配套K12高考物理二轮复习专题检测十六带电粒子在磁场复合场中的运动

合集下载

高考物理二轮复习 专项训练 带电粒子在复合场中的运动含解析

高考物理二轮复习 专项训练 带电粒子在复合场中的运动含解析

一、带电粒子在复合场中的运动专项训练1.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p (t )进入弹性盒后,通过与铰链O 相连的“”型轻杆L ,驱动杆端头A 处的微型霍尔片在磁场中沿x 轴方向做微小振动,其位移x 与压力p 成正比(,0x p αα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d ,单位体积内自由电子数为n 的N 型半导体制成,磁场方向垂直于x 轴向上,磁感应强度大小为0(1)0B B x ββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C 方向的电流I ,则在侧面上D 1、D 2两点间产生霍尔电压U 0.(1)指出D 1、D 2两点那点电势高;(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd =得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:01U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=2.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向;(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhv m=(﹣; (3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(92)22h x -≥,()2211x r h r =-- 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 962)qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=.【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

【配套K12】高考物理专题10磁场备考强化训练26带电粒子在复合场中的运动一新人教版

【配套K12】高考物理专题10磁场备考强化训练26带电粒子在复合场中的运动一新人教版

强化训练26 带电粒子在复合场中的运动(一)本套强化训练为带电粒子在复合场中的运动(一),搜集近年来各地高中物理高考真题、模拟题及其它极有备考价值的习题等筛选而成。

其主要目的在于通过本套训练,理解和掌握重力、电场力、洛伦兹力大小和方向的确定方法,分析带电粒子在复合场中的受力、轨迹、运动情况,分析各种如力动关系、功能关系、冲动关系,弄清在题设物理过程中功、冲量的多少,能量、动量是否的变化或守恒等等,综合利用力学、电磁学等知识,解决有关带电粒子运动的比较复杂、难度又较大的物理问题。

此类习题,为历年来高考的热点和重点,很值得我们特别关注和探究。

全卷14题,总计120分,选做题9道为学有余力者参考。

一、 破解依据㈠重力场或等效力场⑴常见的机械力mg G =、kx T -=、N F f μ=、V g F ∆=ρ浮、ma F =效等。

像等效重力场加速度可为a g g ±='或θsin a g g ±='等。

⑵运动学公式at v v t +=0、22)(200at t v t v v t v x t +=⋅+==、ax v v t 2202=-和牛顿定律0=F 、ma F =、F F '-=等等。

⑶功θcos Fl W =、功率v F tW P //==、动能定理k F E W ∆=、势能关系P G E W ∆=、机械能守恒21E E =、0=∆E 及变化12E E E -=∆、动量定理p I ∆=和0=∆p 守恒等 ㈡静电场 ⑴库仑力221rq q kF =或静电场力qE F =等 ⑵场强q F E =2r Q k E =、电势rQ k q E p ==ϕ等 ⑶电场力做功)11(12r r kQ q qU qEd W -⋅===与电势能的关系E W E ∆=等 ⑷电势能、机械能、内能的守恒机内电E E E ∆+∆=∆ ㈢静磁场⑴洛伦兹力qvB f =、或θsin qvB F =等 ⑵半径公式qB mv r =、周期公式qBm T π2=、圆心确定(过初、末速度始点两条垂线的交点)、飞行时间T t ⋅=πθ2、旋转角t T t ⋅==πωθ2、偏向角θα=,速弦角22αθϕ==等。

高考物理二轮复习专题归纳—带电粒子在复合场中的运动

高考物理二轮复习专题归纳—带电粒子在复合场中的运动

高考物理二轮复习专题归纳—带电粒子在复合场中的运动考点一带电粒子在组合场中的运动1.带电粒子的“电偏转”和“磁偏转”的比较垂直进入磁场(磁偏转)垂直进入电场(电偏转)情景图受力F B =qv 0B ,F B 大小不变,方向变化,方向总指向圆心,F B 为变力F E =qE ,F E 大小、方向均不变,F E 为恒力运动规律匀速圆周运动r =mv 0Bq ,T =2πm Bq类平抛运动v x =v 0,v y =Eqmt x =v 0t ,y =Eq 2mt 22.常见运动及处理方法3.“5步”突破带电粒子在组合场中的运动问题例1如图所示,在平面直角坐标系xOy 的第Ⅰ、Ⅳ象限内有一半径为R 的半圆弧,半圆弧的圆心在坐标原点O 处,半圆弧内有方向沿y 轴正方向的匀强电场,半圆弧外足够大的范围内有磁感应强度大小为B 、方向垂直于坐标平面向外的匀强磁场.现从O 点由静止释放一个质量为m 、电荷量为q 的带正电粒子,粒子经电场加速后进入磁场,并从半圆弧与x 轴的交点P 返回电场,不计粒子受到的重力.(1)求匀强电场的电场强度大小E ;(2)求粒子从O 点运动到P 点的时间t ;(3)证明粒子经过P 点后从y 轴离开电场,并求粒子经过P 点后离开电场时的速度大小v .答案(1)qB 2R 2m(2)4+3πm2qB(3)5qBR 2m解析(1)设粒子进入磁场时的速度大小为v 0,根据动能定理有qER =12mv 02粒子在磁场中做匀速圆周运动的轨迹如图甲所示,根据几何关系可知,粒子的做圆周运动的半径为R粒子在磁场运动的过程中,有qv 0B =mv 02R 联立解得E =qB 2R2m (2)由(1)可得v 0=qBR m设粒子第一次在电场中运动的时间为t 1,有R =12v 0t 1,解得t 1=2mqB 粒子在磁场中做圆周运动的周期T =2πR v 0=2πmqB粒子在磁场中运动的时间t 2=34T解得t 2=3πm 2qB又t =t 1+t 2,解得t =4+3πm 2qB(3)粒子经过P 点后在电场中做类平抛运动,假设粒子经过P 点后从y 轴离开电场,如图乙所示,设粒子从P 点运动到y 轴的时间为t 3,有R =v 0t 3,解得t 3=mqB粒子在电场中运动的加速度大小a =qE m该过程中,粒子沿y 轴方向的位移大小y =12at 32解得y =14R由于y <R ,因此假设成立,粒子经过P 点后从y 轴离开电场;粒子从y 轴离开电场时沿y 轴方向的速度大小v y =at 3,解得v y =qBR2m则合速度v =v 02+v y 2解得v =5qBR2m.考点二带电粒子在叠加场中的运动1.三种典型情况(1)若只有两个场,所受合力为零,则表现为匀速直线运动或静止状态.例如电场与磁场叠加满足qE =qvB 时,重力场与磁场叠加满足mg =qvB 时,重力场与电场叠加满足mg =qE 时.(2)若三场共存,所受合力为零时,粒子做匀速直线运动,其中洛伦兹力F =qvB 的方向与速度v 垂直.(3)若三场共存,粒子做匀速圆周运动时,则有mg =qE ,粒子在洛伦兹力作用下做匀速圆周运动,即qvB =m v 2r.2.当带电粒子做复杂的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解.3.分析例2(多选)(2022·广东卷·8)如图所示,磁控管内局部区域分布有水平向右的匀强电场和垂直纸面向里的匀强磁场.电子从M点由静止释放,沿图中所示轨迹依次经过N、P两点.已知M、P在同一等势面上,下列说法正确的有()A.电子从N到P,电场力做正功B.N点的电势高于P点的电势C.电子从M到N,洛伦兹力不做功D.电子在M点所受的合力大于在P点所受的合力答案BC解析由题可知电子所受电场力水平向左,电子从N到P的过程中电场力做负功,故A错误;根据沿着电场线方向电势逐渐降低可知,N点的电势高于P点的电势,故B正确;由于洛伦兹力一直都和速度方向垂直,故电子从M到N,洛伦兹力都不做功,故C正确;由于M点和P点在同一等势面上,故从M点到P点电场力做功为0,而洛伦兹力不做功,M点速度为0,根据动能定理可知电子在P点速度也为0,则电子在M点和P点都只受电场力作用,在匀强电场中电子在这两点所受电场力相等,即所受合力相等,故D 错误.例3(2022·广东高州市二模)如图所示,在区域Ⅰ有与水平方向成45°角的匀强电场,电场方向斜向左下方.在区域Ⅱ有竖直向下的匀强电场和垂直纸面向里的匀强磁场,电场强度大小为E 2=mgq,磁感应强度大小为B .质量为m 、电荷量为-q 的粒子从区域Ⅰ的左边界P 点由静止释放,粒子沿虚线水平向右运动,进入区域Ⅱ,区域Ⅱ的宽度为d .粒子从区域Ⅱ右边界的Q 点离开,速度方向偏转了60°.重力加速度大小为g .求:(1)区域Ⅰ的电场强度大小E 1;(2)粒子进入区域Ⅱ时的速度大小;(3)粒子从P 点运动到Q 点的时间.答案(1)2mg q (2)23qBd3m(3)23qBd 3mg +πm3qB解析(1)粒子在区域Ⅰ受重力和静电力,做匀加速直线运动,θ=45°,如图所示故有sin θ=mgqE 1解得E 1=mg q sin θ=2mgq(2)设粒子进入区域Ⅱ的速度为v ,粒子受竖直向下的重力和竖直向上的静电力,且qE 2=mg则所受的洛伦兹力提供向心力,有qvB =mv 2r 速度方向偏转了60°,则对应圆心角为60°,有sin 60°=d r ,联立解得v =23qBd3m(3)设粒子在区域Ⅰ沿虚线水平加速的加速度大小为a ,有a =gtan θ=g ,由速度公式有v =at 1可得加速时间为t 1=23qBd3mg粒子在区域Ⅱ做匀速圆周运动的周期为T =2πr v =2πm qB则做匀速圆周运动的时间为t 2=60°360°T =πm3qB则粒子从P 点运动到Q 点的时间为t =t 1+t 2=23qBd 3mg +πm3qB.(2022·山西省一模)如图所示,以两竖直虚线M 、N 为边界,中间区域Ⅰ内存在方向竖直向下的匀强电场,电场强度大小为E ,两边界M 、N 间距为d .N 边界右侧区域Ⅱ中存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场.M 边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M 上的O 点处有一离子源,水平向右发射同种正离子.已知初速度为v 0的离子第一次回到边界M 时恰好到达O 点,电场及两磁场区域足够大,不考虑离子的重力和离子间的相互作用.(1)求离子的比荷;(2)初速度为v02的离子第二次回到边界M 时也能恰好到达O 点,求区域Ⅲ内磁场的磁感应强度大小.答案(1)v 0dv 0EB (2)B7解析(1)由题可知,离子在区域Ⅰ和Ⅱ中的运动轨迹如图所示,离子在区域Ⅰ由O运动到A 过程中,水平方向以速度v 0做匀速直线运动,有d =v 0t竖直方向做匀加速直线运动,有y 1=12at 2又qE =ma 联立可得y 1=qEd 22mv 02设离子运动到A 点时的速度方向与边界N 的夹角为θ,则离子运动到A 点速度为v =v 0sin θ离子在区域Ⅱ中做匀速圆周运动有qvB =mv 2r 解得r =mv 0qB sin θ由几何关系可知AC =2r sin θ=2mv 0qB从C 点运动到O 点过程,竖直方向有y 2=at ·t +12at 2=32at 2又AC =y 1+y 2联立可得q m =v 0dv 0EB(2)当初速度为v02时,离子运动轨迹如图所示.从O 点射出到进入区域Ⅱ中,竖直方向有y 1′=12at ′2水平方向有d =v02t ′可得y 1′=4y 1设离子运动到A ′点时的速度方向与边界N 的夹角为θ′,则运动到A 点速度为v ′=v 02sin θ′,在区域Ⅱ中有qv ′B =mv ′2r ′,则r ′=mv 02qB sin θ′从进入区域Ⅱ到射出区域Ⅱ,弦长A ′C ′=2r ′sin θ′=mv 0qB再次进入区域Ⅰ中,竖直分位移为y 2′=at ′·t ′+12at ′2=32at ′2=4y 2所以y 1′+y 2′=4(y 1+y 2)=4AC 在区域Ⅲ中的弦长OF =2r ″sin θ″又qv ″B ′=m v ″2r ″,v ″=v 02sin θ″所以OF =mv 0qB ′由几何关系可知OF =y 1′+y 2′-A ′C ′=7mv 0qB联立解得B ′=B7.专题强化练1.(2022·山东省名校联盟高三期末)如图所示,在xOy 坐标系的第一象限内存在沿y 轴负方向的匀强电场,在第四象限内存在垂直坐标平面向里的匀强磁场.一质量为m 、电荷量为q 的带正电粒子(粒子所受重力不计)从坐标原点O 射入磁场,其入射方向与x 轴的夹角θ=30°,第一次进入电场后,粒子到达坐标为(23L +L ,L )的P 点处时的速度大小为v 、方向沿x 轴正方向.求:(1)粒子从O 点射入磁场时的速度大小v 0;(2)电场的电场强度大小E 以及磁场的磁感应强度大小B ;(3)粒子从O 点运动到P 点的时间t .答案(1)233v (2)mv 26qL 23mv3qL (3)3L π+126v解析(1)由题意知,粒子的运动轨迹如图所示,由于洛伦兹力不做功,粒子经过Q 点时的速度大小也为v 0,根据对称性,粒子经过Q 点时的速度方向与x 轴正方向的夹角也为θ,粒子进入第一象限后,沿x 轴方向做匀速直线运动,沿y 轴方向做匀减速直线运动,根据几何关系有vv 0=cos θ解得v 0=233v (2)对粒子从Q 点运动到P 点的过程,根据动能定理有-qEL =12mv 2-12mv 02解得E =mv 26qL设粒子从Q 点运动到P 点的时间为t 1,有0+v 0sin θ2·t 1=L 解得t 1=23L v粒子从Q 点运动到P 点的过程中沿x 轴方向的位移大小为x QP =vt 1解得x QP =23L则OQ =23L +L -x QP =L设粒子在磁场中做圆周运动的半径为R ,根据几何关系有OQ =2R sin θ解得R =L根据洛伦兹力提供向心力有qv 0B =mv 02R 解得B =23mv 3qL(3)粒子在磁场中做圆周运动的周期T =2πR v 0根据几何关系,在粒子从O 点运动到Q 点的过程中,运动轨迹对应的圆心角为90°-θ,故粒子在该过程中运动的时间t 2=90°-θ360°·T 解得t 2=3πL 6v又t =t 1+t 2解得t =3L π+126v.2.(2022·河北唐山市高三期末)如图,顶角为30°的“V”字形区域内存在垂直于纸面向外的匀强磁场.OM 上方存在电场强度大小为E 的匀强电场,方向竖直向上.在OM 上距离O 点3L 处有一点A ,在电场中距离A 为d 的位置由静止释放一个质量为m 、电荷量为q 的带负电的粒子,经电场加速后该粒子以一定速度从A 点射入磁场后,第一次恰好不从ON 边界射出.不计粒子的重力.求:(1)粒子运动到A 点时的速率v 0;(2)匀强磁场磁感应强度大小B ;(3)粒子从释放到第2次离开磁场的总时间.答案(1)2qEd m(2)1L2Edmq(3)32md qE +7πL6m2qEd解析(1)带电粒子由静止开始到达A 点时,由动能定理可得qEd =12mv 02解得v 0=2qEd m(2)根据题意作出粒子在磁场中完整的运动轨迹图如图所示粒子在磁场中的运动轨迹的圆心为O 1,轨迹与ON 边界相切于D 点,设轨迹半径为r ,由几何关系可得sin 30°=r 3L -r解得r =L设匀强磁场磁感应强度大小为B ,由洛伦兹力提供向心力可得Bqv 0=mv 02r 联立解得B =mv 0qr =1L2Edm q(3)带电粒子从静止加速到A 点所用时间为t1=2dv0=2md qE带电粒子在磁场中运动的周期T=2πrv0=πL 2m qEd带电粒子第一次在磁场中运动时间为t2=T 2带电粒子再次进入电场再返回磁场所用时间t3=2t1再次返回磁场由几何关系可知,以O点为圆心继续做圆周运动至ON边界离开,则再次做圆周运动的时间为t4=30°360°T=T12所以总时间为t=t1+t2+t3+t4=32mdqE+7πL6m2qEd.3.(2022·河北张家口市一模)如图所示,平面直角坐标系xOy的第一象限存在垂直于xOy平面向里的匀强磁场,第二象限存在沿x轴正方向的匀强电场,电场强度大小为E.一质量为m、电荷量为q的带正电粒子在x轴上的A(-d,0)点沿y轴正方向射入电场区域,粒子第一次经过y轴时的速度方向与y轴正方向的夹角为60°,之后每相邻两次经过y轴时的位置间距相等.不计粒子重力.求:(1)粒子的初速度的大小v0;(2)匀强磁场磁感应强度的大小B;(3)粒子从A点运动到第n次经过y轴的时间.答案(1)2Eqd3m(2)3Em2qd(3)见解析解析(1)粒子进入电场后做类平抛运动,沿x轴方向的加速度大小a=Eq m从A点第一次运动到y轴的过程,x轴方向有v x2=2ad第一次经过y轴时有tan60°=v x v0联立解得v0=2Eqd 3m(2)粒子第一次经过y轴时的速度大小v=v xsin60°粒子在磁场中运动,由洛伦兹力提供向心力有qvB=m v2r由几何关系可知,粒子每次进入磁场到离开磁场的过程中沿y轴方向运动的距离L=2r sin60°之后粒子每次从y轴进入电场到离开电场,运动的时间t0=2v x at0时间内,粒子沿y轴方向运动的距离为y=v0t0由题意可知y=L联立解得B=3Em 2qd(3)设粒子从A点第一次运动到y轴的时间为t1,则有12at12=d解得t1=2dm Eq粒子第一次经过y轴到第二次经过y轴,在磁场中做匀速圆周运动,由几何关系可知粒子在磁场中运动的时间为t2=T3粒子在磁场中做匀速圆周运动的周期T=2πmqB解得t2=2π96dmEq粒子第二次经过y轴到第三次经过y轴,在电场中运动的时间t3=2v xa=22dmEq=2t1即粒子从A点运动到第三次经过y轴时的时间为t3+t2+t1=3t1+t2所以粒子从A点运动到第n次经过y轴时的时间t=nt1+n-12t2=3n-1π9+n2dmEq(n=1,3,5,7,…)t′=(n-1)t1+n2t2=(3nπ9+n-1)2dmEq(n=2,4,6,8,…)4.(2022·安徽省江南十校一模)如图所示,竖直平面内建立直角坐标系xOy,y轴正向竖直向上,x轴正向水平向右,x轴在水平平面M内,在x轴上方存在方向竖直向下、电场强度大小为E1的匀强电场.两平行水平面M和N之间的距离为d,其间的区域存在方向竖直向上、电场强度大小为E2的匀强电场(E2=12E1)和方向水平向外、磁感应强度大小为B的匀强磁场.带电荷量分别为q和-q(q>0)的小球1和2先后从y轴上距O点为h的P点以相同的初速率v0沿x轴正向水平射出,小球1从x轴上距O点为2h的A点进入MN间,恰好未从平面N离开.小球2从x轴上C点进入两平面间,最后从平面N上某点离开.设两小球质量分别为m 1和m 2,且qE 1=2m 1g ,题中h 、d 和重力加速度g 已知,其他量均未知.(1)求两小球的初速率v 0;(2)求电场强度E 2和磁感应强度B 的大小之比;(3)若C 点坐标为(4h ,0),求m 1和m 2之比以及球2离开平面N 时速度大小.答案(1)6gh(2)23-6d gh6h(3)1830gh +9gd2解析(1)小球1在x 轴上方做类平抛运动,有x 1=2h =v 0t 1y 1=h =12a 1t 12qE 1+m 1g =m 1a 1且qE 1=2m 1g 联立解得v 0=6gh (2)因为E 2=12E 1则m 1g =qE 2所以小球1在MN 间做匀速圆周运动.由题意可知,小球1恰好未从下边界平面N 离开,其轨迹应与平面N 相切,如图所示,设小球1刚进入MN时速度偏转角为θ1,由几何关系可知R cosθ1+R=d由tanθ1=2y1x1=1,知θ1=45°又qv A B=m1v A2 Rv A=v0cosθ1联立解得E2B=23-6d gh6h(3)小球2在x轴上方做类平抛运动,有x2=4h=v0t2y2=h=12a2t22m2g-qE1=m2a2结合(1)问中4个式子可得m1m2=18小球2从P点到离开平面N全过程由动能定理得m2g(h+d)-qE1h+qE2d=12m2v2-12m2v02解得v=30gh+9gd2.。

高考物理二轮专题复习:《带电粒子在磁场及复合场中的运动》课时训练(a卷)(含答案)

高考物理二轮专题复习:《带电粒子在磁场及复合场中的运动》课时训练(a卷)(含答案)

物理班级:__________________ 姓名:__________________专题三电场和磁场第2课带电粒子在磁场及复合场中的运动课时过关(A卷)一、单项选择题1.如图,电子枪射出的电子束进入示波管,在示波管正下方有竖直放置的通顺时针电流的环形导线,则示波管中的电子束将( )A.向上偏转 B.向下偏转C.向纸外偏转 D.向纸里偏转解析:由安培定则知,环形导线在电子束所在处的磁场方向为垂直纸面向外,由左手定则判断,电子束将向上偏转,A对.答案:A2.一段长0.2 m,通过2.5 A电流的直导线,关于在磁感应强度为B的匀强磁场中所受安培力F的情况,正确的是( )A.如果B=2T,F一定是1 NB.如果F=0,B也一定为零C.如果B=4T,F有可能是1 ND.如果F有最大值时,通电导线一定与B平行解析:当导线与磁场方向垂直放置时,F=BIL,力最大;当导线与磁场方向平行放置时,F=0;当导线与磁场方向成任意其他角度放置时,0<F<BIL,A、D错误,C正确;磁感应强度是磁场本身的性质,与受力F无关,B错误.答案:C3.如图所示,一个带负电的粒子沿x轴正向射入匀强磁场中,它所受到的洛伦兹力方向沿y轴正向,则磁场方向( )A .一定沿z 轴正向B .一定沿z 轴负向C .一定在xOy 平面内D .一定在xOz 平面内解析:利用左手定则,四指指向x 轴负向,大拇指指向y 轴正向,磁场方向沿z 轴正向或有分量,又因洛伦兹力一定垂直于v 与B 确定的平面,故只有D 正确.答案:D 4.(2018·深圳模拟)如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场, OC 与OB 成60°角.现将带电粒子的速度变为v3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B .2Δt C.13Δt D .3Δt解析:设磁场区域的半径为R ,粒子的轨迹半径为r ,粒子以速度v 在磁场中运动的轨迹如图所示,则由几何关系知,r =3R ,又T =2πmqB ,所以Δt =60°360°T =πm3qB.当粒子的速度为v3时,轨迹半径为:r ′=mv′qB =mv 3qB =r 3=33R ,所以偏转角θ′=120°,Δt ′=120°360°T =2πm3qB=2Δt ,故选项B 正确.答案:B二、双项选择题 5.如图,一束电子以大小不同的速率沿图示方向飞入一正方形的匀强磁场区,对从ab 边离开磁场的电子,下列判断正确的是( )A .从a 点离开的电子速度最小B .从a 点离开的电子在磁场中运动时间最短C .从b 点离开的电子运动半径最小D .从b 点离开的电子速度偏转角最小解析:根据运动半径越大,电子运动的速度越大,可知从a 点离开半径最大,速度最大;根据偏转角越大,时间越长,可知从b 点离开的偏转角最大,时间最长.答案:BC 6.薄铝板将同一匀强磁场分成Ⅰ、Ⅱ两个区域,高速带电粒子可穿过铝板一次,在两个区域运动的轨迹如图,半径R 1>R 2,假定穿过铝板前后粒子电量保持不变,则该粒子( )A .带正电B .在Ⅰ、Ⅱ区域的运动速度相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从区域Ⅰ穿过铝板运动到区域Ⅱ解析:由于粒子碰撞铝板后的速度减小,运动半径减小,故粒子从区域Ⅰ穿过铝板运动到区域Ⅱ;而因运动都是半周,时间相等;由左手定则可判断粒子带负电.答案:CD7.利用如图所示的方法可以测得金属导体中单位体积内的自由电子数n ,现测得一块横截面为矩形的金属导体的宽为b ,厚为d ,并加有与侧面垂直的匀强磁场B ,当通以图示方向电流I 时,在导体上、下表面间用电压表可测得电压为U.已知自由电子的电荷量为e ,则下列判断正确的是( )A .上表面电势高B .下表面电势高C .该导体单位体积内的自由电子数为IedbD .该导体单位体积内的自由电子数为BIeUb解析:用左手定则判断知自由电子向上偏转,则上表面电势较低,A 错,B 对;稳定后,F 电=f 洛,即q Uh=qvB ,故U =vBh ,由此知,C 对,D 错.答案:BC8.1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是( )A .该束带电粒子带负电B .速度选择器的P 1极板带正电C .在B 2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷qm越小解析:由带电粒子在磁场B 2中的偏转方向可知,粒子带正电,选项A 错误;带电粒子在如题图所示的速度选择器中受到两个力平衡,即qvB =qE ,因为受到的洛伦兹力方向向上,故受到的电场力方向向下,则P 1极板带正电,选项B 正确;带电粒子在右侧的偏转磁场中,半径R =mv qB 2,则比荷qm越小,半径越大,选项D 正确,选项C 错误.答案:BD9.(2018·东城区一模)质量为m ,带电量为q 的小物块,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B ,如图所示.若带电小物块下滑后某时刻对斜面的作用力恰好为零,下列说法中正确的是( )A .小物块一定带正电荷B .小物块在斜面上运动时做匀加速直线运动C .小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动D .小物块在斜面上下滑过程中,当小物块对斜面压力为零时的速率为mgcos θBq解析:小物块沿斜面下滑对斜面作用力为零时受力分析如图所示,小物块受到重力mg 和垂直于斜面向上的洛伦兹力F ,故小物块带负电荷,A 错误;小物块在斜面上运动时合力等于mgsin θ保持不变,做匀加速直线运动,B 正确,C 错误;小物块在斜面上下滑过程中,当小物块对斜面压力为零时有qvB =mgcos θ,则有v =mgcos θBq,D 正确. 答案:BD三、计算题 10.如图,匀强电场区域和匀强磁场区域是紧邻的且宽度相等均为d ,电场方向在纸面内竖直向下,而磁场方向垂直纸面向里.一带正电粒子(重力不计)从O 点以速度v 0沿垂直电场方向进入电场,从A 点射出电场进入磁场,离开电场时带电粒子在电场方向的偏转位移为电场宽度的一半,当粒子从磁场右边界上C 点穿出磁场时速度方向与进入电场O 点时的速度方向一致,求:(1)粒子进入磁场时的速度v 的大小及方向;(2)电场强度E 和磁感应强度B 的比值EB;(3)粒子在电场、磁场中运动的总时间.解析:(1)粒子在电场中偏转 垂直电场方向d =v 0t ①平行电场方向d 2=v y2t ②解得v y =v 0③到达A 点的速度为v =v y 2+v 02=2v 0④ 进入磁场时速度方向与水平方向成θθ=arcsin v y v =arcsin v 02v 0=45°⑤(2)在电场中,根据运动学公式与牛顿第二定律有:v y =at ,a =Fm,F =qE解得E=mv 02qd⑥在磁场中粒子做匀速圆周运动,如图所示,由图得圆周运动半径R =dsin 45°=2d ⑦又qBv =mv2R ⑧得B =mv qR =mv 0qd⑨联立⑥⑨得:EB=v 0(3)由①式得粒子在电场中运动时间t 1=dv 0粒子在磁场中做圆周运动的圆心角为π4粒子在磁场运动时间t 2=π42π×2πR v =πd4v 0运动总时间t =t 1+t 2=d (4+π)4v 0.答案:(1)2v 0 45° (2)v 0 (3)d (4+π)4v 0。

届高中物理二轮复习 热点题型专练 专题. 带电粒子在复合场中运动含解析

届高中物理二轮复习 热点题型专练 专题. 带电粒子在复合场中运动含解析

专题8.3带电粒子在复合场中运动1.有一个带电荷量为+q、重力为G的小球,从两竖直的带电平行板上方h处自由落下,两极板间还有匀强磁场,磁感觉强度为B,方向以下列图,则带电小球经过有电场和磁场的空间时,以下说法正确的选项是()A.必然做曲线运动B.不可以能做曲线运动C.有可能做匀加速运动D.有可能做匀速运动答案:A剖析:由于小球在下落过程中速度变化,洛伦兹力会变化,小球所受合力变化,故小球不可以能做匀速或匀加速运动,B、C、D错,A正确。

2.以下列图,从S处发出的热电子经加速电压U加速后垂直进入互相垂直的匀强电场和匀强磁场中,发现电子流向上极板偏转,不考虑电子自己的重力。

设两极板间电场强度为E,磁感觉强度为B。

欲使电子沿直线从电场和磁场所区经过,只采用以下措施,其中可行的是()A.合适减小电场强度E B.合适减小磁感觉强度BC.合适增大加速电场的宽度D.合适减小加速电压U答案:A3.以下列图,在匀强电场和匀强磁场共存的地域内,电场的场强为E,方向竖直向下,磁场的磁感觉强度为B,方向垂直纸面向里,一质量为m的带电粒子,在场区内的一竖直平面做匀速圆周运动,则可判断该带电质点 ( )A .带有电量为mg E 的正电荷B .沿圆周逆时针运动C .运动的角速度为Bg ED .运动的速率为E B答案:C4.以下列图,某种带电粒子由静止开始经电压为U 1的电场加速后,射入两水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入界线限竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应) ( )A .d 随U 1变化,d 与U 2没关B .d 与U 1没关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1没关,d 与U 2没关答案:A剖析:设带电粒子刚进入磁场时的速度为v ,与水平方向夹角为θ。

2020届高考物理二轮复习专题测试:带电粒子在复合场中的运动 Word版含答案

2020届高考物理二轮复习专题测试:带电粒子在复合场中的运动 Word版含答案

2022届高考物理二轮复习专题测试:带电粒子在复合场中的运动一、单项选择题(每题4分,共16分)1.(2021·安徽江南十校摸底)带电质点在匀强磁场中运动,某时刻速度方向如图1所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )图1A .可能做直线运动B .可能做匀减速运动C .确定做曲线运动D .可能做匀速圆周运动2. (2021·浙江重点中学协作体摸底)如图2所示,有一金属块放在垂直于表面C 的匀强磁场中,磁感应强度为B ,金属块的厚度为d ,高为h ,当有稳恒电流I 平行平面C 的方向通过时,由于磁场力的作用,金属块中单位体积内参与导电的自由电子数目为(上下两面M 、N 上的电压分别为U M 、U N )( )图2A.edIB|U M -U N | B.2BIed ⎪⎪⎪⎪1U M -U N C.BIed ⎪⎪⎪⎪1U M -U ND.ed2IB|U M -U N | 3. (2021·平顶山模拟)如图3所示为一种获得高能粒子的装置,环形区域内存在垂直纸面对外、磁感应强度大小可调的均匀磁场(环形区域的宽度格外小)。

质量为m 、电荷量为+q 的粒子可在环中做半径为R 的圆周运动。

A 、B 为两块中心开有小孔的距离很近的极板,原来电势均为零,每当带电粒子经过A 板预备进入AB 之间时,A 板电势上升为+U ,B 板电势仍保持为零,粒子在两板间的电场中得到加速。

每当粒子离开B 板时,A 板电势又降为零。

粒子在电场中一次次加速下动能不断增大,而在环形磁场中绕行半径R 不变。

(设极板间距远小于R )下列说法正确的是( )图3A .粒子从A 板小孔处由静止开头在电场力作用下加速,绕行n 圈后回到A 板时获得的总动能为2nqUB .粒子在绕行的整个过程中,每一圈的运动时间不变C .为使粒子始终保持在半径为R 的圆轨道上运动,磁场的磁感应强度大小必需周期性递减D .粒子绕行第n 圈时的磁感应强度为1R2nmUq4. (2021·宝鸡二模)如图4所示,真空中有一匀强电场和水平面成确定角度斜向上,一个电荷量为Q =-5×10-6C 的带电质点固定于电场中的O 点,在a 点有一个质量为m =9×10-3 kg 、电荷量为q =2×10-8C 的点电荷恰能处于静止,a 与O 在同一水平面上,且相距为r =0.1 m 。

高考物理二轮复习专项训练卷带答案解析:带电粒子在复合场中的运动

高考物理二轮复习专项训练卷带答案解析:带电粒子在复合场中的运动

高考物理二轮复习专项训练卷带答案解析:带电粒子在复合场中的运动第11讲带电粒子在复合场中的运动一、选择题(每小题6分,共24分)1.(2018北京理综,18)某空间存在匀强磁场和匀强电场。

一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动。

下列因素与完成上述两类运动无关..的是( )A.磁场和电场的方向B.磁场和电场的强弱C.粒子的电性和电量D.粒子入射时的速度2.(2018四川广元五校联考)(多选)长方形区域内存在有正交的匀强电场和匀强磁场,其方向如图所示,一个质量为m、电荷量为q的小球以初速度v0竖直向下进入该区域。

若小球恰好沿直线下降,则下列叙述正确的是( )A.小球带正电B.电场强度E=mmmC.小球做匀速直线运动D.磁感应强度B=mmmm03.(2018江苏苏锡常镇四市联考)(多选)自行车速度计利用霍尔效应传感器获知自行车的运动速率。

如图甲所示,自行车前轮上安装一块磁铁,轮子每转一圈,这块磁铁就靠近霍尔传感器一次,传感器会输出一个脉冲电压。

图乙为霍尔元件的工作原理图,当磁场靠近霍尔元件时,导体内定向运动的自由电荷在磁场力作用下偏转,最终使导体在与磁场、电流方向都垂直的方向上出现电势差,即霍尔电势差。

下列说法正确的是( )A.根据单位时间内的脉冲数和自行车车轮的半径即可获知车速大小B.自行车的车速越大,霍尔电势差越高C.图乙中霍尔元件的电流I是由正电荷定向移动形成的D.如果长时间不更换传感器的电源,霍尔电势差将减小4.(多选)如图所示,区域Ⅰ中有正交的匀强电场和匀强磁场,区域Ⅱ只有匀强磁场,不同的离子(不计重力)从左侧进入两个区域,在区域Ⅰ中都没有发生偏转,在区域Ⅱ中做圆周运动的轨迹都相同,下列关于这些离子的说法正确的是( )A.离子一定都带正电B.离子进入复合场的初速度相等C.离子的比荷一定相同D.离子的初动量一定相同二、非选择题(共56分)5.(12分)如图所示,在纸平面内建立的直角坐标系xOy,在第一象限的区域存在沿y轴正方向的匀强电场。

高三物理高考二轮复习题六--带电粒子在磁场-复合场中的运动

高三物理高考二轮复习题六--带电粒子在磁场-复合场中的运动

二、带电粒子在复合场中运动问题的处理方法 1.基本解题思路
首先,要弄清是一个怎样的复合场,是磁场与电场的复合, 还是磁场与重力场的复合,还是磁场、电场、重力场的复 合; 其次,要正确地对带电粒子进行受力分析和运动过程分析; 最后,选择合适的动力学方程进行求解. 2.运动情况分析 带电粒子在复合场中做什么运动,取决于带电粒子所受的合 外力及其初始状态的速度,因此应把带电粒子的运动情况和 受力情况结合起来进行分析.C
3.受力分析及解题观点 (1)带电粒子在复合场中的运动问题是电磁学知识和力 学知识的结合,分析方法和力学问题的分析方法基本 相同,不同之处是多了电场力、洛伦兹力. (2)带电粒子在复合场中的运动问题除了利用力学即动 力学观点、能量观点来分析外,还要注意电场和磁场 对带电粒子的作用特点,如电场力做功与路径无关, 洛伦兹力方向始终和运动速度方向垂直、永不做功等.
(2)安培力和洛伦兹力的本质相同,都是磁场对运动电 荷的作用,但安培力可以对导体棒做功,而洛伦兹力不会 对运动电荷做功,电荷的动能不变,运动方向改变.
三、带电粒子在电场和磁场中偏转的区别
垂直进入匀强电场 (不计重力)
受力情况 及特点
恒力F=qE 做匀变速运动
运动规律
类平抛运动
垂直进入匀强磁场 (不计重力)
二、安培力和洛伦兹力的比较
名称
项目 作用对象
安培力 通电导体
力的大小
I和B垂直时最大 F安=BIL I和B平行时最小 F安=0
力的方向
左手定则:F安与I垂 直,与B垂直.F安总垂 直于I和B决定的平面
洛伦兹力
运动电荷 v和B垂直时最大 F洛=qvB v和B平行时最小F洛= 0
左手定则:F洛与v垂 直,与B垂直.F洛总垂 直于v和B决定的平面

高考物理二轮复习专题带电粒子在复合场中的运动专题卷

高考物理二轮复习专题带电粒子在复合场中的运动专题卷

专题7 带电粒子在复合场中的运动说明:1.本卷主要考查带电粒子在复合场中的运动。

2.考试时间60分钟,满分100分。

一、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.(2020·北京东城区模拟)如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( )A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外【解析】由左手定则知,A 、B 离子均带正电,选项A 错误;两束离子经过同一速度选择器后的速度相同,在偏转磁场中,由mvR qB可知,半径大的离子对应的比荷小,但离子的质量不一定相同,选项B 错误、C 正确;速度选择器中的磁场方向应垂直纸面向里,选项D 错误。

【答案】C2.(2017·湖南长沙模拟)如图所示,一个理想边界为PQ 、MN 的匀强磁场区域,磁场宽度为d ,方向垂直纸面向里。

一电子从O 点沿纸面垂直PQ 以速度v 0进入磁场。

若电子在磁场中运动的轨道半径为2d 。

O′在MN 上,且OO′与MN 垂直。

下列判断正确的是( )A .电子将向右偏转B .电子打在MN 上的点与O′点的距离为d C.电子打在MN 上的点与O′点的距离为3d D.电子在磁场中运动的时间为πd3v 0【解析】电子带负电,进入磁场后,根据左手定则判断可知,所受的洛伦兹力方向向左,电子将向左偏转,如图所示,选项A 错误;设电子打在MN上的点与O′点的距离为x ,则由几何知识得x =r -r 2-d 2=2d -(2d )2-d 2=(2-3)d ,选项B 、C 错误;设轨迹对应的圆心角为θ,由几何知识得sin θ=d 2d =0.5,得θ=π6,则电子在磁场中运动的时间为t =θr v 0=πd3v 0,选项D 正确。

届高考物理二轮复习 专项突破训练:带电粒子在复合场中的运动.docx

届高考物理二轮复习 专项突破训练:带电粒子在复合场中的运动.docx

带电粒子在复合场中的运动1.如图1所示,某一空间存在正交的匀强电场和匀强磁场,三种速度不同的质子从同一点沿垂直电场线和磁感线方向射入场区,其轨迹为图中Ⅰ、Ⅱ、Ⅲ三条虚线,设质子沿轨迹Ⅰ、Ⅱ、Ⅲ进入场区时速度分别为v1、v2、v3,射出场区时速度分别为v1′、v2′、v3′,不计质子重力,则下列选项正确的是()图1A.v1>v2>v3,v1′<v2′<v3′B.v1>v2>v3,v1>v1′,v3′>v3C.v1<v2<v3,v1>v1′,v3′>v3D.v1<v2<v3,v1<v1′,v3′<v32.如图2所示区域有方向竖直向下的匀强电场和水平向里的匀强磁场,一带正电的微粒以水平向右的初速度进入区域时,恰能沿直线运动.欲使微粒向下偏转,可采用的方法是()图2A.仅减小入射速度B.仅减小微粒的质量C.仅增大微粒的电荷量D.仅增大磁场的磁感应强度3.(多选)如图3所示,在第二象限内有水平向右的匀强电场,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.在该平面有一个质量为m、带正电q的粒子以初速度v0垂直x轴,从x轴上的P点进入匀强电场,恰好与y轴成45°角射出电场,再经过一段时间恰好垂直于x轴进入下面的磁场,已知OP之间的距离为d,不计粒子重力,则()图3A .磁感应强度B =2mv 04qd B .电场强度E =mv 022qdC .自进入磁场至在磁场中第二次经过x 轴所用时间为t =72πd2v 0D .自进入磁场至在磁场中第二次经过x 轴所用时间为t =7πd2v 04.(2018·全国卷Ⅲ)如图4,从离子源产生的甲、乙两种离子,由静止经加速电压U 加速后在纸面内水平向右运动,自M 点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v 1,并在磁场边界的N 点射出;乙种离子在MN 的中点射出;MN 长为l .不计重力影响和离子间的相互作用.求:图4(1)磁场的磁感应强度大小; (2)甲、乙两种离子的比荷之比.5.如图5,A 、B 、C 为同一平面内的三个点,在垂直于平面方向加一匀强磁场,将一质量为m 、带电荷量为q (q >0)的粒子以初动能E k 自A 点垂直于直线AC 射入磁场,粒子依次通过磁场中B 、C 两点所用时间之比为1∶3.若在该平面内同时加匀强电场,从A 点以同样的初动能沿某一方向射入同样的带电粒子,该粒子到达B 点时的动能是初动能的3倍,到达C 点时的动能为初动能的5倍.已知AB 的长度为l ,不计带电粒子的重力,求图5(1)磁感应强度的大小和方向;(2)电场强度的大小和方向.6.如图6所示,在xOy坐标系的第二象限内有水平向右的匀强电场,第四象限内有竖直向上的匀强电场,两个电场的场强大小相等,第四象限内还有垂直于纸面的匀强磁场,让一个质量为m、带电荷量为q的粒子在第二象限内的P(-L,L)点由静止释放,结果粒子沿直线运动到坐标原点并进入第四象限,粒子在第四象限内运动后从x轴上的Q(L,0)点进入第一象限,重力加速度为g,求:7.如图7甲所示,有一磁感应强度大小为B、方向垂直纸面向外的匀强磁场,磁场边界OP与水平方向夹角为θ=45°,紧靠磁场边界放置长为6d、间距为d的平行金属板M、N,M板与磁场边界的交点为P,磁场边界上的O点与N 板在同一水平面上.在两板间存在如图乙所示的交变电场(取竖直向下为正方向),其周期T=4dv0,E0=Bv06.某时刻从O点竖直向上以初速度v0发射一个电荷量为+q的粒子,结果粒子恰在图乙中的t=T4时刻从P点水平进入板间电场,最后从电场中的右边界射出.不计粒子重力.求:图7(1)粒子的质量m;(2)粒子从O点进入磁场到射出电场运动的总时间t;(3)粒子从电场中的射出点到M点的距离.参考答案1.答案 B2.答案 A3.答案 BD解析 粒子的轨迹如图所示:带电粒子在电场中做类平抛运动,水平方向做匀加速运动,竖直方向做匀速运动,由题得知,出电场时,v x =v y =v 0,根据:x =v x2t ,y =v y t =v 0t ,得y =2x =2d ,出电场时与y 轴交点坐标为(0,2d ),设粒子在磁场中运动的半径为R ,则有R sin (180°-β)=y =2d ,而β=135°,解得:R =22d ,粒子在磁场中运动的速度为:v =2v 0,根据R =mv qB ,解得:B =mv 02qd ,故A 错误;根据v x =at =qE m t =v 0,x =v x 2t ,联立解得:E =mv 022qd ,故B 正确;在第一象限运动时间为:t 1=135°360°T =3πd 2v 0,在第四象限运动时间为:t 2=12T =2πd v 0,所以自进入磁场至在磁场中第二次经过x 轴所用时间为:t =t 1+t 2=7πd2v 0,故D 正确,C 错误.4.答案 (1)4Ulv 1(2)1∶4解析 (1)设甲种离子所带电荷量为q 1、质量为m 1,在磁场中做匀速圆周运动的半径为R 1,磁场的磁感应强度大小为B ,由动能定理有q 1U =12m 1v 12①由洛伦兹力公式和牛顿第二定律有 q 1v 1B =m 1v 12R 1②由几何关系知 2R 1=l ③ 由①②③式得B =4U lv 1④(2)设乙种离子所带电荷量为q 2、质量为m 2,射入磁场的速度为v 2,在磁场中做匀速圆周运动的半径为R 2.同理有q 2U =12m 2v 22⑤ q 2v 2B =m 2v 22R 2⑥由题给条件有 2R 2=l 2⑦由①②③④⑤⑥⑦式得,甲、乙两种离子的比荷之比为 q 1m 1∶q 2m 2=1∶4⑧ 5.答案 见解析解析 (1)设AC 中点为O ,由题意可知AC 长度为粒子在磁场中做匀速圆周运动的半径,连接OB .因为粒子在运动过程中依次通过B 、C 两点所用时间之比为1∶3,所以∠AOB =60°,粒子做圆周运动的半径r =l由牛顿第二定律和洛伦兹力公式得:qvB =m v 2r 初动能:E k =12mv 2 解得:B =2mE k ql因为粒子带正电,根据洛伦兹力的方向可以判断,磁感应强度B 的方向为垂直纸面向外.(2)加上电场后,只有电场力做功,从A 到B :qU AB =3E k -E k 从A 到C :qU AC =5E k -E k 则U AC =2U AB在匀强电场中,沿任意一条直线电势的降落是均匀的,可以判断O 点与B 点是等电势的,所以电场强度E 与OB 垂直;因为由A 到B 电场力做正功,所以电场强度的方向与AB 成30°夹角斜向上.设电场强度的大小为E ,有:U AB =El cos 30° 联立解得:E =43E k3ql . 6.答案 (1)2L g (2)2m 2gLqL ,垂直纸面向里解析 (1)粒子在第二象限内做直线运动,因此电场力和重力的合力方向沿PO 方向,则粒子带正电.mg =qE 1=qE 2,2mg =ma ,2L =12at 2,解得t =2L g(2)设粒子从O 点进入第四象限的速度大小为v ,则v =at =2gL ,方向与x 轴正方向成45°角,由于粒子在第四象限内受到的电场力与重力等大反向,因此粒子在洛伦兹力作用下做匀速圆周运动,由于粒子做匀速圆周运动后从x 轴上的Q (L,0)点进入第一象限,根据左手定则可以判断,磁场方向垂直于纸面向里.粒子做圆周运动的轨迹如图,由几何关系可知 7.答案 见解析解析 (1)粒子在磁场中的运动轨迹如图,轨迹半径r =d 由牛顿第二定律得 qv 0B =m v 02r 解得:m =qBdv 0(2)粒子在磁场中运动的周期T 0=2πmqB 在磁场中运动的时间t 1=T 04粒子在电场中做曲线运动,与两板平行方向上的分运动为匀速直线运动 运动时间t 2=6dv 0从O 点到离开电场的总时间t =t 1+t 2 解得:t =πd 2v 0+6d v 0=π+122v 0d(3)粒子在电场中的运动时间t 2=6d v 0=32T当粒子从时刻t =T4自P 点进入电场后,在竖直方向上运动一个周期T 的位移为0,速度图象如图所示故粒子在32T 内运动的竖直位移y =2×12a ⎝ ⎛⎭⎪⎫T 42a =qE 0m ,解得y =d 6.。

高考物理二轮复习 专项训练 带电粒子在复合场中的运动及解析

高考物理二轮复习 专项训练 带电粒子在复合场中的运动及解析

一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-4.如图为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM =d .现有一正离子束以小发散角(纸面内)从C 射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为q m的离子都能汇聚到D,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);(2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;(3)线段CM的长度.【来源】电粒子在磁场中的运动【答案】(1)0mvBqd=,磁场方向垂直纸面向外;(2)cosdRθ'=,()2t dvθα+=;(3)cosCM d tα=。

高考物理二轮复习热点训练解析—带电粒子在复合场中的运动

高考物理二轮复习热点训练解析—带电粒子在复合场中的运动

高考物理二轮复习热点训练解析—带电粒子在复合场中的运动1.(2021·广东潮州市第一次教学质检)如图1所示,在坐标系xOy 的第四象限存在宽度为d 的匀强磁场,磁场方向垂直于xOy 平面向外;第一象限内有沿y 轴负方向的匀强电场。

一带电荷量为q (q >0)、质量为m 的粒子以速率v 0自y 轴的A 点沿x 轴正方向射入电场,经x 轴上的F 点射入磁场。

已知OA =l ,粒子经过F 点时与x 轴正方向的夹角θ=60°,忽略粒子的重力。

问:图1(1)OF 的长度L OF ;(2)若粒子恰不能从下边界飞出磁场,求匀强磁场磁感应强度B 的大小。

答案(1)233l (2)3m v 02qd解析(1)粒子在电场中做类平抛运动,根据平抛运动的推论可知,在F 点的速度方向的反向延长线经过水平位移的中点,可知tan 60°=l 12L OF ,解得L OF =233l 。

(2)粒子恰不能从下边界飞出磁场,则由几何关系可知d =r +r cos 60°解得r =23d 根据q v 0B =m v 20r ,解得B =3m v 02qd。

2.(2021·山西晋中市适应性调研)如图2所示,静止于A 处的离子,经电压为U的加速电场加速后,沿图中圆弧虚线通过14圆弧形静电分析器,从P 点沿半径方向进入半径为R 的圆形区域,该区域内有垂直纸面向里的匀强磁场。

静电分析器通道内有均匀辐向分布的电场,圆弧虚线所在处场强大小为E 0,方向如图所示;离子的质量为m 、电荷量为q;不计离子重力,求:图2(1)离子进入圆形区域时的速度大小v ;(2)圆弧虚线对应的半径R 0的大小;(3)若离子经过圆形区域后速度方向偏转一角度θ(θ已知),则圆形区域内磁场的磁感应强度B 的大小;(4)撤去圆形区域内的匀强磁场,在该圆形区域内加水平向右的匀强电场,为使离子穿过电场前后动量变化量大小与射入电场前的初动量大小相同,求此时圆形区域内匀强电场的电场强度E 的大小。

2019-2020学年度最新版本高考物理二轮复习专题训练:带电粒子在复合场中的运动(含答案详解)新人教版

2019-2020学年度最新版本高考物理二轮复习专题训练:带电粒子在复合场中的运动(含答案详解)新人教版

2019-2020学年度最新版本高考物理二轮复习专题训练:带电粒子在复合场中的运动(含答案详解)新人教版带电粒子在复合场中的运动(附参考答案)1.在空间某一区域中既存在匀强电场,又存在匀强磁场.有一带电粒子,以某一速度从不同方向射入到该区域中(不计带电粒子受到的重力),则该带电粒子在区域中的运动情况可能是( )A.做匀速直线运动B.做匀速圆周运动C.做匀变速直线运动D.做匀变速曲线运动2.如图所示,匀强电场方向竖直向上,匀强磁场方向水平指向纸外,有一电子(不计重力),恰能沿直线从左向右飞越此区域,若电子以相同的速率从右向左水平飞入该区域,则电子将( )A.沿直线飞越此区域B.向上偏转C.向下偏转D.向纸外偏转3.如右图所示,实线表示在竖直平面内匀强电场的电场线,电场线与水平方向成α角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线l做直线运动,l与水平方向成β角,且α>β,则下列说法中错误的是( )A.液滴一定做匀变速直线运动B.液滴一定带正电C.电场线方向一定斜向上D.液滴一定做匀速直线运动解析:在电磁场复合区域粒子一般不会做匀变速直线运动,因速度变化洛仑兹力变化,合外力一般变化,如果v∥B,f洛=0,也可以做匀变速运动.答案:A4.在某地上空同时存在着匀强的电场与磁场,一质量为m 的带正电小球,在该区域内沿水平方向向右做直线运动,如图所示,关于场的分布情况可能的是( )A .该处电场方向和磁场方向垂直B .电场竖直向上,磁场垂直纸面向里C .电场斜向里侧上方,磁场斜向外侧上方,均与v 垂直D .电场水平向右,磁场垂直纸面向里解析:带电小球在复合场中运动一定受重力和电场力,是否受洛仑兹力需具体分析.A 选项中若电场、磁场方向与速度方向垂直,则洛仑兹力与电场力垂直,如果与重力的合力为0就会做直线运动.B 选项中电场力、洛仑兹力都向上,若与重力合力为0,也会做直线运动.C 选项中电场力斜向里侧上方,洛仑兹力向外侧下方,若与重力的合力为0,就会做直线运动.D 选项三个力的合力不可能为0,因此选项A 、B 、C 正确.答案:ABC5.如图所示,竖直放置的两块很大的平行金属板a 、b ,相距为d ,ab 间的电场强度为E ,今有一带正电的微粒从a 板下边缘以初速度v 0竖直向上射入电场,当它飞到b 板时,速度大小不变,而方向变为水平方向,且刚好从高度也为d 的狭缝穿过b 板而进入bc 区域,bc 区域的宽度也为d ,所加电场大小为E ,方向竖直向上,磁感应强度方向垂直纸面向里,磁场磁感应强度大小等于E/v 0,重力加速度为g ,则下列关于粒子运动的有关说法正确的是( ) A.粒子在ab 区域的运动时间为v gB.粒子在bc 区域中做匀速圆周运动,圆周半径r=2dC.粒子在bc 区域中做匀速圆周运动,运动时间为d6v π D.粒子在ab 、bc 区域中运动的总时间为(6)d3v π+ 6.如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E 和匀强磁场B,有一个带正电的小球(电荷量为+q,质量为m)从电磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过的电磁复合场是( )7.如右图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是( )A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小解析:粒子先在电场中加速,进入速度选择器做匀速直线运动,最后进入磁场做匀速圆周运动.在速度选择器中受力平衡:Eq=qvB得v=E/B,方向由左手定则可知磁场方向垂直纸面向外,B、C正确.进入磁场后,洛仑兹力提供向心力,qvB0=mv2R得,R=mvqB0,所以荷质比不同的粒子偏转半径不一样,所以,A对,D错.答案:ABC8.在真空中,匀强电场方向竖直向下,匀强磁场方向垂直纸面向里.三个油滴带有等量同种电荷,其中a 静止,b 向右匀速运动,c 向左匀速运动,则它们的重力G a 、G b 、G c 的关系为( )A .G a 最大B .G b 最大C .G c 最大D .不能确定解析:由a 静止有qE =G a ,故油滴带负电;对b 受力平衡有qE =qvB +G b ;对c 受力平衡有qE +qvB =G c .由此可知三个油滴的重力满足G c >G a >G b ,故选项C 正确.答案:C9.如图所示,质量为m 、电荷量为q 的微粒,在竖直向下的匀强电场、水平指向纸内的匀强磁场以及重力的共同作用下做匀速圆周运动,下列说法中正确的是( )A .该微粒带负电,电荷量q =mg EB .若该微粒在运动中突然分成荷质比相同的两个粒子,分裂后只要速度不为零且速度方向仍与磁场方向垂直,它们均做匀速圆周运动C .如果分裂后,它们的荷质比相同,而速率不同,那么它们运动的轨道半径一定不同D .只要一分裂,不论它们的荷质比如何,它们都不可能再做匀速圆周运动解析:带电微粒在有电场力、洛仑兹力和重力作用的区域能够做匀速圆周运动,说明重力必与电场力大小相等、方向相反,由于重力方向总是竖直向下,故微粒受电场力方向向上,从题图中可知微粒带负电,选项A 正确.微粒分裂后只要荷质比相同,所受电场力与重力一定平衡(选项A 中的等式一定成立),只要微粒的速度不为零,必可在洛仑兹力作用下做匀速圆周运动,选项B 正确、D 错误.根据半径公式r =mv qB可知,在荷质比相同的情况下,半径只跟速率有关,速率不同,则半径一定不同,选项C 正确.答案:ABC10.目前,世界上正在研究一种新型发电机叫磁流体发电机.如右图表示了它的原理:将一束等离子体喷射入磁场,在场中有两块金属板A 、B ,这时金属板上就会聚集电荷,产生电压.如果射入的等离子体速度均为v ,两金属板的板长为L ,板间距离为d ,板平面的面积为S ,匀强磁场的磁感应强度为B ,方向垂直于速度方向,负载电阻为R ,电离气体充满两板间的空间.当发电机稳定发电时,电流表示数为I .那么板间电离气体的电阻率为( )A.S d (BdvI -R ) B.S d (BLvI -R ) C.S L (BdvI-R ) D.S L (BLvI-R ) 解析:当粒子受的电场力与洛仑兹力平衡时,两板电压即为电动势,即qvB =q U d,得U =Bdv .又I =UR +r,r =ρd S由此可解得ρ=S d (BdvI-R ),故选项A 正确. 答案:A二、计算题(3×12′=36′)11.一种半导体材料称为“霍尔材料”,用它制成的元件称为“霍尔元件”,这种材料有可定向移动的电荷,称为“载流子”,每个载流子的电荷量大小为q=1.6×10-19C,霍尔元件在自动检测、控制领域得到了广泛应用,如录像机中用来测量录像磁鼓的转速、电梯中用来检测电梯门是否关闭以及自动控制升降电动机的电源的通断等.在一次实验中,一块霍尔材料制成的薄片宽ab=1.0×10-2m 、长bc=4.0×10-2m 、厚h=1.0×10-3m,水平放置在竖直向上的磁感应强度B=2.0 T 的匀强磁场中,bc 方向通有I=3.0 A 的电流,如图所示,由于磁场的作用,稳定后,在沿宽度方向上产生1.0×10-5V 的横向电压.(1)薄板中载流子定向运动的速率为多大?(2)这块霍尔材料中单位体积内的载流子个数为多少?12.如图所示,真空中有以O ′为圆心,r 为半径的圆柱形匀强磁场区域,圆的最下端与x 轴相切于坐标原点O,圆的右端与平行于y 轴的虚线MN 相切,磁感应强度为B ,方向垂直纸面向外,在虚线MN 右侧x 轴上方足够大的范围内有方向竖直向下、场强大小为E 的匀强电场.现从坐标原点O 向纸面内不同方向发射速率相同的质子,质子在磁场中做匀速圆周运动的半径也为r,已知质子的电荷量为e,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力.求:(1)质子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的质子到达x 轴所需的时间.13.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.解析:粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得qvB =m v 2r①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac =bc =r ②设cd =x ,由几何关系得ac =45R +x ③ bc =35R +R 2-x 2④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ;由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向所走的距离均为r ,由运动学公式得r =12at 2⑦ r =vt ⑧式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得 E =145·qRB 2m ⑨答案:145·qRB 2m。

高中物理二轮复习 专项训练 物理带电粒子在复合场中的运动及解析

高中物理二轮复习 专项训练 物理带电粒子在复合场中的运动及解析

一、带电粒子在复合场中的运动专项训练1.如图所示,在 xOy 坐标平面的第一象限内有一沿 y 轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m 、电量为+q 的粒子(重力不计)从坐标原点 O 射入磁场,其入射方向与x 的正方向成 45°角.当粒子运动到电场中坐标为(3L ,L )的 P 点处时速度大小为 v 0,方向与 x 轴正方向相同.求: (1)粒子从 O 点射入磁场时的速度 v ;(2)匀强电场的场强 E 0 和匀强磁场的磁感应强度 B 0. (3)粒子从 O 点运动到 P 点所用的时间.【来源】海南省海口市海南中学2018-2019学年高三第十次月考物理试题 【答案】(1)02v;(2)02mv Lq;(3)0(8)4L v π+【解析】 【详解】解:(1)若粒子第一次在电场中到达最高点P ,则其运动轨迹如图所示,粒子在 O 点时的速度大小为v ,OQ 段为圆周,QP 段为抛物线,根据对称性可知,粒子在Q 点时的速度大小也为v ,方向与x 轴正方向成45︒角,可得:045v vcos =︒ 解得:02v v =(2)在粒子从Q 运动到P 的过程中,由动能定理得:2201122qEL mv mv -=-解得:202mv E qL=又在匀强电场由Q 到P 的过程中,水平方向的位移为:01x v t = 竖直方向的位移为:012v y t L == 可得:2QP x L =,OQ L =由2cos 45OQ R =︒,故粒子在OQ 段圆周运动的半径:22R L = 及mv R qB = 解得:02mvB qL=(3)在Q 点时,0045y v v tan v =︒=设粒子从由Q 到P 所用时间为1t ,在竖直方向上有:10022L L t v v ==粒子从O 点运动到Q 所用的时间为:204Lt v π=则粒子从O 点运动到P 点所用的时间为:t 总120002(8)44L L L t t v v v ππ+=+=+=2.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

2024年高考物理二轮复习专题9:磁场的性质带电粒子在磁场及复合场中的运动(附答案解析)

2024年高考物理二轮复习专题9:磁场的性质带电粒子在磁场及复合场中的运动(附答案解析)
易得Oab ∆与矢量三角形相似,根据相似三角形的性质有
F Oa Ob mg T ab ==安由此可知细线对b 的拉力不变,故AC 错误;
BD 、根据F Oa Ob mg T ab
==安,可知随着ab 间距离在逐渐增大,故导线ab 间相互作用的安培力逐渐增大,因此可知导线a 对地面的作用力变大,根据牛顿第三定律可知,地面对a 的作用力变大。故B 错误,D 正确。
B 【分析】根据安培定则分析磁场的方向,根据磁场的叠加结合题中磁感应强度的大小关系进行解答。
【解答】解:设通电长直导线在M 点产生的磁感应强度大小等于B ,根据I B k r
=以及M 、N 两点到导线的距离之比为6:5,可知通电长直导线在N 点产生的磁感应强度大小等于65B 。根据安培定则可知通电长直导线在M 点产生的磁场方向向外、在N 点产生的磁场方向向里,则有0062()
AB、由左手定则可知,ab边所受安培力水平向左,bc边所受安培力竖直向上,cd边所受安培力水平向右,ad边所受安培力竖直向下,线框各边所受安培力方向都不相同,故AB错误;
CD、离通电直导线MN越近的地方磁感应强度越大,ab边所在位置的磁感应强度大于cd 边所在位置的磁感应强度,ab与cd边的长度相等,通过它们的电流I大小相等,由 可知,ab边所受安培力大小大于cd边所受安培力大小,bc、ad两边所受安培力F BIL
5
B B B B +=-解得0516B B =,故A 正确,BCD 错误。故选:A 。
【点评】本题主要是考查磁场的叠加,关键是能够根据安培定则分析通电导线周围磁场的分布情况,明确矢量合成方法。
【例2】(2022秋•普陀区期末)两根通电直导线a 、b 相互平行,a 通有垂直纸面向里的电流,固定在O 点正下方的地面上;b 通过一端系于O 点的绝缘细线悬挂,且Oa Ob =,b 静止时的截面图如图所示。若a 中电流大小保持不变,b 中的电流缓慢增大,则在b 缓慢移动的过程中()

2020高考物理二轮复习专题检测十六带电粒子在磁场复合场中的运动

2020高考物理二轮复习专题检测十六带电粒子在磁场复合场中的运动

【2019最新】精选高考物理二轮复习专题检测十六带电粒子在磁场复合场中的运动1.(2015·全国卷Ⅰ)两相邻匀强磁场区域的磁感应强度大小不同、方向平行。

一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小解析:选D 分析轨道半径:带电粒子从较强磁场区域进入到较弱磁场区域后,粒子的速度v大小不变,磁感应强度B减小,由公式r=可知,轨道半径增大。

分析角速度:由公式T=可知,粒子在磁场中运动的周期增大,根据ω=知角速度减小。

选项D正确。

2.如图所示为洛伦兹力演示仪的结构图。

若励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直。

电子速度的大小和磁场强弱可分别由通过电子枪的加速电压和励磁线圈的电流来调节。

下列说法正确的是( ) A.仅增大励磁线圈中的电流,电子束径迹的半径变大B.仅提高电子枪加速电压,电子束径迹的半径变大C.仅增大励磁线圈中的电流,电子做圆周运动的周期将变大D.仅提高电子枪加速电压,电子做圆周运动的周期将变大解析:选B 增大励磁线圈中的电流,是增大了磁感应强度,电子在磁场中作匀速圆周运动,根据牛顿第二定律得:qvB=m,R=,磁感应强度增大,半径减小,A 错;当提高电子枪加速电压,射出的电子速度增大,由上面公式可知,R增大,B正确;增大励磁线圈中的电流,磁感应强度增大,由周期公式有:T=,可知周期变小,C错;提高电子枪加速电压,射出的速度增大,但运动周期与速度无关,周期不变,D错。

3.[多选](2015·全国卷Ⅱ)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k倍。

两个速率相同的电子分别在两磁场区域做圆周运动。

与Ⅰ中运动的电子相比,Ⅱ中的电子( )A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度与Ⅰ中的相等解析:选AC 两速率相同的电子在两匀强磁场中作匀速圆周运动,且Ⅰ磁场磁感应强度B1是Ⅱ磁场磁感应强度B2的k倍。

高三高考物理二轮专题复习卷:带电粒子在电场磁场复合场中的运动

高三高考物理二轮专题复习卷:带电粒子在电场磁场复合场中的运动

带电粒子在电场磁场复合场中的运动1. 一足够长的条状区域内存在匀强电场和匀强磁场,其在平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于平面;磁场的上、下两侧为电场区域,宽度均为,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,它们的连线与y轴平行。

一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。

不计重力。

(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点射入时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间。

2. 如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a,b,c电荷量相等,质量分别为m a,m b,m c,已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动。

下列选项正确的是A .a b cm m m >> B .b a cm m m >>C .a c bm m m >>D .c b am m m >>3. 平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ现象存在沿y 轴负方向的匀强电场,如图所示。

一带负电的粒子从电场中的Q 点以速度v 0沿x 轴正方向开始运动,Q 点到y 轴的距离为到x 轴距离的2倍。

粒子从坐标原点O 离开电场进入电场,最终从x 轴上的P 点射出磁场,P 点到y 轴距离与Q 点到y 轴距离相等。

不计粒子重力,为:(1)粒子到达O 点时速度的大小和方向; (2)电场强度和磁感应强度的大小之比。

4.如图所示,在x 轴上方存在匀强磁场,磁感应强度为B ,方向垂直纸面向里.在x 轴下方存在匀强电场,方向竖直向上.一个质量为m ,电荷量为q ,重力不计的带正电粒子从y 轴上的a (h ,0)点沿y 轴正方向以某一初速度开始运动,经过一段时间后,粒子与x 轴正方向成45°进入电场,当粒子经过y 轴的b 点时速度方向恰好与y 轴垂直.求:(1)粒子在磁场中运动的轨道半径和速度大小v ; (2)匀强电场的电场强度大小E ;(3)粒子从开始运动到第三次经过x 轴的时间t .5.如图所示,空间以AOB为界,上方有方向竖直向下的匀强电场,下方有垂直于纸面向里的匀强磁场,以过O点的竖直虚线OC为界,∠AOC=∠BOC=60°。

高三物理二轮高考题型练:题型16 带电粒子在复合场中的运动.pdf

高三物理二轮高考题型练:题型16 带电粒子在复合场中的运动.pdf

题型16 带电粒子在复合场中的运动 1.如图1所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应强度为B,方向垂直xOy平面向里,电场线平行于y轴,一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,M、N之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为θ,不计空气阻力,重力加速度为g,求: 图1 (1)电场强度E的大小和方向; (2)小球从A点抛出时初速度v0的大小; (3)小球从A点运动到N点的时间t. 答案 (1),方向竖直向上 (2) (3)+ 解析 (1)小球在电场、磁场中恰能做匀速圆周运动,有:qE=mg,则E=,电场强度方向竖直向上. (2)小球做匀速圆周运动,设半径为r, 由几何关系知:sin θ= 设小球做圆周运动的速率为v,有:qvB=m 由速度的合成与分解得:cos θ= 得:v0=. (3)设小球到M点的竖直分速度为vy, vy=v0tan θ=gt1 t1= 在磁场中运动时间为:t2=·= 运动总时间为:t=t1+t2=+. 2.(2014·天津·12)同步加速器在粒子物理研究中有重要的应用,其基本原理简化为如图2所示的模型.M、N为两块中心开有小孔的平行金属板.质量为m、电荷量为+q的粒子A(不计重力)从M板小孔飘入板间,初速度可视为零.每当A进入板间,两板的电势差变为U,粒子得到加速,当A离开N板时,两板的电荷量均立即变为零.两板外部存在垂直纸面向里的匀强磁场,A在磁场作用下做半径为R的圆周运动,R远大于板间距离.A经电场多次加速,动能不断增大,为使R保持不变,磁场必须相应地变化.不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应.求: 图2 (1)A运动第1周时磁场的磁感应强度B1的大小; (2)在A运动第n周的时间内电场力做功的平均功率n; (3)若有一个质量也为m、电荷量为+kq(k为大于1的整数)的粒子B(不计重力)与A同时从M板小孔飘入板间,A、B初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变.下图中虚线、实线分别表示A、B的运动轨迹.在B的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A、B的运动轨迹,并经推导说明理由. 答案 (1) (2) (3)A 理由见解析 解析 (1)设A经电场第1次加速后速度为v1,由动能定理得qU=mv-0① A在磁场中做匀速圆周运动,所受洛伦兹力充当向心力 qv1B1=② 由①②式得B1= .③ (2)设A经n次加速后的速度为vn,由动能定理得 nqU=mv-0④ 设A做第n次圆周运动的周期为Tn,有Tn=⑤ 设在A运动第n周的时间内电场力做功为Wn,则 Wn=qU⑥ 在该段时间内电场力做功的平均功率为n=⑦ 由④⑤⑥⑦式解得n= .⑧ (3)A图能定性地反映A、B运动的轨迹. A经过n次加速后,设其对应的磁感应强度为Bn,A、B的周期分别为Tn、T′,综合②⑤式并分别应用A、B的数据得Tn= 由上式可知,Tn是T′的k倍,所以A每绕行1周,B就绕行k周.由于电场只在A通过时存在,故B仅在与A同时进入电场时才被加速. 经n次加速后,A、B的速度分别为vn和vn′,考虑到④式vn= vn′= =vn 由题设条件并考虑到⑤式,对A有Tnvn=2πR 设B的轨迹半径为R′,有T′vn′=2πR′ 比较上述两式得R′= 上式表明,运动过程中B的轨迹半径始终不变. 由以上分析可知,两粒子运动的轨迹如图A所示. 3.一圆筒的横截面如图3所示,其圆心为O,筒内有垂直于纸面向里的匀强磁场,磁感应强度为B.圆筒左侧有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中.粒子与圆筒发生3次碰撞后仍从S孔射出.设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求: 图3 (1)M、N间电场强度E的大小; (2)圆筒的半径R; (3)欲使粒子仍从M板边缘的P处由静止释放,进入圆筒后与圆筒碰撞2次后从S孔射出,在保持M、N间电场强度E不变的情况下,应如何平移M板? 答案 (1) (2) (3)向左平移2d 解析 (1)设两板间的电压为U,由动能定理得 qU=mv2 由匀强电场中电势差与电场强度的关系得U=Ed 联立解得E=. (2)粒子进入磁场后做匀速圆周运动,由于粒子与圆筒发生3次碰撞又从S孔射出,由几何关系知r=R 粒子运动过程中洛伦兹力充当向心力,得qvB=m 联立解得R=. (3)粒子进入磁场后做匀速圆周运动,运用几何关系作出圆心为O′,圆半径为r′.设第一次碰撞点为A,由于粒子与圆筒发生2次碰撞又从S孔射出,因此,SA圆弧所对的圆心角∠AO′S= 由几何关系得r′=Rtan 粒子运动过程中洛伦兹力充当向心力,得qv′B= 设粒子做匀速圆周运动的轨道半径为r′,则r′= 可得v′=v 由qU=mv2可看出:= 则U′=3U=Ed′,得d′=3d 所以应将M板向左平移距离Δd=d′-d=2d. 4.如图4所示的平面直角坐标系中,在y>0的区域存在匀强电场,场强沿y轴负方向,在y<0的区域存在匀强磁场,磁场方向垂直于坐标平面向外.一电荷量为q、质量为m的带正电粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后经过x轴上x=2h处的P2点进入磁场.不计粒子重力. 图4 (1)求电场强度的大小; (2)若粒子进入磁场后,接着经过了y轴上y=-2h处的P3点,求磁感应强度的大小; (3)若只改变磁场的大小(仍为匀强磁场),让粒子仍从P1经P2沿原路径进入磁场后,为了使粒子能再次通过P2点,求磁感应强度的大小满足的条件. 答案 (1) (2) (3)或(n=1,2,3,4…) 解析 (1)粒子运动轨迹如图甲所示 在电场中,a= 2h=v0t h=at2 (2)在电场中vy=at=v0 进入磁场的速度v==v0,方向与x轴成45° 在磁场中,连接P2、P3两点, 由几何关系知,为圆弧的直径,所以R=h, 又由qvB=m,所以B==. (3)设满足条件的磁感应强度为B′,下面分两种情况进行讨论. 第一种情况:根据对称性,轨迹关于y轴对称,能过P2点的轨迹如图乙所示, 由几何关系知R=2h 又由qvB′=m,所以B′== 第二种情况:如果轨迹与y轴不对称,能过P2点的轨迹如图丙所示, 设粒子此后在电场中偏转n次后再经过P2点,当n=1时,粒子在磁场中将偏转2次过P2点,R== 当n=2时,粒子在磁场中将偏转3次过P2点,R== …… 当粒子在电场中偏转n次时,粒子在磁场中将n+1次过P2点,R===2(n=1,2,3,4…) 所以R=(n=1,2,3,4…) 又由qvB′=m, 所以B′==(n=1,2,3,4…) 所以过P2点的条件是B==或B′==(n=1,2,3,4…). 【必考模型4】 带电粒子在组合场中的运动 1.模型特点:电场、磁场同时存在,但空间位置不同. 2.表现形式:(1(在电场中做匀加速直线运动,在有界磁场中做匀速圆周运动.(2(在电场中做类平抛运动,在有界磁场中做匀速圆周运动. 3.应对模式:这类问题实质是类平抛运动、直线运动和圆周运动组成的多过程问题,要善于把多过程分解,逐个击破.对于在电场中的加速和类平抛运动,要能熟练应用力和运动的方法以及功和能的方法求解.对于粒子在磁场中的圆周运动,关键是找圆心画出运动轨迹,并结合几何知识,求出半径或运动的时间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题检测(十六) 带电粒子在磁场、复合场中的运动1.(2015·全国卷Ⅰ)两相邻匀强磁场区域的磁感应强度大小不同、方向平行。

一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A .轨道半径减小,角速度增大B .轨道半径减小,角速度减小C .轨道半径增大,角速度增大D .轨道半径增大,角速度减小解析:选D 分析轨道半径:带电粒子从较强磁场区域进入到较弱磁场区域后,粒子的速度v 大小不变,磁感应强度B 减小,由公式r =mv qB 可知,轨道半径增大。

分析角速度:由公式T =2πm qB 可知,粒子在磁场中运动的周期增大,根据ω=2πT知角速度减小。

选项D 正确。

2.如图所示为洛伦兹力演示仪的结构图。

若励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直。

电子速度的大小和磁场强弱可分别由通过电子枪的加速电压和励磁线圈的电流来调节。

下列说法正确的是( )A .仅增大励磁线圈中的电流,电子束径迹的半径变大B .仅提高电子枪加速电压,电子束径迹的半径变大C .仅增大励磁线圈中的电流,电子做圆周运动的周期将变大D .仅提高电子枪加速电压,电子做圆周运动的周期将变大解析:选B 增大励磁线圈中的电流,是增大了磁感应强度,电子在磁场中作匀速圆周运动,根据牛顿第二定律得:qvB =m v 2R ,R =mv qB,磁感应强度增大,半径减小,A 错;当提高电子枪加速电压,射出的电子速度增大,由上面公式可知,R 增大,B 正确;增大励磁线圈中的电流,磁感应强度增大,由周期公式有:T =2πm qB,可知周期变小,C 错;提高电子枪加速电压,射出的速度增大,但运动周期与速度无关,周期不变,D 错。

3.[多选](2015·全国卷Ⅱ)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k 倍。

两个速率相同的电子分别在两磁场区域做圆周运动。

与Ⅰ中运动的电子相比,Ⅱ中的电子( )A .运动轨迹的半径是Ⅰ中的k 倍B .加速度的大小是Ⅰ中的k 倍C .做圆周运动的周期是Ⅰ中的k 倍D .做圆周运动的角速度与Ⅰ中的相等解析:选AC 两速率相同的电子在两匀强磁场中作匀速圆周运动,且Ⅰ磁场磁感应强度B 1是Ⅱ磁场磁感应强度B 2的k 倍。

由qvB =mv 2r 得r =mv qB ∝1B,即Ⅱ中电子运动轨迹的半径是Ⅰ中的k 倍,选项A 正确。

由F 合=ma 得a =F 合m =qvB m ∝B ,所以a 2a 1=1k,选项B 错误。

由T =2πr v 得T ∝r ,所以T 2T 1=k ,选项C 正确。

由ω=2πT 得ω2ω1=T 1T 2=1k,选项D 错误。

正确选项为A 、C 。

4.如图以实线为理想边界,上方是垂直纸面的匀强磁场。

质量和电荷量大小都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直边界和磁场进入匀强磁场,运动的半圆轨迹如图中虚线所示,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 都做正功D .M 在磁场中的运动时间大于N 在磁场中的运动时间解析:选A 由左手定则判断出N 带正电荷,M 带负电荷,故A 正确;粒子在磁场中运动,洛伦兹力提供向心力qvB =m v 2r ,半径r =mv qB,在质量与电荷量相同的情况下,半径大说明速率大,即M 的速率大于N 的速率,故B 错误;洛伦兹力不做功,故C 错误;粒子在磁场中运动半周,即时间为周期的一半,而周期为T =2πm qB,与粒子运动的速度无关,所以M 的运行时间等于N 的运行时间,故D 错误。

5.[多选](2014·全国卷Ⅱ)如图为某磁谱仪部分构件的示意图。

图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹。

宇宙射线中有大量的电子、正电子和质子。

当这些粒子从上部垂直进入磁场时,下列说法正确的是( )A .电子与正电子的偏转方向一定不同B .电子与正电子在磁场中运动轨迹的半径一定相同C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D .粒子的动能越大,它在磁场中运动轨迹的半径越小解析:选AC 根据左手定则,电子、正电子进入磁场后所受洛伦兹力的方向相反,故两者的偏转方向不同,选项A 正确;根据qvB =mv 2r ,得r =mv qB,若电子与正电子在磁场中的运动速度不相等,则轨迹半径不相同,选项B 错误;对于质子、正电子,它们在磁场中运动时不能确定mv 的大小,故选项C 正确;粒子的mv 越大,轨道半径越大,而mv = 2mE k ,粒子的动能大,其mv 不一定大,选项D 错误。

6.[多选](2018届高三·常德摸底)如图所示,宽为d 的有界匀强磁场的边界为PP ′、QQ ′。

一个质量为m 、电荷量为q 的微观粒子沿图示方向以速度v 0垂直射入磁场,磁感应强度大小为B ,要使粒子不能从边界QQ ′射出,粒子的入射速度v 0的最大值可能是下面给出的(粒子的重力不计)( )A.qBd m B.2qBd m C.2qBd 3m D.qBd 3m解析:选BC 微观粒子在匀强磁场中作匀速圆周运动,qvB =mv 2R ,R =mv qB,要使粒子不能从边界QQ ′射出,粒子的入射速度v 0最大时,轨迹与QQ ′相切。

如粒子带正电,R =R 2+d ,d =R 2,v 0=2qBd m ,B 正确;如粒子带负电,R +R 2=d ,v 0=2qBd 3m,C 正确。

7.(2017·全国卷Ⅲ)如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q垂直于纸面固定放置,两者之间的距离为l 。

在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零。

如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )A .0 B.33B 0 C.233B 0 D .2B 0解析:选C 导线P 和Q 中电流I 均向里时,设其在a 点产生的磁感应强度大小B P =B Q=B 1,如图所示,则其夹角为60°,它们在a 点的合磁场的磁感应强度平行于PQ 向右、大小为3B 1。

又根据题意B a =0,则B 0=3B 1,且B 0平行于PQ 向左。

若P 中电流反向,则B P 反向、大小不变,B Q和B P 大小不变,夹角为120°,合磁场的磁感应强度大小为B 1′=B 1(方向垂直PQ 向上、与B 0垂直),a 点合磁场的磁感应强度B =B 02+B 1′2=233B 0,则A 、B 、D 项均错误,C 项正确。

8.(2016·全国卷Ⅱ)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示。

图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动。

在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN 成30°角。

当筒转过90°时,该粒子恰好从小孔N 飞出圆筒。

不计重力。

若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A.ω3B B.ω2B C.ωB D.2ωB解析:选A 如图所示,粒子在磁场中作匀速圆周运动,圆弧MP 所对应的圆心角由几何知识知为30°,则π2ω=2πm qB ·30°360°,即q m =ω3B,选项A 正确。

9.如图所示,三个速度大小不同的同种带电粒子,沿同一方向从图中长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°,则它们在磁场中运动的时间之比为( )A .1∶1∶1B .1∶2∶3C .3∶2∶1D .1∶2∶ 3解析:选C 粒子在匀强磁场中运动的周期T =2πm qB与v 无关,由题图知三种粒子偏转角分别为90°、60°、30°,根据几何关系可知,三种粒子在磁场中运动的圆心角分别为90°、60°、30°,所用时间分别为T 4、T 6、T 12,故时间之比为3∶2∶1,C 正确。

10.[多选]如图所示,有一个正方形的匀强磁场区域abcd ,e 是ad的中点,f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的带电粒子,恰好从e 点射出,则( )A .如果粒子的速度增大为原来的两倍,将从d 点射出B .如果粒子的速度增大为原来的三倍,将从f 点射出C .如果粒子的速度不变,磁场的磁感应强度B 增大为原来的两倍,也将从d 点射出D .只改变粒子的速度,使其分别从e 、d 、f 点射出时,从f 点射出所用的时间最短解析:选AD 由r =mv qB可知,如果粒子的速度增大为原来的二倍,粒子在磁场内运动时的轨道半径增大到原来的二倍,粒子将从d 点射出,选项A 正确;如果粒子的速度增大为原来的三倍,假设磁场区域足够大,粒子会通过ad 延长线上的g 点,且dg =ae ,可知粒子将从d 、f 之间的某确定点射出,选项B 错误;如果粒子的速度不变,磁场的磁感应强度变为原来的二倍,将从ae 的中点射出,选项C 错误;带电粒子从e 、d 点射出时转过的角度相等,所用时间相等,从f 点射出时转过的角度最小,所用的时间最短,选项D 正确。

11.(2017·全国卷Ⅱ)如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同方向射入磁场。

若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上。

不计重力及带电粒子之间的相互作用。

则v 2∶v 1为( ) A.3∶2 B.2∶1 C.3∶1 D .3∶ 2 解析:选C 由于是相同的粒子,粒子进入磁场时的速度大小相同,由qvB =m v 2R 可知,R =mv qB,即粒子在磁场中做圆周运动的半径相同。

若粒子运动的速度大小为v 1,如图所示,通过旋转圆可知,当粒子在磁场边界的出射点A 离P 点最远时,则AP =2R 1;同样,若粒子运动的速度大小为v 2,粒子在磁场边界的出射点B 离P 点最远时,则BP =2R 2,由几何关系可知,R 1=R 2,R 2=R cos 30°=32R ,则v 2v 1=R 2R 1=3,C 项正确。

12.[多选]如图所示,一足够长的绝缘细杆处于磁感应强度为B =0.5 T的匀强磁场中,杆与磁场垂直且与水平方向的夹角为θ=37°。

相关文档
最新文档