(t﹣4),解得t=6;
当2AP=PQ时,有4(8﹣t)=t﹣4,解得t=;
综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.
【解析】【解答】解:(1)由题意知,点B表示的数是﹣3+12=9,点P表示的数是﹣3+2t,
故答案为:9,﹣3+2t;
【分析】(1)根据两点间的距离求解可得;(2)①根据重合前两者的路程和等于AB的长度列方程求解可得;②分点P与点Q重合前和重合后,依据点P是线段AQ的三等分点线段间的数量关系,并据此列出方程求解可得.
7.(1)﹣14;8﹣5t
(2)解:分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=22,解得t=2.5;
②点P、Q相遇之后,
由题意得3t﹣2+5t=22,解得t=3.
答:若点
解析:(1)﹣14;8﹣5t
(2)解:分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=22,解得t=2.5;
②点P、Q相遇之后,
由题意得3t﹣2+5t=22,解得t=3.
答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2
(3)解:线段MN的长度不发生变化,其值为11,
理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP= AP+ BP= (AP+BP)= AB= ×22=11;
②当点P运动到点B的左侧时:
MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=11
∴线段MN的长度不发生变化,其值为11.
【解析】【解答】解:(1)∵点A表示的数为8,B在A点左边,AB=22,
∴点B表示的数是8−22=−14,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,
∴点P表示的数是8−5t.
故答案为:-14、8-5t;
【分析】(1)根据已知可得B点表示的数为8−22;点P表示的数为8−5t;
(2)分①点P、Q相遇之前,②点P、Q相遇之后两种情况,根据P、Q之间的距离恰好等于2列出方程求解即可;
(3)线段MN的长度不发生变化,其值为11,理由如下:分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
8.(1)解:设点A的速度为每秒x个单位长度,则点B的速度为每秒4x单位长度
依题意得3x+3×4x=15
解之得x=1
所以点A的速度为每秒1个单位长度,点B的速度为每秒4单位长度
如图,
解析:(1)解:设点A的速度为每秒x个单位长度,则点B的速度为每秒4x单位长度
依题意得3x+3×4x=15
解之得x=1
所以点A的速度为每秒1个单位长度,点B的速度为每秒4单位长度
如图,
(2)解:设y秒时原点恰好在A、B两点的中间,依题意得
3+y=12-4y
解之得y=1.8
所以A、B两点运动1.8秒时,原点就在点A、点B的中间
(3)解:设点B追上点A的时间为z秒,依题意得
4z=15+z
解之得z=5
所以C行驶的路程为:5×20=100单位长度。

【解析】【分析】(1)根据两点的运动速度,设点A的速度为每秒x个单位长度,则点B 的速度为每秒4x单位长度,再根据两点之间相距15个单位长度,建立关于x的方程,解方程求出x的值即可。

(2)由题意设y秒时原点恰好在A、B两点的中间,由此建立关于y的方程,解方程求出y的值。

(3)设点B追上点A的时间为z秒,根据已知条件建立关于z的方程,解方程求出z的值,然后求出C行驶的路程即可。

9.(1)解:当 t=2 时,
点P表示的数为:,
点Q表示的数为:
(2)解:
=4
答:点P与点Q第一次重合时的t值为4
(3)解:点P和点Q第一相遇前
解析:(1)解:当时,
点P表示的数为:,
点Q表示的数为:
(2)解:
答:点P与点Q第一次重合时的t值为4
(3)解:点P和点Q第一相遇前,

解得,;
当点P和点Q相遇后,点P到达点B前,

解得,;
当点P从点B向点A运动时,

解得,;
由上可得,当t的值为3,5,9时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.
【解析】【分析】(1)根据题意可以得到当时,点P和点Q表示的有理数;(2)根据题意可以列出相遇关于t的方程,从而可以求得t的值;(3)根据题意可以列出相应的方程,从而可以解答本题.
10.6;设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则,|x+3|+|x-1| 的几何意义表示为PA+PB,∴不等式的几何意义是PA+PB>AB,∴P不能在线段AB上,应该在A的左
解析:6;设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则,的几何意义表示为PA+PB,∴不等式的几何意义是PA+PB>AB,∴P 不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为或
.故答案为:或.;设A表示-a,B表示3,P表示x,则线段AB的
长度为,的几何意义表示为PA+PB,当P在线段AB上时PA+PB取得最小值,∴∴或,即或
;故答案为:或 .
【解析】【解答】解:(3)①设A表示的数为4,B表示的数为-2,P表示的数为x ,
∴表示数轴上的点P到4的距离,用线段PA表示,
表示数轴上的点P到-2的距离,用线段PB表示,
∴的几何意义表示为PA+PB,当P在线段AB上时取得最小值为AB,且线段AB的长度为6,
∴的最小值为6.
故答案为:6.
【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.
11.(1)解:1×2+2×3+3×4+…+10×11,
= 13 ×(1×2×3-0×1×2)+ 13 ×(2×3×4-1×2×3)+ 13 ×(3×4×5-2×3×4)+…+ 13 ×(10×
解析:(1)解:1×2+2×3+3×4+…+10×11,
= ×(1×2×3-0×1×2)+ ×(2×3×4-1×2×3)+ ×(3×4×5-2×3×4)+…+ ×(10×11×12-9×10×11),
= ×(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+…+10×11×12-9×10×11),
= ×10×11×12,
=440;
(2) n(n+1)(n+2)
(3)1260
【解析】【解答】解:(2)∵1×2+2×3+3×4= ×3×4×5,
∴1×2+2×3+3×4+…+n×(n+1)= n(n+1)(n+2);(3)1×2×3+2×3×4+3×4×5+…+7×8×9=
×7×8×9×10=1260.
故答案为:
n(n+1)(n+2);1260.
【分析】(1)根据题目信息列出算式,然后提取,进行计算即可得解;(2)观察不难发现,两个连续的自然数的积等于这两个数与后面的数的积减去与前面的数的积的
,然后列出算式进行计算即可得解;(3)根据(2)的规律类比列式进行计算即可得解.
12.(1)5;x+5;1或−3
(2)6;6或−4;8
【解析】【解答】(1)根据绝对值的定义:
数轴上有理数−10与−5对应的两点之间的距离等于5;
数轴上有理数x与−5对应的两点之间的距离
解析:(1)5;x+5;1或−3
(2)6;6或−4;8
【解析】【解答】(1)根据绝对值的定义:
数轴上有理数−10与−5对应的两点之间的距离等于5;
数轴上有理数x与−5对应的两点之间的距离用含x的式子表示为|x+5|;
A,B之间的距离|AB|=2,则x等于1或−3,(2)①若点P在点M,N之间,则|x+2|+|x−4|=6;
若|x+2|+|x−4|═10,则x=6或−4;
②|x+2|+|x|+|x−2|+|x−4|的最小值,
即x与4,2,0,−4之间距离和最小,这个最小值=4−(−4)=8.
故答案为:5,|x+5|,1或−3;6,6或−4,8.
【分析】(1)根据绝对值的定义:数轴上有理数-10与-5对应的两点之间的距离等于5;数轴上有理数x与-5对应的两点之间的距离用含x的式子表示为|x+5|;若数轴上有理数x 与-1对应的两点A,B之间的距离|AB|=2,则x等于1或-3;(2)①若点P在点M,N之间,则|x+2|+|x-4|=6;若|x+2|+|x-4|═10,则x=6或-4;
②|x+2|+|x|+|x-2|+|x-4|的最小值,这个最小值=4-(-2)=6.
13.(1)D;-1010
(2)-2017;-1008.5;1010.5;a+b2
【解析】【解答】解:①∵笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,
∴(
解析:(1)D;-1010
(2)-2017;-1008.5;1010.5;
【解析】【解答】解:①∵笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向
正方向移动2个单位长度,
∴(-3)+(+2)=-1
故答案为:D.
②∵一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位…
∴-1+2-3+4-…+2018-2019
=(-1+2)+(-3+4)+…+(-2017+2018)-2019
=1+1+…-2019
=1009-2019
=-1010
故答案为:D,-1010.
(2)①∵折叠纸条,表示-1的点与表示3的点重合
∴对称中心为:,
∴2019-1=2018,
∴与表示2019的点重合的点在1的左边,
∴1-2018=-2017.
②∵数轴上A、B两点之间的距离为2019,折痕与①折痕相同
∴点B和1,点A和1之间的距离相等,
∴点A和1之间的距离为2019÷2=1009.5
∵A在B的左侧,
∴点A表示的数为1-1009.5=-1008.5
点B表示的数为:1009.5+1=1010.5;
③根据以上规律可知数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为
.
故答案为:-2017、-1008.5、1010.5、.
【分析】(1)点在数轴上平移的规律为:左减右加,列式计算。

(2)①根据点在数轴上平移的规律为:左减右加,由题意可知奇数次向左,偶数次向右,再列式可求出结果;②由题意可知点B和1,点A和1之间的距离相等,先求出它们之间的距离,再根据点A在点B的左侧,可得到点A和点B表示的数;③根据前两题的规律,利用中心对称的性质,可得到数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数。

14.(1)3
(2)解:当t=1时,AP=4,CQ=1,PQ=1
所以点P、Q之间的距离是1
(3)解:点P在A→B上运动,且相遇时,4t=4+t,t= 43 ,
当0≤1≤ 43 时,PQ
解析:(1)3
(2)解:当t=1时,AP=4,CQ=1,PQ=1
所以点P、Q之间的距离是1
(3)解:点P在A→B上运动,且相遇时,4t=4+t,t= ,
当0≤1≤ 时,PQ=4-3t
当<1≤2时,PQ=3t-4
(4)解:t= ,t= ,t= ,t=4
【解析】【分析】先表示出运动t(s)点P经过的路程为4t,点Q经过的路程为t;P到达点B和终点A所用的时间分别为2(s)、4(s),点Q到达点B所用的时间为4(s)。

(1)P到达点B用2(s),此时CQ=2,故可求;
(2)当t=1时,求出线段AP、CQ,故可求PQ;
(3)先由AP=AC+CQ求出点P、Q相遇时的时间,然后分0≤t≤和≤t≤2两种情况求解即可;
(4)利用PC=PQ列出方程求解即可。

15.(1)50;5
(2)10或 83;-45.
【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,
∴AC=30-(-20)=50;
∵CD=AD
∴点D为AC的中点
∴D所
解析:(1)50;5
(2)10或;-45.
【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,
∴AC=30-(-20)=50;
∵CD=AD
∴点D为AC的中点
∴D所表示的数为 =5,
故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B。

相关文档
最新文档