极值点好题

合集下载

极值点偏移的典型例题(含答案)

极值点偏移的典型例题(含答案)

极值点偏移的问题(含答案)21212()ln ,(1()1121()()3(),,f x x ax a f x x x a a f m f mf x x x x x e =-==⋅1.已知为常数)()若函数在处的切线与轴平行,求的值;()当时,试比较与的大小;()有两个零点证明:>21212()ln (),,.f x x ax f x x x x x e =-⋅变式:已知函数,a 为常数。

(1)讨论的单调性;(2)若有两个零点,试证明:>2012120()+sin,(0,1);2()()()()(),2.xf x x ax x f x a a f x f x f x f x x x x π=+∈=+2.已知(1)若在定义域内单调递增,求的取值范围;(2)当=-2时,记取得极小值为若求证>()2121212121()ln -,()2(1=()()()(1)()1,,0,2f x x ax x a R f f xg x f x ax g x a x x f x f x x x x x =+∈-++=+≥3.已知(1)若)0,求函数的最大值;(2)令=-,求函数的单调区间;(3)若=-2,正实数满足()证明:212122(1)1(1)1,,x x x x x e -+>>4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立;(2)若函数f(x)无零点,求实数a 的取值范围;(3)若函数f(x)有两个相异零点x 求证:x1212312()2ln ,1()2(),8f x x a a x a R f x f x x x x x a x x a =--∈<⋅<5.已知常数。

()求的单调区间;()有两个零点,且;(i)指出的取值范围,并说明理由;(ii)求证:6.设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且12x x <.(1)求a 的取值范围;(2)证明:0f '<(()f x '为函数()f x 的导函数);。

有关极值点的几个题目

有关极值点的几个题目

关于极值点与零点的几个题一.解答题(共7小题)1.已知函数.(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值范围并证明x1+x2>2.2.已知函数f(x)=xlnx﹣x2﹣x+a(a∈R)在定义域内有两个不同的极值点(1)求a的取值范围;(2)记两个极值点x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范围.3.已知函数f(x)=ln﹣ax2+x,(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣4ln2.4.已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.5.已知函数f(x)=lnx﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)当a=1时,函数有两个零点x1,x2,且x1<x2.求证:x1+x2>1.6.已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值范围.7.已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f (x2)﹣1<f(x1)关于极值点的几个题目------有点难参考答案与试题解析一.解答题(共7小题)1.(2017•达州模拟)已知函数.(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值范围并证明x1+x2>2.【分析】(1)求出函数的导数,问题转化为,令,根据函数的单调性求出g(x)的最大值,从而求出a的范围即可;(2)求出函数f(x)的导数,令F(x)=f'(x)=lnx﹣ax+1,求出函数F(x)的导数,通过讨论a的范围求出a的范围,证明即可.【解答】解:(1)因为f'(x)=lnx﹣ax+1(x>0),所以由f'(x)≤0在(0,+∞)上恒成立得,令,易知g(x)在(0,1)单调递增(1,+∞)单调递减,所以a≥g(1)=1,即得:a≥1…(5分)(2)函数y=f(x)有两个极值点x1,x2(x1<x2),即y=f'(x)有两个不同的零点,且均为正,f'(x)=lnx﹣ax+1(x>0),令F(x)=f'(x)=lnx﹣ax+1,由可知1)a≤0时,函数y=f(x)在(0,+∞)上是增函数,不可能有两个零点.2)a>0时,y=F(x)在是增函数在是减函数,此时为函数的极大值,也是最大值.当时,最多有一个零点,所以才可能有两个零点,得:0<a<1…(7分)此时又因为,,,令,φ(a)在(0,1)上单调递增,所以φ(a)<φ(1)=3﹣e2,即综上,所以a的取值范围是(0,1)…(8分)下面证明x1+x2>2由于y=F(x)在是增函数在是减函数,,可构造出构造函数则,故m(x)在区间上单调减.又由于,则,即有m(x1)>0在上恒成立,即有成立.由于,,y=F(x)在是减函数,所以所以成立…(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.2.(2017•天心区校级一模)已知函数f(x)=xlnx﹣x2﹣x+a(a∈R)在定义域内有两个不同的极值点(1)求a的取值范围;(2)记两个极值点x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范围.【分析】(1)由导数与极值的关系知可转化为方程f′(x)=lnx﹣ax=0在(0,+∞)有两个不同根;再转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点;(2)原式等价于>,令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,t∈(0,1),根据函数的单调性求出即可.【解答】解:(1)由题意知,函数f(x)的定义域为(0,+∞),方程f′(x)=0在(0,+∞)有两个不同根,即方程lnx﹣ax=0在(0,+∞)有两个不同根;转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如图示:,可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),故k=y′|x=x0=,又k=,故=,解得,x0=e,故k=,故0<a<;(2)因为e1+λ<x1•x2λ等价于1+λ<lnx1+λlnx2.由(1)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于a>,又由lnx1=ax1,lnx2=ax2作差得,ln =a(x1﹣x2),所以原式等价于>,因为0<x1<x2,原式恒成立,即ln<恒成立.令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,t∈(0,1),又h′(t)=,当λ2≥1时,可见t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1•x2λ恒成立,只须λ2≥1,又λ>0,所以λ≥1.【点评】本题考查了导数的综合应用及分类讨论,转化思想,数形结合的思想方法的应用,是一道综合题.3.(2017•湖北模拟)已知函数f(x)=ln﹣ax2+x,(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣4ln2.【分析】(1)求出函数的导数,通过讨论a的范围,得到函数的单调区间,从而求出函数的极值的个数;(2)根据x1,x2是方程2ax2﹣x+1=0的两根,得到,,求出f(x1)+f(x2),根据函数的单调性证明即可.【解答】解:(1)由,得:,(ⅰ)a=0时,,x∈(0,1),f′(x)<0,x∈(1,+∞),f′(x)>0,所以x=1,f(x)取得极小值,x=1是f(x)的一个极小值点.(ⅱ)a<0时,△=1﹣8a>0,令f′(x)=0,得显然,x1>0,x2<0,∴,f(x)在x=x1取得极小值,f(x)有一个极小值点.(ⅲ)a>0时,△=1﹣8a≤0即时,f′(x)≤0,f(x)在(0,+∞)是减函数,f(x)无极值点.当时,△=1﹣8a>0,令f′(x)=0,得当x∈(0,x1)和x∈(x2,+∞)f′(x)<0,x∈(x1,x2)时,f′(x)>0,∴f(x)在x1取得极小值,在x2取得极大值,所以f(x)有两个极值点.综上可知:(ⅰ)a≤0时,f(x)仅有一个极值点;(ⅱ)当时,f(x)无极值点;(ⅲ)当时,f(x)有两个极值点.(2)证明:由(1)知,当且仅当a∈(0,)时,f(x)有极小值点x1和极大值点x2,且x1,x2是方程2ax2﹣x+1=0的两根,∴,,===,设,,∴时,g(a)是减函数,,∴,∴f(x1)+f(x2)>3﹣4ln2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论数思想,是一道综合题.4.(2016•包头校级三模)已知函数f(x)=(e为自然对数的底数).(1)若a=,求函数f(x)的单调区间;(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.【分析】(1)若a=,求函数的导数,利用函数单调性和导数之间的关系即可求函数f(x)的单调区间;(2)根据函数与方程之间的关系转化为函数存在零点问题,构造函数,求函数的导数,利用函数极值和函数零点之间的关系进行转化求解即可.【解答】解:(1)若a=,f(x)=(x2+bx+1)e﹣x,则f′(x)=(2x+b)e﹣x﹣(x2+bx+1)e﹣x=﹣[x2+(b﹣2)x+1﹣b]e﹣x=﹣(x﹣1)[x﹣(1﹣b)]e﹣x,由f′(x)=0得﹣(x﹣1)[x﹣(1﹣b)]=0,即x=1或x=1﹣b,①若1﹣b=1,即b=0时,f′(x)=﹣(x﹣1)2e﹣x≤0,此时函数单调递减,单调递减区间为(﹣∞,+∞).②若1﹣b>1,即b<0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x ﹣1)[x﹣(1﹣b)]<0,即1<x<1﹣b,此时函数单调递增,单调递增区间为(1,1﹣b),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x<1,或x>1﹣b,此时函数单调递减,单调递减区间为(﹣∞,1),(1﹣b,+∞),③若1﹣b<1,即b>0时,由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x>0得(x ﹣1)[x﹣(1﹣b)]<0,即1﹣b<x<1,此时函数单调递增,单调递增区间为(1﹣b,1),由f′(x)=﹣(x﹣1)[x﹣(1﹣b)]e﹣x<0得(x﹣1)[x﹣(1﹣b)]>0,即x<1﹣b,或x>1,此时函数单调递减,单调递减区间为(﹣∞,1﹣b),(1,+∞).(2)若f(1)=1,则f(1)=(2a+b+1)e﹣1=1,即2a+b+1=e,则b=e﹣1﹣2a,若方程f(x)=1在(0,1)内有解,即方程f(x)=(2ax2+bx+1)e﹣x=1在(0,1)内有解,即2ax2+bx+1=e x在(0,1)内有解,即e x﹣2ax2﹣bx﹣1=0,设g(x)=e x﹣2ax2﹣bx﹣1,则g(x)在(0,1)内有零点,设x0是g(x)在(0,1)内的一个零点,则g(0)=0,g(1)=0,知函数g(x)在(0,x0)和(x0,1)上不可能单调递增,也不可能单调递减,设h(x)=g′(x),则h(x)在(0,x0)和(x0,1)上存在零点,即h(x)在(0,1)上至少有两个零点,g′(x)=e x﹣4ax﹣b,h′(x)=e x﹣4a,当a≤时,h′(x)>0,h(x)在(0,1)上递增,h(x)不可能有两个及以上零点,当a≥时,h′(x)<0,h(x)在(0,1)上递减,h(x)不可能有两个及以上零点,当<a<时,令h′(x)=0,得x=ln(4a)∈(0,1),则h(x)在(0,ln(4a))上递减,在(ln(4a),1)上递增,h(x)在(0,1)上存在最小值h(ln(4a)).若h(x)有两个零点,则有h(ln(4a))<0,h(0)>0,h(1)>0,h(ln(4a))=4a﹣4aln(4a)﹣b=6a﹣4aln(4a)+1﹣e,<a<,设φ(x)=x﹣xlnx+1﹣e,(1<x<e),则φ′(x)=﹣lnx,令φ′(x)=﹣lnx=0,得x=,当1<x<时,φ′(x)>0,此时函数φ(x)递增,当<x<e时,φ′(x)<0,此时函数φ(x)递减,则φ(x)max=φ()=+1﹣e<0,则h(ln(4a))<0恒成立,由h(0)=1﹣b=2a﹣e+2>0,h(1)=e﹣4a﹣b>0,得<a<,当<a<时,设h(x)的两个零点为x1,x2,则g(x)在(0,x1)递增,在(x1,x2)上递减,在(x2,1)递增,则g(x1)>g(0)=0,g(x2)<g(1)=0,则g(x)在(x1,x2)内有零点,综上,实数a的取值范围是(,).【点评】本题主要考查函数单调性和单调区间的求解和判断,利用函数单调性的性质以及函数单调性和导数之间的关系是解决本题的关键.综合性较强,难度较大.5.(2016•宁城县模拟)已知函数f(x)=lnx﹣ax.(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)当a=1时,函数有两个零点x1,x2,且x1<x2.求证:x1+x2>1.【分析】(Ⅰ)求出函数的导数,根据函数的单调性,分离参数a,问题转化为:当x>1时恒成立,解出即可;(Ⅱ)求出个零点x1,x2,得到.构造函数,根据函数的单调性证明即可.【解答】解:(I)因为f(x)=lnx﹣ax,则,若函数f(x)=lnx﹣ax在(1,+∞)上单调递减,则1﹣ax≤0在(1,+∞)上恒成立,即当x>1时恒成立,所以a≥1.(5分)(II)证明:根据题意,,因为x1,x2是函数的两个零点,所以,.两式相减,可得,(7分)即,故.那么,.令,其中0<t<1,则.构造函数,(10分)则.因为0<t<1,所以h'(t)>0恒成立,故h(t)<h(1),即.可知,故x1+x2>1.(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,是一道综合题.6.(2016•河南三模)已知f(x)=ln(mx+1)﹣2(m≠0).(1)讨论f(x)的单调性;(2)若m>0,g(x)=f(x)+存在两个极值点x1,x2,且g(x1)+g(x2)<0,求m的取值范围.【分析】(1)求出函数的导数,通过讨论m的范围,确定函数的单调性;(2)求出g(x)的导数,通过讨论m的范围,求出函数的单调区间,从而求出函数的最值,判断是否符合题意,从而判断出m的范围即可.【解答】解:(1)由已知得mx+1>0,f′(x)=,①若m>0时,由mx+1>0,得:x>﹣,恒有f′(x)>0,∴f(x)在(﹣,+∞)递增;②若m<0,由mx+1>0,得:x<﹣,恒有f′(x)<0,∴f(x)在(﹣∞,﹣)递减;综上,m>0时,f(x)在(﹣,+∞)递增,m<0时,f(x)在(﹣∞,﹣)递减;(2)g(x)=ln(mx+1)+﹣2,(m>0),∴g′(x)=,令h(x)=mx2+4m﹣4,m≥1时,h(x)≥0,g′(x)≥0,g(x)无极值点,0<m<1时,令h(x)=0,得:x1=﹣2或x2=2,由g(x)的定义域可知x>﹣且x≠﹣2,∴﹣2>﹣且﹣2≠﹣2,解得:m≠,∴x1,x2为g(x)的两个极值点,即x1=﹣2,x2=2,且x1+x2=0,x1•x2=,得:g(x1)+g(x2)=ln(mx1+1)+﹣2+ln(mx2+1)+﹣2=ln(2m﹣1)2+﹣2,令t=2m﹣1,F(t)=lnt2+﹣2,①0<m<时,﹣1<t<0,∴F(t)=2ln(﹣t)+﹣2,∴F′(t)=<0,∴F(t)在(﹣1,0)递减,F(t)<F(﹣1)<0,即0<m<时,g(x1)+g(x2)<0成立,符合题意;②<m<1时,0<t<1,∴F(t)=2lnt+﹣2,F′(t)=<0,∴F(t)在(0,1)递减,F(t)>F(1)=0,∴<m<1时,g(x1)+g(x2)>0,不合题意,综上,m∈(0,).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.7.(2016•湖北模拟)已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f (x2)﹣1<f(x1)【分析】(1)利用导数的几何意义求切线斜率,解a;(2)利用极值点与其导数的关系求出a的范围,进一步求出f(x)的解析式,通过求导判断其单调性以及最值.【解答】解:(1)∵f′(x)=ln x﹣2ax+1,∴f′(1)=1﹣2a因为3x﹣y﹣1=0的斜率为3.依题意,得1﹣2a=3;则a=﹣1.…(4分)(2)证明:因为F(x)=g(x)+x2=ln x﹣2ax+1+x2,所以F′(x)=﹣2a+x=(x>0),函数F(x)=g(x)+x2有两个极值点x1,x2且x1<x2,即h(x)=x2﹣2ax+1在(0,+∞)上有两个相异零点x1,x2.∵x1x2=1>0,∴∴a>1.…(6分)当0<x<x1或x>x2时,h(x)>0,F′(x)>0.当x1<x<x2时,h(x)<0,F′(x)<0.所以F(x)在(0,x1)与(x2,+∞)上是增函数,在区间(x1,x2)上是减函数.因为h(1)=2﹣2a<0,所以0<x1<1<a<x2,令x2﹣2ax+1=0,得a=,∴f(x)=x(ln x﹣ax)=xln x﹣x3﹣x,则f′(x)=ln x﹣x2+,设s(x)=ln x﹣x2+,s′(x)=﹣3x=,…(8分)①当x>1时,s′(x)<0,s(x)在(1,+∞)上单调递减,从而函数s(x)在(a,+∞)上单调递减,∴s(x)<s(a)<s(1)=﹣1<0,即f′(x)<0,所以f(x)在区间(1,+∞)上单调递减.故f(x)<f(1)=﹣1<0.又1<a<x2,因此f(x2)<﹣1.…(10分)②当0<x<1时,由s′(x)=>0,得0<x<.由s′(x)=<0,得<x<1,所以s(x)在[0,]上单调递增,s(x)在[,1]上单调递减,∴s(x)≤s max=ln<0,∴f(x)在(0,1)上单调递减,∴f(x)>f(1)=﹣1,∵x1∈(0,1),从而有f(x1)>﹣1.综上可知:f(x2)<﹣1<f(x1).…(12分)【点评】本题考查了导数的几何意义以及利用导数求函数的单调区间和最值;考查了讨论的数学思想,属于难题.。

高考数学导函数极值最值问题-解析版

高考数学导函数极值最值问题-解析版

高考数学导函数极值最值问题题型一:根据图像判断极值点情况【例1】.函数f(x)的导函数f′(x)的图象如图所示,则()A.x=1是最小值点B.x=0是极小值点C.x=2是极小值点D.函数f(x)在(1,2)上单调递增【答案】C【解析】由图象得:f(x)在(−∞,0)递增,在(0,2)递减,在(2,+∞)递增∴x=2是极小值点故选 C变式训练1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点 ()A.1个B.2个C.3个D.4个【答案】A【解析】由f′(x)的图象可知,函数f(x)在区间(a,b)上的单调性依次是:增→减→增→减.由极小值点的定义可知,在区间(a,b)上有1个极小值点【备注】利用导数研究函数的极值.若在x0处函数的导数值为零,在x0左侧函数单减,右侧函数单增,则在x0处取得极小值.变式训练2.( 尖子班 ) 如下图,直线y=ax+2与曲线y=f(x)交于A、B两点,其中A是切点,记ℎ(x)=f(x),g(x)=f(x)−ax,则下列判断正确的是()xA.ℎ(x)只有一个极值点B.ℎ(x)有两个极值点,且极小值点小于极大值点C.g(x)的极小值点小于极大值点,且极小值为−2D.g(x)的极小值点大于极大值点,且极大值为2【答案】D【解析】设切点A的坐标为(x0,f(x0)),则由条件得f′(x0)=a 且当x<x0时,f′(x)>a;当x>x0时,f′(x)<a∵g(x)=f(x)−ax∴g′(x)=f′(x)−a∴当x<x0时,g′(x)=f′(x)−a>0,g(x)单调递增当x>x0时,g′(x)=f′(x)−a<0,g(x)单调递减∴当x=x0时g(x)有极大值,且极大值为g(x0)=f(x0)−ax0=2同理g(x)有极小值,结合图形可得g(x)的极小值点大于极大值点选 D题型二:利用导数讨论函数极值点与求极值【例2】.函数y=14x4−13x3的极值点的个数为()A.0B.1C.2D.3【答案】B【解析】因为y=14x4−13x3所以y′=x3−x2=x2(x−1)由y′=0得x1=0,x2=1,当x变化时,y′,y的变化情况如下表x(−∞,0)0(0,1)1(1,+∞) y′−0−0+ y减无极值减极小值增由表可知,函数只有一个极值点故选 B变式训练.已知函数f(x)=2mx+1+ln⁡x−m(m∈R),试讨论函数f(x)的极值点情况.【答案】当m≤2时,f(x)无极值点当m>2时,f(x)的极大值点为x=m−1−√m2−2m极小值点为x=m−1+√m2−2m 【解析】由题得,f(x)的定义域为(0,+∞)f′(x)=1x−2m(x+1)2=x2+2(1−m)x+1x(x+1)2(m∈R)设g(x)=x2+2(1−m)x+1Δ=4(1−m)2−4=4m(m−2)①当m≤0时,对称轴x=m−1<0故g(x)在区间(0,+∞)上单调递增则g(x)>g(0)=1所以f′(x)>0在区间(0,+∞)上恒成立所以f(x)在区间(0,+∞)上单调递增,f(x)无极值②当0<m≤2时,Δ≤0,g(x)=x2+2(1−m)x+1≥0恒成立故f′(x)≥0在区间(0,+∞)上恒成立所以f(x)在区间(0,+∞)上单调递增,f(x)无极值③当m>2时,令g(x)=0,得x1=m−1−√m2−2mx2=m−1+√m2−2m令f′(x)>0,得0<x<x1或x>x2令f′(x)<0,得x1<x<x2所以f(x)在区间(0,x1)上单调递增,在区间(x1,x2)上单调递减,在区间(x2,+∞)上单调递增故f(x)的极大值点为x=m−1−√m2−2m,极小值点为x=m−1+√m2−2m.综上所述,当m≤2时,f(x)无极值点当m>2时,f(x)的极大值点为x=m−1−√m2−2m,极小值点为x=m−1+√m2−2m 【备注】由题得,求得f′(x)=x2+2(1−m)x+1x(x+1)2设g(x)=x2+2(1−m)x+1由Δ=4m(m−2)分m≤0、0<m≤2、m>2三种情况讨论,即可得到函数极值点的情况本题主要考查利用导数求解函数的极值(点)和不等式的恒成立问题求解,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题【例3】.已知x=−2是f(x)=(x2+ax−1)e x−1的极值点,则f(x)的极小值为()A.−1B.−2e−3C.5e−3D.1【答案】Ax3−4x+4的极大值为()变式训练.函数f(x)=13B.6A.283C.26D.73【答案】A【解析】定义域为R,f(x)=x2−4=(x+2)(x−2)f(x)在(−∞,−2)上单调递增在(−2,2)上单调递减在(2,+∞)上单调递增所以f(x)的极大值为f(−2)=283【备注】题目比较简单,直接求导,利用导数确定单调性求解函数极值即可题型三:已知极值求参数【例4】.已知函数f(x)=x(e x−2a)−ax2,若f(x)有极小值且极小值为0,求a的值.【答案】a=12【解析】f′(x)=(e x−2a)+xe x−2ax=(x+1)(e x−2a),x∈R①若a≤0,则由f′(x)=0解得x=−1当x∈(−∞,−1)时,f′(x)<0,f(x)递减当x∈(−1,+∞)上,f′(x)>0,f(x)递增故当x=−1时,f(x)取极小值f(−1)=a−e−1(舍去)令a−e−1=0,得a=1e若a>0,则由e x−2a=0,解得x=ln(2a)时a.若ln⁡(2a)<−1,即0<a<12e当x∈(−∞,ln(2a))上,f′(x)>0,f(x)递增当x∈(ln⁡(2a),−1)上,f′(x)<0,f(x)递增故当x=−1时,f(x)取极小值f(−1)=a−e−1(舍去)令a−e−1=0,得a=1e时,f′(x)≥0,f(x)递增不存在极值b.若ln⁡(2a)=−1,即a=12e时c.若ln⁡(2a)>−1,即a>12e当x∈(−∞,−1)上,f′(x)>0,f(x)递增x∈(−1,ln(2a))上,f′(x)<0,f(x)递减当x∈(ln⁡(2a),+∞)上,f′(x)>0,f(x)递增故当x=ln(2a)时,f(x)取极小值f(ln⁡(2a))=−aln2(2a)=0得a=12满足条件故当f(x)有极小值且极小值为0时,a=12【备注】求出导函数f′(x)=(x+1)(e x−2a),通过研究f′(x)=0的解,确定f′(x)>0和f′(x)<0的解集,以确定f(x)的单调性,从而确定f(x)是否有极小值,在有极小值时,由极小值为0,解得a值,如符合上述范围,即为所求【例5】.已知函数f(x)=x3+3mx2+nx+m2,在x=−1时极值为0,则mn为()A.29B.13C.29或13D.不存在【答案】A【解析】∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n由题意{−1+3m−n+m2=03−6m+n=0且(6m)2−4×3×n>0解得m=2,n=9则mn =29故选 A变式训练.已知函数f(x)=x3+3mx2+nx+m2在x=−1处取得极值0,则m+ n=________ .【答案】11【解析】由f(x)=x3+3mx2+nx+m2,得:f′(x)=3x2+6mx+n 因为函数f(x)=x3+3mx2+nx+m2在x=−1处取得极值0所以{f′(−1)=0 f(−1)=0所以{−1+3m−n+m2=0 3−6m+n=0解得:{m1=1n1=3或{m2=2n2=9当{m1=1n1=3时,f′(x)=3x2+6x+3=3(x+1)2≥0所以函数在R上为单调递增函数,与在x=−1处取得极值0相矛盾所以{m1=1n1=3不合题意,舍去当{m2=2n2=9时,f′(x)=3x2+12x+9=2(x+1)(x+3)所以,f′(−1)=0,且当−3<x<−1时,f′(−1)<0,函数f(x)在区间(−3,−1)上为减函数当x>−1时,f′(−1)>0,函数f(x)在区间(−1,+∞)上为增函数所以函数f(x)在x=−1处取得极值,所以符合题意所以m+n=2+9=11所以答案应填:11题型四:已知极值求参数范围【例6】.已知f(x)=x3+3ax2+3(a+2)x+1有极大值又有极小值,则a的取值范围是________.【答案】(−∞,−1)∪(2,+∞)【解析】f(x)有极大值又有极小值,故f′(x)=3x2+6ax+3(a+2)=0有两个不同的解即Δ=36a2−4×3×3(a+2)>0∴a∈(−∞,−1)∪(2,+∞)变式训练1.若函数f(x)=ax−x2−ln⁡x存在极值,且这些极值的和不小于4+ln⁡2,则a的取值范围为()A.[2,+∞)B.[2√2,+∞)C.[2√3,+∞)D.[4,+∞)【答案】C【解析】f(x)=ax−x2−ln⁡x,x∈(0,+∞),则f′(x)=a−2x−1x =−2x2−ax+1x,∵函数f(x)存在极值,∴f′(x)=0在(0,+∞)上有根,即2x2−ax+1=0在(0,+∞)上有根,∴Δ=a2−8⩾0,显然当Δ=0时,f(x)无极值,不合题意;∴方程必有两个不等正根,记方程2x2−ax+1=0的两根为x1,x2,则x1+x2=a2,x1x2=12,f(x1),f(x2)是函数F(x)的两个极值,由题意得,f(x1)+f(x2)=a(x1+x2)−(x12+x22)−(ln⁡x1+ln⁡x2)=a22−a24+1−ln⁡12⩾4+ln⁡2化简解得a2⩾12,满足Δ>0,又x1+x2=a2>0,即a>0,∴a的取值范围是[2√3,+∞).故选 C【备注】【考点】:利用导数研究函数的极值.本题考查导数与函数的单调性、极值的关系,求函数f(x)的定义域,求出f′(x),利用导数和极值之间的关系将条件转化:f′(x)=0在(0,+∞)上有根,即2x2−ax+1=0在(0,+∞)上有根,根据二次方程根的分布问题列出方程组,根据条件列出关于a的不等式,求出a的范围,属于中档题.变式训练2.若函数f(x)=a(x−2)e x+lnx−x存在唯一的极值点,且此极值小于0,则实数a的取值范围为()A.(−1e2,1 e2 )B.(−1e ,1 e )C.(−1e2,0]D.(−1e,0]【答案】D【解析】本题考查利用导数研究函数的单调性极值,先求导,再由f′(x)=0得到x=1或ae x−1x=0(∗),根据(∗)无解和函数的极值小于0即可求出a的范围.f′(x)=a(x−1)e x+1x −1=(x−1)(ae x−1x).由f′(x)=0得到x=1或ae x−1x=0(∗).由于f(x)仅有一个极值点.关于x的方程(∗)必无解.①当a=0时,(∗)无解,符合题意.②当a≠0时,由(∗)得,a=1xe x.设g(x)=xe x.∴g′(x)=e x(x+1)>0恒成立.∴g(x)为增函数.∴函数y=1xe x为减函数.∴当x→+∞时,y→0.∴a<0.∴x=1为f(x)的极值点.∵f(1)=−ae−1<0.∴a>−1e.综上可得a的取值范围是(−1e,0].故选 D题型五:利用导数求函数最值【例7】.已知函数f(x)=x3−12x+8在区间[−3,3]上的最大值、最小值分别为M,m,则M−m= ________【答案】32【解析】f′(x)=3x2−12.当x<−2或x>2时函数单调递增;当−2<x<2时函数单调递减.又f(−3)=17,f(−2)=24,f(2)=−8,f(3)=−1,比较以上几个数可得M=24,m=−8利用导数研究函数的最值,所以M−m=32.【备注】先判断函数的单调性,然后比较极值与端点处的函数值,从而得出函数的最大、最小值.变式训练.已知函数f(x)=2x3−3x.求f(x)在区间[−2,1]上的最大值;【答案】√2【解析】由f(x)=2x3−3x得f′(x)=6x2−3,令f′(x)=0,得x=−√22或x=√22,因为f(−2)=−10,f(−√22)=√2,f(√22)=−√2,f(1)=−1,所以f(x)在区间[−2,1]上的最大值利用导数研究函数的最值为f(−√2)=√2.【备注】本题考查利用导数确定函数最值的相关问题.题型六:根据最值求参数值【例8】.已知函数f(x)=12ax2−ln⁡x,a∈R.(1) 求函数f(x)的单调区间;【答案】当a⩽0时,函数f(x)的单调减区间是(0,+∞);当a>0时,函数f(x)的单调减区间是(0,√1a ),单调增区间为(√1a,+∞).【解析】求导分析导数正负即可,注意对a进行分类讨论.①当a=0时,f′(x)=−1x<0,故函数f(x)在(0,+∞)上单调递减.②当a<0时,f′(x)<0恒成立,所以函数f(x)在(0,+∞)上单调递减.③当a>0时,令f′(x)=0,解得x=√1a.当x∈(0,√1a )时,f′(x)<0 , 所以函数f(x)在(0,√1a)单调递减.当x∈(√1a ,+∞)时, f′(x)>0,所以函数f(x)在(√1a,+∞)单调递增.综上所述,当a⩽0时,函数f(x)的单调减区间是(0,+∞);当a>0时,函数f(x)的单调减区间是(0,√1a ),单调增区间为(√1a,+∞).(2) 若函数f(x)在区间[1,e]的最小值为1,求a的值.【答案】a=2.【解析】分a⩽0和a>0两种情况来表示f(x)的最小值,令最小值等于1,求出a的值.①当a⩽0时,由(1)可知,f(x)在[1,e]上单调递减,所以f(x)的最小值为f(e)=12ae2−1=1,解得a=4e2>0舍去.②当a>0时,由(1)可知:当√1a⩽1,即a⩾1时,函数f(x)在[1,e]上单调递增,所以函数f(x)的最小值为f(1)=12a=1,解得a=2.当1<√1a <e,即1e2<a<1时,函数f(x)在(1,√1a)上单调递减,在(√1a,e)上单调递增,所以函数f(x)的最小值为f(√1a )=12+12ln⁡a=1,解得a=e舍去.当√1a ⩾e,即0<a⩽1e2时,函数f(x)在[1,e]上单调递减,所以函数f(x)的最小值为f(e)=1 2ae2−1=1,得a=4e2舍去.综上所述,a=2.变式训练.已知f(x)=2xln⁡x−mx+2e.(1) 若方程f(x)=0在(14,e)上有实数根,求实数m的取值范围;【答案】[0,2e2+2)【解析】方程f(x)=0可化为2xlnx=mx−2e令 g(x)=2xlnx ,则 g ′(x)=2(ln⁡x +1)由 g ′(x)>0 可得 x >1e ,由 g ′(x)<0 可得 0<x <1e∴ g(x) 在 (0,1e ) 上单调递减,在 (1e ,+∞) 上单调递增∴ g(x) 的极小值为 g(1e )=−2e而 g(14)=−ln⁡2, f(e)=2e ,则 g(14)<g(e)由条件可知点 (0,−2e ) 与 (e ,2e) 连线的斜率为 2e 2+2可知点 (0,−2e ) 与 (14,−ln⁡2) 连线的斜率为 8e −4ln⁡2,而 2e 2+2>8e −4ln⁡2结合图像可得 0≤m <2e 2+2 时,函数 y =g(x) 与 y =mx −1e 有交点∴ 方程 f(x)=0 在 (14,e) 上有实数根时,实数 m 的取值范围是 [0,2e 2+2)【备注】令 f(x)=0,将其化为 2xlnx =mx −2e ,构造函数 g(x)=2xlnx ,利用导数研究函数的单调性与极值,结合图象可求得 m 的范围(2) 若 y =f(x) 在 [1,e] 上的最小值为 −4+2e ,求实数 m 的值.【答案】2ln⁡2+2【解析】由 f(x)=2xln⁡x −mx +2e 可得 f ′(x)=2ln⁡x −m +2① 若 m ≥4,则 f ′(x)≤0 在 [1,e] 上恒成立即 f ′(x) 在 [1,e] 单调递减则 f(x) 的最小值为 f(e)=2e −me +2e =−4+2e故 m =2+4e ,不满足 m ≥4,舍去② 若 m ≤2,则 f ′(x)≥0 在 [1,e] 上恒成立即 f ′(x) 在 [1,e] 单调递增则 f(x) 的最小值为 f(1)=−m +2e =−4+2e故m=4,不满足m≤2,舍去③若2<m<4,则x∈[1,e m−22)时,f′(x)<0x∈(e m−22,e]时,f′(x)>0∴f(x)在[1,e m−22)上单调递减,在[e m−22,e)上单调递增∴f(x)的最小值为f(e m−22)=−2e m−22+2e =−4+2e解之得m=2ln⁡2+2,满足2<m<4∴综上可知,实数m的值为2ln⁡2+2【备注】对f(x)求导,然后按m分类讨论函数的单调区间,结合最小值可求得m点的值求函数的单调区间、极值、最值是统一的,极值是函数的拐点,也是单调区间的划分点,而求函数的最值是在求极值的基础上,通过判断函数的大致图像,从而得到最值,大前提是要考虑函数的定义域.函数y=f(x)的零点就是f(x)=0的根,所以可通过解方程得零点,或者通过变形转化为两个熟悉函数图象的交点横坐标.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理题型七:根据最值求参数取值范围【例9】.若函数f(x)=3x−x3在区间(a2−12,a)上有最小值,则实数a的取值范围是() A.(−1,√11)B.(−1,4)C.(−1,2]D.(−1,2)【答案】C【解析】【解答】由题f′(x)=3−3x2,令f′(x)>0解得−1<x<1;令f′(x)<0解得x<−1或x>1由此得函数在(−∞,−1)上是减函数,在(−1,1)上是增函数,在(1,+∞)上是减函数故函数在x=−1处取到极小值−2,判断知此极小值必是区间(a2−12,a)上的最小值∴a2−12<−1<a,解得−1<a<√11又当x=2时,f(2)=−2,故有a⩽2综上知a∈(−1,2]故选C.【分析】求函数f(x)=3x−x3导数,研究其最小值取到位置,由于函数在区间(a2−12,a)上有最小值,故最小值点的横坐标是集合(a2−12,a)的元素,由此可以得到关于参数a的等式,解之求得实数a的取值范围变式训练.函数f(x)=x3−3ax−a在(0,1)内有最小值,则a的取值范围为()A.0⩽a<1B.0<a<1C.−1<a<1D.0<a<12【答案】B【解析】f′(x)=3(x2−a).若a⩽0,则函数f(x)在(0,1)上单增,此时没有最小值;所以a>0,此时函数f(x)在(0,√a)单减,(√a,1)单增.因为函数f(x)有最小值,所以√a< 1,解得a<1利用导数研究函数的最值.综上,0<a<1.【备注】本题需要对a的取值进行分类讨论,注意是在开区间内有最小值,所以最小值点一定在极小值点取到.精选精练1.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在(a,b)内有极值点________ 个【答案】3【解析】观察图象可得,导函数的变号零点有3个,因此函数f(x)在(a,b)内有3个极值点.2.已知函数y=x−ln⁡(1+x2),则函数y的极值情况是()A.有极小值B.有极大值C.既有极大值又有极小值D.无极值【答案】D【解析】y′=1−2x1+x2=(x−1)21+x2⩾0;∴该函数无极值.故选:D.求y′,从而可判断y′⩾0,从而得出该函数无极值.【备注】考查复合函数的导数公式,完全平方式,以及极值的定义.3.已知函数f(x)=x3+ax2+b(a,b∈R)在x=−2处取极大值为0,则b= () A.3B.4C.−4D.−3【答案】C【解析】∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,函数在x=−2处取极小值0,∴−23+4a+b=0,12−4a=04.对于在R上可导的任意函数f(x),若满足(x−a)f′(x)⩾0,则必有()A .f(x)⩾f(a)B .f(x)⩽f(a)C .f(x)>f(a)D .f(x)<f(a)【答案】A【解析】由 (x −a)f ′(x)⩾0 知,当 x >a 时,f ′(x)⩾0;当 x <a 时,f ′(x)⩽0.所以当 x =a 时,函数 f(x) 取得最小值,则 f(x)⩾f(a).5.已知函数 f(x)=e x x +k(lnx −x),若 x =1 是函数 f(x) 的唯一极值点,则实数 k 的取值范围是( )A .(−∞,e]B .[0,e]C .(−∞,e)D .[0,e) 【答案】A【解析】对参数需要进行讨论.∵ 函数 f(x)=e x x +k(lnx −x).∴ 函数 f(x) 的定义域是 (0,+∞).∴f ′(x)=e x x−e xx 2+k(1x −1)=(e x −kx)(x−1)x 2.∵x =1 是函数 f(x) 的唯一一个极值点.∴x =1 是导函数 f ′(x)=0 的唯一根.∴e x −kx =0 在 (0,+∞) 无变号零点.令 g(x)=e x −kx .g ′(x)=e x −k .① k ≤0 时,g ′(x)>0 恒成立.g(x) 在 (0,+∞) 时单调递增的.g(x) 的最小值为 g(0)=1,g(x)=0 无解.② k >0 时,g ′(x)=0 有解为:x =ln⁡k .0<x <ln⁡k 时,g ′(x)<0,g(x) 单调递减.ln⁡k <x 时,g ′(x)>0,g(x) 单调递增.∴g(x) 的最小值为 g(ln⁡k)=k −kln⁡k .∴k −kln⁡k >0.∴k <e .由 y =e x 和 y =ex 图象,它们切于 (1,e).综上所述:k ≤e .故选 A【备注】本题考查由函数的导函数确定极值问题.6.若函数f(x)=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是________. 【答案】 (2,103)【解析】若函数f(x)在区间( 12 ,3)上无极值,则当x ∈( 12 ,3)时,f ′(x)=x 2−ax +1⩾0恒成立或当x ∈(12,3)时,f ′(x)=x 2−ax +1⩽0恒成立.当x ∈(12,3)时,y =x +1x 的值域是[2,103);当x ∈(12,3)时, f ′(x)=x 2−ax +1⩾0,即a ⩽x +1x 恒成立,a ⩽2;当x ∈(12,3)时,f ′(x)=x 2−ax +1⩽0,即a ⩾x +1x 恒成立,a ⩾103.因此要使函数f(x)在(12,3)上有极值点,则实数a 的取值范围是(2,103).故答案为(2,103).【备注】本题考查的知识点是函数在某点取得极值的条件,其中将问题转化为导函数的零点问题是解答此类问题最常用的办法.7.函数 f(x)=13x 3−x 2+a ,函数 g(x)=x 2−3x ,它们的定义域均为 [1,+∞),并且函数 f(x)的图象始终在函数g(x)的上方,那么a的取值范围是 ()A.(0,+∞)B.(−∞,0)C.(−43,+∞)D.(−∞,43)【答案】A【解析】设ℎ(x)=13x3−x2+a−x2+3x,则ℎ′(x)=x2−4x+3=(x−3)(x−1),于是x∈(1,3)单调递减;x∈(3,+∞)单调递增,当x=3时,函数ℎ(x)取得最小值利用导数研究函数的最值,因为f(x)在g(x)上方,则有ℎmin(x)>0,即ℎ(3)=a>0,所以a的取值范围是(0,+∞)利用导数研究函数的图象与性质.【备注】可构造新函数ℎ(x)=f(x)−g(x),所以问题等价于函数ℎ(x)在[1,+∞)上大于0恒成立.8.若函数f(x)=a(x−2)e x+ln⁡x−x存在唯一的极值点,且此极值小于0,则实数a的取值范围为________ .【答案】(−1e,0]【解析】先求导,再由f′(x)=0得到x=1或ae x−1x=0(∗),根据(∗)无解和函数的极值大于0即可求出a的范围.f(x)=a(x−2)e x+ln⁡x−x,x>0.∴f′(x)=a(x−1)e x+1x −1=(x−1)(ae x−1x).由f′(x)=0得到x=1或ae x−1x=0(∗).由于f(x)仅有一个极值点,关于x的方程(∗)必无解.①当a=0时,(∗)无解,符合题意.②当a≠0时,由(∗)得,a=1xe x.设g(x)=xe x.∴g′(x)=e x(x+1)>0恒成立.∴g(x)为增函数.∴函数y=1xe为减函数.∴当x→+∞时,y→0.∴a<0.∴x=1为f(x)的极值点.∵f(1)=−ae−1<0.∴a>−1e.综上可得a的取值范围是(−1e,0].故答案为(−1e,0].9.函数f(x)=ln xx的最大值为()A.1eB.eC.e2D.103【答案】A【解析】令y′=(lnx)⋅x−lnx⋅x′x2=1−lnxx2=0则x=e当x>e时,y′<0当0<x<e时,y′>0所以当x=e时,函数有极大值,极大值为1e因为函数在定义域内只有—个极值,所以y max=1e10.函数y=xcos⁡x−sin⁡x在[π2,3π2]的最小值为________ .【答案】−π【解析】由已知,得y′=cos⁡x−xsin⁡x−cos⁡x=−xsin⁡x,当π2<x<π时,y′<0;当π<x<3π2时,y′>0.因此,y min=πcos⁡π−sin⁡π=−π.11.已知函数f(x)=(x2−7x+13)e x,求函数f(x)的极值【答案】y极大值=f(2)=3e2,y极小值=f(3)=e312.设0<x<π,则函数y=2−cos⁡xsin x的最小值是 () A.3B.2 C.√3D.2−√3【答案】C【解析】y′=sin2⁡x−(2−cos⁡x)cos⁡xsin x =1−2cos⁡xsin x,∵0<x<π,∴当π3<x<π时,y′>0;当0<x<π3时,y′<0.∴x=π3时,y min=√3.13.已知函数f(x)=xln⁡x−ax2+a不存在最值,则实数a的取值范围是()A.(0,1)B.(0,12]C.[1,+∞)D.[12,+∞)【答案】D【解析】由题意,f′(x)=ln⁡x+1−2ax令f′(x)=0,得ln⁡x=2ax−1,函数f(x)不存在最值,等价于f′(x)=ln⁡x−2ax+1最多1个零点,等价于函数y=ln⁡x与y=2ax−1的图象最多1个交点,当y=ln⁡x和y=2ax−1相切时,设切点是(x0,ln⁡x0),∴{ln⁡x0=2ax0−12a=1x0,解得:a=12,故当a=12时,直线y=2ax−1与y=ln⁡x的图象相切,故a⩾12时,y=ln⁡x与y=2ax−1的图象最多1个交点.则实数a的取值范围是[12,+∞).故选:D.【备注】问题等价于函数y=ln⁡x与y=2ax−1的图象最多1个交点,当y=ln⁡x和y=2ax−1相切时,设切点是(x0,ln⁡x0),求出a的临界值即可.本题考查了导数的应用以及函数的最值问题,考查转化思想,是一道中档题.14.设函数f(x)=13x3−x+m的极大值为1,则函数f(x)的极小值为()A.−13B.−1C.13D.1【答案】A【解析】对函数f(x)=13x3−x+m求导得,f′(x)=x2−1.令f′(x)=0得,x2−1=0,解得x=±1.当x∈(−∞,−1)∪(1,+∞)时,f′(x)>0,f(x)为单调增函数.当x∈(−1,1)时,f′(x)<0,f(x)为单调减函数.所以f(x)在x=−1处有极大值为f(−1)=−13+1+m=1,解得m=13.f(x)在x=1处有极小值为f(1)=13−1+m=−13.故选 A【备注】本题考查了利用导数研究函数的极值,对函数 f(x)=13x 3−x +m 求导得 f′(x)=x 2−1,从而得 f(x) 在 (−∞,−1),(1,+∞) 为单调增函数,在 (−1,1) 为单调减函数,故 f(x) 在 x =−1 处有极大值为 f(−1)=−13+1+m =1,即可解得 m ,进而得出极小值.15.已知 (a +1)x −1−ln⁡x ⩽0 对于任意 x ∈[12,2] 恒成立,则 a 的最大值为( ) A .0 B .1 C .1−2ln⁡2 D .−1+ln⁡22【答案】C【解析】分离变量,题意转化为 a +1⩽1+ln⁡x x在 [12,2] 上恒成立.16.已知函数f(x)=1−x ax+ln⁡x .若函数g(x)=f(x)−14x 在[1,e]上为增函数,求正实数a 的取值范围.【答案】[43,+∞)【解析】因为g(x)=f(x)−14x =1−x ax+lnx −14x ,所以g ′(x)=−ax 2+4ax−44ax 2(a >0)设φ(x)=−ax 2+4ax −4,由题意知,只需 φ(x)0在 [1,e] 上恒成立即可满足题意. 因为a >0,函数 φ(x)的图象的对称轴为x =2,所以只需φ(1)=3a −40,即 a 43即可.故正实数 a 的取值范围为[43,+∞).17.已知函数 f(x)=x 3−ax +2 的极大值为 4,若函数 g(x)=f(x)+mx 在 (−3,a −1) 上的极小值不大于 m −1,则实数 m 的取值范围是( ) A .[−9,−154) B .(−9,−154] C .(−154,+∞) D .(−∞,−9)【答案】B【解析】∵f′(x)=3x2−a,∴当a⩽0时,f′(x)⩾0,f(x)无极值,当a>0时,易得f(x)在x=−√a3处取得极大值,则有f(−√a3)=4,即a=3,于是g(x)=x3+(m−3)x+2,g′(x)=3x2+(m−3);当m−3⩾0时,g′(x)⩾0,g(x)在(−3,2)上不存在极小值;当m−3<0时,易知g(x)在x=√3−m3处取得极小值,依题意有{−3<√3−m3<2g(√3−m3)⩽m−1,解得−9<m⩽−154.故选 B【备注】【点睛】:本小题主要考查的数学知识是:函数与导数,导数与单调性、极值的关系,考查分类讨论的数学思想方法.涉及函数导数的问题,首先要求函数的定义域,然后对函数求导,令导函数为0,结合函数单调性可得极值,明确极大值和极小值的定义求解.18.设函数f(x)=x3−3ax+b,a≠0在点(2,f(2))处与直线y=8相切(1) 求实数a,b的值;【答案】a=4,b=24;【解析】f′(x)=3x2−3a,f′(2)=0,f(2)=8即12−3a=0,8−6a+b=8解得a=4,b= 24(2) 求函数f(x)在区间[0,3]上的最值。

极值点偏移的问题(含答案)

极值点偏移的问题(含答案)

极值点偏移的问题(含答案)1.已知 $f(x)=\ln x-ax$,其中 $a$ 为常数。

1)若函数 $f(x)$ 在 $x=1$ 处的切线与 $x$ 轴平行,求$a$ 的值;2)当 $a=1$ 时,比较 $f(m)$ 和 $f(1)$ 的大小;3)$f(x)$ 有两个零点 $x_1$ 和 $x_2$,证明:$x_1\cdotx_2>e^2$。

变式:已知函数 $f(x)=\ln x-ax^2$,其中 $a$ 为常数。

1) 讨论 $f(x)$ 的单调性;2) 若有两个零点 $x_1$ 和 $x_2$,试证明:$x_1\cdotx_2>e$。

2.已知 $f(x)=x^2+ax+\sin (\pi x)$,$x\in(0,1)$。

1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。

3.已知 $f(x)=\ln x-ax^2+x$,其中 $a\in R$。

1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。

4.设 $a>0$,函数 $f(x)=\ln x-ax$,$g(x)=\ln x-\frac{2(x-1)}{x+1}$。

1)证明:当 $x>1$ 时,$g(x)>0$ 恒成立;2)若函数 $f(x)$ 无零点,求实数 $a$ 的取值范围;3)若函数$f(x)$ 有两个相异零点$x_1$ 和$x_2$,求证:$x_1\cdot x_2>e^2$。

(完整版)导数--函数的极值练习题

(完整版)导数--函数的极值练习题

导数--函数的极值练习题一、选择题1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ( )①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y =216x x+的极大值为( ) A.3 B.4 C.2 D.54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0 B.1 C.2 D.45.y =ln 2x +2ln x +2的极小值为( ) A.e -1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于( )A.6B.0C.5D.17.对可导函数,在一点两侧的导数异号是这点为极值点的A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件 8.下列函数中, 0=x 是极值点的函数是( )A.3x y -= B.x y 2cos = C.x x y -=tan D.x y 1=9.下列说法正确的是( )A. 函数在闭区间上的极大值一定比极小值大;B. 函数在闭区间上的最大值一定是极大值;C. 对于12)(23+++=x px x x f ,若6||<p ,则)(x f 无极值;D.函数)(x f 在区间),(b a 上一定存在最值.10.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为( ) A.)3,3(- B.)11,4(- C. )3,3(-或)11,4(- D.不存在 11.函数|6|)(2--=x x x f 的极值点的个数是( )A. 0个B. 1个C. 2个D.3个 12.函数xxx f ln )(=( ) A.没有极值 B.有极小值 C. 有极大值 D.有极大值和极小值二.填空题:13.函数x x x f ln )(2=的极小值是 14.定义在]2,0[π上的函数4cos 2)(2-+=x ex f x的极值情况是15.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是16.下列函数①32x y =,②x y tan =,③|1|3++=x x y ,④xxe y =,其中在其定义区间上存在极值点的函数序号是17.函数f (x )=x 3-3x 2+7的极大值为___________. 18.曲线y =3x 5-5x 3共有___________个极值.19.函数y =-x 3+48x -3的极大值为___________;极小值为___________. 20.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.三.解答题21.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值.22.函数f (x )=x +xa+b 有极小值2,求a 、b 应满足的条件.23.已知函数f(x)=x 3+ax 2+bx+c 在x =2处有极值,其图象在x =1处的切线垂直于直线y =31x -2 (1)设f(x)的极大值为p ,极小值为q ,求p-q 的值;(2)若c 为正常数,且不等式f(x)>mx 2在区间(0,2)内恒成立,求实数m 的取值范围。

高考导数极值点偏移练习题

高考导数极值点偏移练习题

高考导数极值点偏移练习题1.已知函数()()()2xx e a R f x a =-+∈.(1)试确定函数()f x 的零点个数;(2)设1x ,2x 是函数()f x 的两个零点,证明:122x x +<. 【分析】 (1)由0f x 得()2x a x e =-,然后利用导数求出()()2x g x x e =-的单调性即可(2)设121x x ,设()()()()21F x f x f x x =-->,然后利用导数可得()F x 在1,递增,()()10F x F >=,即()()2f x f x >-,进而可得()()222f x f x >-,即()()212f x f x -<,再由()()f x g x a =-+的单调性即可得到122x x +<. 【详解】 (1)由0f x得()2x a x e =-,令()()2x g x x e =-,函数()f x 的零点个数即直线y a =与曲线()()2xg x x e =-的交点个数, ∵()()()21xxxg x e x e x e =-+-=-',由0g x 得1x <;由0g x 得1x >,∴函数()g x 在(),1-∞单调递增,函数()g x 在1,单调递减.∴当1x =时,函数()g x 有最大值,()()max 1g x g e ==, 又当2x <时,()0gx >,()20g =,当2x >时,()0g x <,∴当a e >时,函数()f x 没有零点; 当a e =或0a ≤时,函数()f x 有一个零点; 当0a e <<时,函数()f x 有两个零点.(2)由(1)知0a >,不妨设121x x ,设()()()()21F x f x f x x =-->,∴()()22xxF x x e xe-=-+,由于()()()21xx F x x ee -'=--,又易知2x x y e e -=-是减函数,当1x >时,有20x x e e e e --<-=,又10x -<,得()0F x '>, 所以()F x 在1,递增,()()10F x F >=,即()()2f x f x >-.由21>x 得()()222f x f x >-,又()()210f x f x ==, ∴()()212f x f x -<,由()()2xg x x e =-在(),1-∞上单调递增,得()()f x g x a =-+在(),1-∞单调递减,又221x -<,∴212x x ->,即122x x +<.2.已知:()ln f x x =,32()(0)x g x e ax ax a =-+> (1)证明:对12(0,)x x ∀∈+∞、,且12x x ≠,有()()1212122f x f x x x x x ->-+;(2)若()()120g x g x ==,求证:124x x +>+ 【分析】(1)不妨设120x x >>,转化为()1122112122212ln 1x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++,令12x t x =,只需要证明2(1)()ln 01t h t t t -=->+,求导得到单调性得到答案.(2)令()ln 2ln ln(1)P x x a x x =----,代入化简得到121222122x x x x >⋅+++-,设12x x t +=,即2880t t -+>,解不等式得到答案.【详解】(1)不妨设120x x >>,则原不等式化为()1122112122212ln 1x x x x xx x x x x ⎛⎫- ⎪-⎝⎭>=++令12x t x =,则只需证2(1)()ln 01t h t t t -=->+,22214(1)()0(1)(1)t f t t t t t '-=-=≥++ 故()f t 为增函数,而121x t x =>,故()(1)0f t f >=得证. (2)32()0x g x e ax ax =-+=,故2(1)x e ax x =-(此方程解必满足1x >),故ln 2ln ln(1)x a x x =++-,令()ln 2ln ln(1)P x x a x x =----,故1x 、2x 是()P x 的零点,且121x x >> 由()()111222ln 2ln ln 1ln 2ln ln 1x a x x x a x x ----=----, 故()()()1212122ln ln ln 1ln 1x x x x x x -=-+---, 即()()()()121212121212ln 1ln 1ln ln 22122112x x x x x x x x x x x x ----=⋅+>⋅+----++-,令12x x t +=,则由4212t t >+-,得:2880t t -+>,解得:4t >+4t <-(不合题意舍去).3.已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围;(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>. 【分析】(I )先求得函数的导数,根据函数在()0,∞+上的单调性列不等式,分离常数a 后利用构造函数法求得a 的取值范围.(II )将极值点12,x x 代入导函数列方程组,将所要证明的不等式转化为证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,利用构造函数法证得上述不等式成立.【详解】(I )()ln 24f x x ax +'=-. ∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立. 令()ln 2x g x x x =+,则()21ln xg x x --'=, ∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫⎪⎝⎭内为增函数;当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数. ∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x , 则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x , 由(I ),知e 04a <<.由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a+>,只需证明()()121212142ln ln x x a x x a x x +<--.即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+. 令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减. ∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+. 即不等式12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>.4.已知函数()x f x e ax =-.(1)若函数()f x 在1(,2)2x ∈上有2个零点,求实数a 的取值范围.(注319e >)(2)设2()()g x f x ax =-,若函数()g x 恰有两个不同的极值点1x ,2x ,证明:12ln(2)2x x a +<.【分析】(1)将a 分离,构造函数()xe h x x=,利用导数研究()h x 的图像,得到a 的范围.(2)由已知()g x ,求其导函数,由x 1,x 2是g (x )的两个不同极值点,可得a >0,结合g ′(x 1)=0,g ′(x 2)=0得到1120x e ax a --=,2220x e ax a --=进一步得到12122x x e e a x x -=-,把问题转化为证明1212212x x x x e e ex x +--<,将其变形后整体换元构造函数()t ϕ.再利用导数证明()t ϕ>0得答案.【详解】(1)1,22x ⎡⎤∈⎢⎥⎣⎦时,由()0f x =得xea x=,令()()()21x xe x e h x h x x x='-=⇒ ∴112x ≤<时,()0h x '<, 12x <≤时,()0h x '>,∴()h x 在1,12⎡⎤⎢⎥⎣⎦上是减函数,在()1,2上是增函数.又12h ⎛⎫= ⎪⎝⎭,()222e h =,()1h e =()344161640444e e e e e e ---==>, ∴()122h h ⎛⎫>⎪⎝⎭,∴h (x )的大致图像:利用()y h x =与y a =的图像知(,2a e e ∈.(2)由已知()2xg x e ax ax =--,∴()2xg x e ax a =--',因为1x ,2x 是函数()g x 的两个不同极值点(不妨设12x x <),易知0a >(若0a ≤,则函数()f x 没有或只有一个极值点,与已知矛盾),且()10g x '=,()20g x '=.所以1120x e ax a --=,2220xe ax a --=.两式相减得12122x x e e a x x -=-,于是要证明()12ln 22x x a +<,即证明1212212x xx x e e e x x +-<-,两边同除以2x e ,即证12122121x x x x e ex x ---<-,即证()12122121x x x x x x e e --->-,即证()121221210x x x x x x ee ----+>,令12x x t -=,0t <.即证不等式210tt te e -+>,当0t <时恒成立.设()21tt t te e ϕ=-+,则()2212t t t t te t e e ϕ=+⋅⋅-'= 22211]22t t tt t t e e e e ⎡⎫⎛⎫+-=--+⎪⎢ ⎪⎝⎭⎣⎭. 设()212tth t e =--,则()221111222t th t e e ⎛⎫=-=- ⎪⎝⎭',当0t <时,()0h t '<,()h t 单调递减,所以()()00h t h >=,即2102t t e ⎛⎫-+> ⎪⎝⎭,所以()0t ϕ'<,所以()t ϕ在0t <时是减函数.故()t ϕ在0t =处取得最小值()00ϕ=. 所以()0t ϕ>得证.所以()12ln 22x x a +<.5.已知函数2()ln (1)()2a f x x x a x a R =-+-∈. (1)当0a ≥时,求函数()f x 的极值;(2)若函数()f x 有两个零点12,x x ,求a 的取值范围,并证明122x x +>. 【解析】试题分析:(1)求出()'f x ,令()'0f x >求得x 的范围,可得函数()f x 增区间,令()'0f x <求得x 的范围,可得函数()f x 的减区间,从而可得函数()f x 的极值;(2)对a 进行讨论:0a ≥,10a -<<,1a =-,1a <-,针对以上四种情况,分别利用导数研究函数的单调性,利用单调性讨论函数()f x 有两个零点情况,排除不是两个零点的情况,可得()f x 有两个零点时,a 的取值范围是()2,+∞,由(1)知()f x 在()1,+∞单调递减,故只需证明()()1220f x f x ->=即可,又()10f x =,只需利用导数证明()120f x ->即可.试题解析:(1)由()()2ln 12a f x x x a x =-+-得()()()1111x ax f x ax a x x-+=-+-=-', 当0a ≥时,10ax +>,若()01,0x f x <';若()1,x f x >'< 0,故当0a ≥时,()f x 在1x =处取得的极大值()112af =-;函数()f x 无极小值. (2)当0a ≥时,由(1)知()f x 在1x =处取得极大值()112af =-,且当x 趋向于0时,()f x 趋向于负无穷大,又()()2ln220,f f x =-<有两个零点,则()1102af =->,解得2a >.当10a -<<时,若()01,0x f x <';若()11,0x f x a '<<-<;若()1,0x f x a'>->,则()f x 在1x =处取得极大值,在1x a =-处取得极小值,由于()102af x =-<,则()f x 仅有一个零点. 当1a =-时,()()210x f x x-'=>,则()f x 仅有一个零点.当1a <-时,若()10,0x f x a '<-;若()11,0x f x a'-<<<;若()1,0x f x '>>,则()f x 在1x =处取得极小值,在1x a =-处取得极大值,由于()11ln 102f a a a ⎛⎫-=--+-< ⎪⎝⎭,则()f x 仅有一个零点.综上,()f x 有两个零点时,a 的取值范围是()2,+∞. 两零点分别在区间()0,1和()1,+∞内,不妨设1201,1x x <. 欲证122x x +>,需证明212x x >-,又由(1)知()f x 在()1,+∞单调递减,故只需证明()()1220f x f x ->=即可.()()()()()()()2211111112ln 2212ln 21222a a f x x x a x x x a x -=---+--=--++-, 又()()()21111ln 102a f x x x a x =-+-=, 所以()()()11112ln 2ln 22f x x x x -=--+-,令()()ln 2ln 22(01)h x x x x x =--+-<<,则()()()221112022x h x x x x x -=-+'=<--, 则()h x 在()0,1上单调递减,所以()()10h x h >=,即()120f x ->, 所以122x x +>.6.已知函数f (x )=(x ﹣1)e x +ax 2(a ∈R ). (1)讨论函数f (x )的单调性;(2)若函数f (x )有两个零点x 1,x 2(x 1<x 2),证明:x 1+x 2<0. 【分析】(1)对函数求导,根据a 的取值进行分情况讨论,判断函数的单调性;(2)先判断函数()f x 有两个零点时a 的取值范围为0a >,再利用极值点偏移法,构造函数()()()g x f x f x =--,0x >,证明即可.【详解】(1)f (x )=(x ﹣1)e x +ax 2, f ′(x )=x (e x +2a ), ①当a ≥0时,e x +2a >0,故当x ∈(﹣∞,0)时,f '(x )<0,当x ∈(0,+∞)时,f '(x )>0, 所以函数f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增; ②当a <0时,由f '(x )=x (e x +2a )=0,得x =0,或x =ln(﹣2a ),i 当﹣2a >1即a 12-<时,ln(﹣2a )>0,故当x ∈(﹣∞,0),(ln(﹣2a ),+∞)时,f '(x )>0,f (x )递增,当x ∈(0,ln(﹣2a ))时,f '(x )<0,f (x )递减; ii 当0<﹣2a <1即12-<a <0时,ln(﹣2a )<0,故当x ∈(﹣∞,ln(﹣2a )),(0,+∞)时,f '(x )>0,f (x )递增,当x ∈(ln(﹣2a ),0)时,f '(x )<0,f (x )递减; iii 当﹣2a =1即a 12=-,ln(﹣2a )=0,f '(x )≥0,f (x )在R 上递增; (2)函数f '(x )=x (e x +2a ),由(1)可知:①当a =0时,函数f (x )=(x ﹣1)e x 只有一个零点,不符合题意; ②当a <12-时,f (x )的极大值为f (0)=﹣1,f (x )极小值为(ln(2))(0)1f a f -<=-, 故最多有一个零点,不成立;③当12-<a <0时,f (x )的极大值为f (ln(﹣2a )=[ln(﹣2a )﹣1]e ln(﹣2a )+a ln 2(﹣2a )=a [ln 2(﹣2a )﹣2ln(﹣2a )+2]=a [(ln(﹣2a )﹣1)2+1]<0, 故最多有一个零点,不成立; ④当a 12=-时,f (x )在R 上递增, 故最多有一个零点不成立;③当a >0,函数f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增. 又f (0)=﹣1,f (1)=a >0,故()f x 在(0,1)存在一个零点x 2, 因为x <0,所以x ﹣1<0,0<e x <1,所以e x (x ﹣1)>x ﹣1, 所以f (x )>ax 2+x ﹣1,取x 012a-=,显然x 0<0且f (x 0)>0,所以f (x 0)f (0)<0,故()f x 在(x 0,0)存在一个零点x 1, 因此函数f (x )有两个零点,且x 1<0<x 2, 要证x 1+x 2<0,即证明x 1<﹣x 2<0,因为f (x )在(﹣∞,0)单调递减,故只需f (x 1)=f (x 2)>f (﹣x 2)即可, 令g (x )=f (x )﹣f (﹣x ),x >0,g '(x )=x (e x +2a )﹣xe ﹣x ﹣2ax =x (e x ﹣e ﹣x )>0,所以g (x )在()0+∞,上单调递增, 又g (0)=0,所以g (x )>0, 故f (x 1)=f (x 2)>f (﹣x 2)成立, 即x 1+x 2<0成立.7.已知函数21()ln ()2f x x x mx x m R =--∈. (1)若函数()f x 在(0,)+∞上是减函数,求实数m 的取值范围;(2)若函数()f x 在(0,)+∞上存在两个极值点1x ,2x ,且12x x <,证明:12ln ln 2x x +>.分析:(1)由题意得出'()ln 0f x x mx =-≤在定义域(0,)+∞上恒成立,即max ln ()xm x≥, 设ln ()xh x x =,则21ln '()x h x x-=,由此利用导数求得函数单调性与最值,即可求解; (2)由(1)知'()ln f x x mx =-,由函数()f x 在(0,)+∞上存在两个极值点1x ,2x ,推导出∴12ln ln x x +112212(1)ln 1x xx x x x +⋅=-,设12(0,1)x t x =∈,则12(1)ln ln ln 1t t x x t +⋅+=-,要证12ln ln 2x x +>,只需证2(1)ln 01t t t --<+,构造函数2(1)()ln 1t g t t t -=-+,利用导数求得函数的单调性与最值,即可作出求解. 详解:(1)∵()()21ln 2f x x x mx x m R =--∈在()0,+∞上是减函数, ∴()'ln 0f x x mx =-≤在定义域()0,+∞上恒成立,∴maxln x m x ⎛⎫≥ ⎪⎝⎭,设()ln x h x x =,则()21ln 'x h x x-=, 由()'0h x >,得()0,x e ∈,由()'0h x <,得x e >, ∴函数()h x 在()0,e 上递增,在(),e +∞上递减, ∴()()max 1h x h e e ==,∴1m e ≥. 故实数m 的取值范围是1,e⎡⎫+∞⎪⎢⎣⎭. 证明:(2)由(1)知()'ln f x x mx =-,∵函数()f x 在()0,+∞上存在两个极值点1x ,2x ,且12x x <,∴112200lnx mx lnx mx -=⎧⎨-=⎩,则12121212ln ln ln ln x x m x x x x m x x +⎧=⎪+⎪⎨-⎪=⎪-⎩,∴12121212ln ln ln ln x x x x x x x x +-=+-,∴12112122ln ln ln x x x x x x x x ++=⋅- 1122121ln 1x x x x x x ⎛⎫+⋅ ⎪⎝⎭=-,设()120,1x t x =∈,则()121ln ln ln 1t t x x t +⋅+=-, 要证12ln ln 2x x +>,只需证()1ln 21t t t +⋅>-,只需证()21ln 1t t t -<+,只需证()21ln 01t t t --<+,构造函数()()21ln 1t g t t t -=-+,则()()()()222114'011t g t t t t t -=-=>++, ∴()()21ln 1t g t t t -=-+在()0,1t ∈上递增,∴()()10g t g <=,即()()21ln 01t g t t t -=-<+,∴12ln ln 2x x +>.8.已知函数()2112xf x e ax =-+有两个极值点12,x x (e 为自然对数的底数). (1)求实数a 的取值范围; (2)求证:12ln 2x x a +< 【分析】(1)求导后得出()'xf x e ax =-,由题参变分离再构造函数求构造函数的单调性与取值范围即可.(2)利用极值点表示出a 与12,x x 的关系,再将12ln 2x x a +<中的a 代换,构造函数再换元证明不等式即可. 【详解】 (1)由()2112xf x e ax =-+,得()'x f x e ax =-, 由题意知函数()f x 有两个极值点,()'0f x ∴=有两个不等的实数解.即方程(0)xe a x x =≠有两个不等的实数解.即方程()0()xe g x x x =≠有两个不等的实数解.设()0()x e g x x x =≠,则()()21'x x e g x x-= ()g x ∴在(,0)-∞上单调递减,()0,1上单调递减,(1,)+∞上单调递增,作出函数图象知当a e >时,直线y a =与函数()g x 有两个交点, 当且仅当a e >时()f x 有两个极值点,综上所述,a e >. (2)因为12,x x 是()f x 的两个极值点,12x x ≠,12120,0x x e ax e ax ∴==--,1212x x e e a x x ∴=--故要证122x x lna +<,即证122x x e a +<,即证1212212x x x x e e e x x +<--,即证12122121x xx x e e x x --<-- 不妨设12x x <,即证1202x x t -=<,即证2210tt te e -+>设()()210ttF t te e t =-+<,则()()'21tF e t e t =+-,易证()1,'0tt e F t +<∴<,所以()F t 在(),0∞-上递减.()()00F t F ∴>=,得证2210t t te e -+>.综上所述:122x x lna +<成立,9.已知函数()x ax b f x =e+(e为自然对数的底数)在1x =-处的切线方程为0ex y e -+=. (1)求实数a ,b 的值;(2)若存在不相等的实数1x ,2x ,使得12()()f x f x =,求证:120x x +>. 【分析】(1)求出导函数,根据(1)0(1)f f e-='⎧⎨-=⎩即可求得实数a ,b 的值;(2)根据导函数求出()f x 的单调区间,通过构造()()()g x f x f x =--,研究()g x 的变化即可证明当12()()f x f x =时,有120x x +>。

(完整版)高二数学函数的极值与最值试题

(完整版)高二数学函数的极值与最值试题

高二数学函数的极值与最值试题一:选择题1. 函数x ax x x f ++=23)(在),0(+∞内有两个极值点,则实数a 的取值范围是( ) A .),0(+∞ B .)3,3(- C .)0,(-∞ D .)3,(--∞【答案】D2.函数f (x )=x 2+x ﹣lnx 的极值点的个数是( ) A . 0个 B . 1个 C . 2个 D . 3个解:由于函数f (x )=x 2+x ﹣lnx ,(x >0) 则==(x >0)令f ’(x )=0,则故函数f (x )=x 2+x ﹣lnx 的极值点的个数是1, 故答案为 B .3.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32 B .34C .38 D .316【答案】C4.函数12)(+⋅=x ex x f ,[]1,2-∈x 的最大值为( )A.14e -B.0C. 2eD. 23e 【答案】C5.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是( ) A. (-1,1) B. (0,1) C. (-1,0) D. (-2,-1)【答案】A6.右图是函数()y f x =的导函数()y f x '=的图象,xyO 1-2-3-1给出下列命题:①3-是函数()y f x =的极值点; ②1-是函数()y f x =的极小值点; ③()y f x =在0x =处切线的斜率小于零;④()y f x =在区间(3,1)-上单调递增.则正确命题的序号是( )A.①②B.①④C.②③D.②④ 【答案】B7.(2008•广东)设a ∈R ,若函数y=e ax +3x ,x ∈R 有大于零的极值点,则( ) A . a >﹣3 B . a <﹣3 C . a >﹣ D .a <﹣ 解:设f (x )=e ax +3x ,则f ′(x )=3+ae ax .若函数在x ∈R 上有大于零的极值点. 即f ′(x )=3+ae ax =0有正根.当有f ′(x )=3+ae ax =0成立时,显然有a <0, 此时x=ln (﹣).由x >0,得参数a 的范围为a <﹣3. 故选B .8.【2012高考真题辽宁理12】若[0,)x ∈+∞,则下列不等式恒成立的是 (A)21xe x x ++„ 2111241x x x<-++(C)21cos 12x x -… (D)21ln(1)8x x x +-… 【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()cos 10g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C9.已知函数3211()2(,,)32f x x ax bx c a b c R =+++∈,且函数()f x 在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则22(3)z a b =++的取值范围为( )A. 2(,2)2 B.1(,4)2C. (1,2)D.(1,4) 【答案】B10.【2012高考真题全国卷理10】已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 【答案】A【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.11.(2012•昌图县模拟)下列关于函数f (x )=(2x ﹣x 2)e x 的判断正确的是( ) ①f (x )>0的解集是{x|0<x <2};②f (﹣)是极小值,f ()是极大值; ③f (x )没有最小值,也没有最大值.A . ①③B . ①②③C . ②D . ①② 解:由f (x )>0⇒(2x ﹣x 2)e x >0⇒2x ﹣x 2>0⇒0<x <2,故①正确; f ′(x )=e x (2﹣x 2),由f ′(x )=0得x=±, 由f ′(x )<0得x >或x <﹣, 由f ′(x )>0得﹣<x <,∴f (x )的单调减区间为(﹣∞,﹣),(,+∞).单调增区间为(﹣,).∴f (x )的极大值为f (),极小值为f (﹣),故②正确. ∵x <﹣时,f (x )<0恒成立.∴f (x )无最小值,但有最大值f () ∴③不正确. 故选D .12.(2010•安庆模拟)如果函数满足:对于任意的x 1,x 2∈[0,1],都有|f (x 1)﹣f (x 2)|≤1恒成立,则a 的取值范围是( ) A . B .C .D .解:由题意f ′(x )=x 2﹣a 2当a 2≥1时,在x ∈[0,1],恒有导数为负,即函数在[0,1]上是减函数,故最大值为f (0)=0,最小值为f (1)=﹣a 2,故有,解得|a|≤,故可得1≤a ≤当a 2∈[0,1],由导数知函数在[0,a ]上增,在[a ,1]上减,故最大值为f (a )=又f(0)=0,矛盾,a ∈[0,1]不成立, 故选A .二:填空题13.函数322()f x x ax bx a =+++在1x =时有极值10,那么,a b 的值分别为________. 【答案】4,-11 14.已知函数f (x) 的导数f ′(x)=a(x +1)(x -a),若f (x)在x =a 处取得极大值,则a 的取值范围是 。

高中数学函数在某点取得极值的条件精选题

高中数学函数在某点取得极值的条件精选题

函数在某点取得极值的条件精选题28道一.选择题(共9小题)1.若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.62.设三次函数f(x)的导函数为f′(x),函数y=x•f′(x)的图象的一部分如图所示,则正确的是()A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(﹣3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(﹣3)3.若函数f(x)=x(x﹣c)2在x=2处有极大值,则常数c为()A.2B.6C.2或6D.﹣2或﹣64.已知函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则a、b的值为()A.a=﹣4,b=11B.a=3,b=﹣3或a=﹣4,b=11C.a=﹣1,b=5D.以上都不正确5.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极值点(包括极大值点和极小值点)有()A.1个B.2个C.3个D.4个6.函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则点(a,b)为()A.(3,﹣3)B.(﹣4,11)C.(3,﹣3)或(﹣4,11)D.不存在7.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法错误的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x08.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则a+b=()A.0或﹣7B.0C.﹣7D.1或﹣69.已知函数f(x)和g(x)的导函数f′(x),g′(x)图象分别如图所示,则关于函数y =g(x)﹣f(x)的判断正确的是()A.有3个极大值点B.有3个极小值点C.有1个极大值点和2个极小值点D.有2个极大值点和1个极小值点二.多选题(共1小题)(多选)10.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法正确的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x0三.填空题(共10小题)11.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=.12.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c=.13.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为10,则f(2)等于.14.函数f(x)=x2﹣lnx的极值点是.15.已知f(x)=x3+3ax2+bx+a2在x=﹣1时有极值0,则a﹣b的值为.16.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值范围是.17.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m=,n=.18.若f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则a的取值范围是.19.已知命题p:∃x∈R,使得e x≤2x+a为假命题,则实数a的取值范围是.20.函数f(x)=alnx+x在x=1处取得极值,则a的值为.四.解答题(共8小题)21.已知f(x)=x3+ax2+bx+c在x=1与时,都取得极值.(1)求a,b的值;(2)若,求f(x)的单调区间和极值.22.已知函数f(x)=x3+mx2﹣m2x+1(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为﹣5的直线是曲线y=f(x)的切线,求此直线方程.23.已知函数f(x)=lnx+ax﹣a2x2(a≥0).(1)若x=1是函数y=f(x)的极值点,求a的值;(2)求函数y=f(x)的单调区间.24.设函数f(x)=(x2+ax+b)e x(x∈R).(Ⅰ)若x=1是函数f(x)的一个极值点,试求出a关于b的关系式(用a表示b),并确定f(x)的单调区间;(Ⅱ)在(Ⅰ)的条件下,设a>0,函数g(x)=(a2+14)e x+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)﹣g(ξ2)|<1成立,求a的取值范围.25.已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然对数的底.(1)若f(x)在x=1处取得极值,求a的值;(2)求f(x)的单调区间;(3)设,存在x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.26.已知x=4是函数f(x)=alnx+x2﹣12x+11的一个极值点.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.27.已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)=﹣+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(3)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.28.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为﹣3.(Ⅰ)求f(x)的解析式;(Ⅱ)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.函数在某点取得极值的条件精选题28道参考答案与试题解析一.选择题(共9小题)1.若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.6【分析】求导数f′(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af(x)+b=0有两个根,作出草图,由图象可得答案.【解答】解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,由3(f(x))2+2af(x)+b=0,得x=x1,或x=x2,即3(f(x))2+2af(x)+b=0的根为f(x)=x1或f(x)=x2的解.如图所示,由图象可知f(x)=x1有2个解,f(x)=x2有1个解,因此3(f(x))2+2af(x)+b=0的不同实根个数为3.故选:A.【点评】考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.2.设三次函数f(x)的导函数为f′(x),函数y=x•f′(x)的图象的一部分如图所示,则正确的是()A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(﹣3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(﹣3)【分析】观察图象知,x<﹣3时,f′(x)<0.﹣3<x<0时,f′(x)>0.由此知极小值为f(﹣3).0<x<3时,yf′(x)>0.x>3时,f′(x)<0.由此知极大值为f (3).【解答】解:观察图象知,x<﹣3时,y=x•f′(x)>0,∴f′(x)<0.﹣3<x<0时,y=x•f′(x)<0,∴f′(x)>0.由此知极小值为f(﹣3).0<x<3时,y=x•f′(x)>0,∴f′(x)>0.x>3时,y=x•f′(x)<0,∴f′(x)<0.由此知极大值为f(3).故选:D.【点评】本题考查极值的性质和应用,解题时要仔细图象,注意数形结合思想的合理运用.3.若函数f(x)=x(x﹣c)2在x=2处有极大值,则常数c为()A.2B.6C.2或6D.﹣2或﹣6【分析】求出函数的导数,再令导数等于0,求出c值,再检验函数的导数是否满足在x =2处左侧为正数,右侧为负数,把不满足条件的c值舍去.【解答】解:∵函数f(x)=x(x﹣c)2=x3﹣2cx2+c2x,它的导数为f′(x)=3x2﹣4cx+c2,由题意知,在x=2处的导数值为12﹣8c+c2=0,∴c=6,或c=2,又函数f(x)=x(x﹣c)2在x=2处有极大值,故导数值在x=2处左侧为正数,右侧为负数.当c=2时,f′(x)=3x2﹣8x+4=3(x﹣)(x﹣2),不满足导数值在x=2处左侧为正数,右侧为负数.当c=6时,f′(x)=3x2﹣24x+36=3(x2﹣8x+12)=3(x﹣2)(x﹣6),满足导数值在x=2处左侧为正数,右侧为负数.故c=6.故选:B.【点评】本题考查函数在某点取得极大值的条件:导数值等于0,且导数在该点左侧为正数,右侧为负数.4.已知函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则a、b的值为()A.a=﹣4,b=11B.a=3,b=﹣3或a=﹣4,b=11C.a=﹣1,b=5D.以上都不正确【分析】求导数,利用函数在x=1处有极值10,得到两个条件f(1)=10和f'(1)=0,然后利用方程组求解a,b.【解答】解:函数的导数为f'(x)=3x2﹣2ax﹣b,因为函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,所以f(1)=10且f'(1)=0.即,解得.当a=3,b=﹣3时,f'(x)=3x2﹣6x+3=3(x﹣1)2≥0,此时函数单调递增,所以此时函数没有极值,所以不满足条件.所以经检验值当a=﹣4,b=11时,满足条件.故选:A.【点评】本题主要考查利用导数研究函数的极值问题,要求掌握可导函数取得极值的条件,f'(x)=0是函数取得极值的必要不充分条件,求解之后要注意进行检验.5.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极值点(包括极大值点和极小值点)有()A.1个B.2个C.3个D.4个【分析】根据当f'(x)>0时函数f(x)单调递增,f'(x)<0时f(x)单调递减,可从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案.【解答】解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,根据极值点的定义可知,导函数在某点处值为0,左右两侧异号的点为极值点,由图可知,在(a,b)内只有3个极值点.故选:C.【点评】本题主要考查函数的极值点和导数正负的关系.属基础题.6.函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则点(a,b)为()A.(3,﹣3)B.(﹣4,11)C.(3,﹣3)或(﹣4,11)D.不存在【分析】首先对f(x)求导,然后由题设在x=1时有极值10可得解之即可求出a和b的值.【解答】解:对函数f(x)求导得f′(x)=3x2﹣2ax﹣b,又∵在x=1时f(x)有极值10,∴,解得或,验证知,当a=3,b=﹣3时,在x=1无极值,故选:B.【点评】掌握函数极值存在的条件,考查利用函数的极值存在的条件求参数的能力,属于中档题.7.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法错误的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x0【分析】对四个选项分别进行判断,即可得出结论.【解答】解:∵f(x)=e x﹣ax,∴f′(x)=e x﹣a,令f′(x)=e x﹣a>0,①当a≤0时,f′(x)=e x﹣a>0在x∈R上恒成立,∴f(x)在R上单调递增.②当a>0时,∵f′(x)=e x﹣a>0,∴e x﹣a>0,解得x>lna,∴f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增.∵函数f(x)=e x﹣ax有两个零点x1<x2,∴f(lna)<0,a>0,∴e lna﹣alna<0,∴a>e,A正确;∵,,∴,设,则t>1,,∴,令,则,∴g(t)>g(1)>0,∴x1+x2﹣2>0,x1+x2>2,B正确;f(0)=1>0,∴0<x1<1,x1x2>1不一定,C不正确;f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增,∴有极小值点x0=lna,由图象观察可得x1+x2<2x0=2lna,D正确.故选:C.【点评】本题考查了利用导数求函数的极值,研究函数的零点问题,利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.8.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则a+b=()A.0或﹣7B.0C.﹣7D.1或﹣6【分析】根据函数f(x)=x3+ax2+bx+a2在x=1处有极值10,可知f′(1)=0和f(1)=10,对函数f(x)求导,解方程组,注意验证,可求得答案.【解答】解:由f(x)=x3+ax2+bx+a2,得f′(x)=3x2+2ax+b,,即,解得或(经检验应舍去),a+b=4﹣11=﹣7,故选:C.【点评】本题主要考查函数在某点取得极值的条件,注意f′(x0)=0是x=x0是极值点的必要不充分条件,因此对于解得的结果要检验,这是易错点,属于基础题.9.已知函数f(x)和g(x)的导函数f′(x),g′(x)图象分别如图所示,则关于函数y =g(x)﹣f(x)的判断正确的是()A.有3个极大值点B.有3个极小值点C.有1个极大值点和2个极小值点D.有2个极大值点和1个极小值点【分析】由已知结合函数的单调性与极值的关系进行分析即可求解.【解答】解:结合函数图象可知,当x<a时,f′(x)<g′(x),此时y′=g′(x)﹣f′(x)>0,函数单调递增,当a<x<0时,f′(x)>g′(x),此时y′=g′(x)﹣f′(x)<0,函数单调递减,当0<x<b时,f′(x)<g′(x),此时y′=g′(x)﹣f′(x)>0,函数单调递增,当x>b时,f′(x)>g′(x),此时y′=g′(x)﹣f′(x)<0,函数单调递减,故函数在x=a,x=b处取得极大值,在x=0处取得极小值.故选:D.【点评】本题主要考查了函数极值的判断,属于基础试题.二.多选题(共1小题)(多选)10.已知函数f(x)=e x﹣ax有两个零点x1<x2,则下列说法正确的是()A.a>eB.x1+x2>2C.x1x2>1D.有极小值点x0,且x1+x2<2x0【分析】对四个选项分别进行判断,即可得出结论.【解答】解:∵f(x)=e x﹣ax,∴f′(x)=e x﹣a,令f′(x)=e x﹣a>0,①当a≤0时,f′(x)=e x﹣a>0在x∈R上恒成立,∴f(x)在R上单调递增.②当a>0时,∵f′(x)=e x﹣a>0,∴e x﹣a>0,解得x>lna,∴f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增.∵函数f(x)=e x﹣ax有两个零点x1<x2,∴f(lna)<0,a>0,∴e lna﹣alna<0,∴a>e,A正确;∵,,∴,设,则t>1,,∴,令,则,∴g(t)>g(1)>0,∴x1+x2﹣2>0,x1+x2>2,B正确;f(0)=1>0,∴0<x1<1,x1x2>1不一定,C不正确;f(x)在(﹣∞,lna)单调递减,在(lna,+∞)单调递增,∴有极小值点x0=lna,由图象观察可得x1+x2<2x0=2lna,D正确.故选:ABD.【点评】本题考查了利用导数求函数的极值,研究函数的零点问题,利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.三.填空题(共10小题)11.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=11.【分析】对函数进行求导,根据函数f(x)在x=﹣1有极值0,可以得到f(﹣1)=0,f′(﹣1)=0,代入求解即可【解答】解:∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n依题意可得联立可得当m=1,n=3时函数f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3=3(x+1)2≥0函数在R上单调递增,函数无极值,舍故答案为:11【点评】本题主要考查函数在某点取得极值的性质:若函数在x0取得极值⇒f′(x0)=0.反之结论不成立,即函数有f′(x0)=0,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.12.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c=6.【分析】由已知函数f(x)=x(x﹣c)2在x=2处有极大值,则必有f′(2)=0,且在x=2的两侧异号即可得出.【解答】解:∵f′(x)=(x﹣c)2+2x(x﹣c)=3x2﹣4cx+c2,且函数f(x)=x(x﹣c)2在x=2处有极大值,∴f′(2)=0,即c2﹣8c+12=0,解得c=6或2.经检验c=2时,函数f(x)在x=2处取得极小值,不符合题意,应舍去.故c=6.故答案为6.【点评】熟练掌握利用导数研究函数的极值的方法是解题的关键.13.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为10,则f(2)等于18.【分析】对函数f(=x)求导的导函数,利用导函数与极值的关系进行求解.【解答】解:f′(x)=3x2+2ax+b,∴或当时,f′(x)=3(x﹣1)2≥0,∴在x=1处不存在极值;当时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1)∴x∈(,1),f′(x)<0,x∈(1,+∞),f′(x)>0,∴适合∴f(2)=8+16﹣22+16=18.故答案为18.【点评】本题主要考查了函数在某点取得极值的条件,即在该点处导函数值为0.14.函数f(x)=x2﹣lnx的极值点是.【分析】直接利用导函数为0,求出方程的解,判断是否是极值点即可.【解答】解:函数f(x)的定义域{x|x>0},f′(x)=2x﹣=,令f′(x)=0,得x=或﹣(舍去),当x∈(0,)时,f′(x)<0,f(x)单调递减,当x∈(,+∞)时,f′(x)>0,f(x)单调递增,所以函数f(x)的极值点是x=,故答案为:.【点评】本题考查函数的极值点的求法与判断,是易错题,求解方程的根后,必须验证方程的根是否是函数的极值点.15.已知f(x)=x3+3ax2+bx+a2在x=﹣1时有极值0,则a﹣b的值为﹣7.【分析】求导函数,利用函数f(x)=x3+3ax2+bx+a2在x=﹣1处有极值0,建立方程组,求得a,b的值,再验证,即可得到结论.【解答】解:∵函数f(x)=x3+3ax2+bx+a2∴f'(x)=3x2+6ax+b,又∵函数f(x)=x3+3ax2+bx+a2在x=﹣1处有极值0,∴,∴或当时,f'(x)=3x2+6ax+b=3(x+1)2≥0,没有极值,不满足题意;当时,f'(x)=3x2+6ax+b=3(x+1)(x+3)=0,方程有两个不等的实数根,满足题意;∴a﹣b=﹣7故答案为:﹣7.【点评】本题考查导数知识的运用,考查函数的极值,考查学生的计算能力,属于基础题.16.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值范围是[﹣1,7).【分析】首先利用函数的导数与极值的关系求出a的值,由于函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,所以f′(﹣1)f′(1)<0,进而验证a=﹣1与a=7时是否符合题意,即可求答案.【解答】解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值范围是[﹣1,7).故答案为:[﹣1,7).【点评】考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.17.已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m=2,n=9.【分析】对函数进行求导,根据函数f(x)在x=﹣1有极值0,可以得到f(﹣1)=0,f′(﹣1)=0,代入求解即可【解答】解:∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n依题意可得即解得或当m=1,n=3时函数f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3=3(x+1)2≥0函数在R上单调递增,函数无极值,舍故答案为:2 9【点评】本题主要考查函数在某点取得极值的性质:若函数在取得极值⇒f′(x0)=0.反之结论不成立,即函数有f′(x0)=0,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.18.若f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则a的取值范围是a<﹣1或a>2.【分析】先求导,利用函数既有极大值又有极小值,则说明f'(x)=0有两个不同的根,然后确定a的取值范围.【解答】解:函数的导数为f'(x)=3x2+6ax+3(a+2).因为函数f(x)既有极大值又有极小值,则f'(x)=0有两个不同的根.即判别式Δ>0,即36a2﹣4×3×3(a+2)>0,所以a2﹣a﹣2>0,解得a>2或a<﹣1.故答案为:a>2或a<﹣1.【点评】本题主要考查函数的极值和导数之间的关系,将条件转化为f'(x)=0有两个不同的根,是解决本题的关键.19.已知命题p:∃x∈R,使得e x≤2x+a为假命题,则实数a的取值范围是(﹣∞,2﹣ln2).【分析】求出“∃x∈R,使得e x≤2x+a”是假命题时,实数a的取值范围,通过构造函数,利用函数的导数,求出函数的最小值,然后求解实数a的取值范围.【解答】解:若命题“∃x∈R,使得e x≤2x+a”成立则a大于等于函数y=e x﹣2x的最小值.函数y=e x﹣2x的导数为y′=e x﹣2.令y′=0,解得x=ln2,此时函数y=e x﹣2x有最小值,y min=2﹣2ln2.则命题“∃x∈R,使得e x≤2x+a”是假命题时数a的取值范围是(﹣∞,2﹣ln2)故答案为:(﹣∞,2﹣ln2).【点评】本题考查的知识点是命题的真假判断与应用,利用函数的对数求出函数的最小值,是解答本题的关键.20.函数f(x)=alnx+x在x=1处取得极值,则a的值为﹣1.【分析】由题意得求出函数的导数f′(x)=+1,因为函数f(x)=alnx+x在x=1处取得极值,所以f′(1)=0进而可以求出答案.【解答】解:由题意得f′(x)=+1因为函数f(x)=alnx+x在x=1处取得极值,所以f′(1)=0,即a+1=0,所以a=﹣1.故答案为﹣1.【点评】解决此类问题的关键是熟悉导数的作用即判断单调性,求极值,求切线方程等,解题时要正确利用公式求函数的导数.四.解答题(共8小题)21.已知f(x)=x3+ax2+bx+c在x=1与时,都取得极值.(1)求a,b的值;(2)若,求f(x)的单调区间和极值.【分析】(1)因为函数在极值点处导数等于0,所以若f(x)在x=1与时,都取得极值,则f′(1)=0,f′()=0,就可得到a,b的值.(2)先由求出函数中的c扥值,再求导数,令导数大于0,解得x的范围是函数的增区间,令导数小于0,解得x的范围是函数的减区间,增区间与减区间的分界点为极值点,且当极值点左侧导数大于0,右侧导数小于0时取得极大值,当极值点左侧导数小于0,右侧导数大于0时取得极小值,再把x的值代入原函数求出极大值与极小值.【解答】解:(1)f′(x)=3x2+2ax+b,∵f(x)在x=1与时,都取得极值,∴f′(1)=0,f′()=0,即3×1+2a+b=0,3×+2a()+b=0解得(2)由(1)知,f(x)=x3﹣x2﹣2x+c∵,∴﹣1﹣+2+c=,解得c=1∴f(x)=x3﹣x2﹣2x+1又∵f′(x)=3x2﹣x﹣2,令f′(x)>0,即3x2﹣x﹣2>0,解得,x<﹣,或x>1,令f′(x)<0,即3x2﹣x﹣2<0.解得,﹣<x<1∴函数的增区间为;减区间为,∴函数在x=﹣时又极大值为,在x=1时有极小值为﹣.【点评】本题主要考查了函数的导数与极值,单调区间之间的关系,属于导数的应用.22.已知函数f(x)=x3+mx2﹣m2x+1(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为﹣5的直线是曲线y=f(x)的切线,求此直线方程.【分析】(I)求出导函数,求出导函数等于0的两个根,列出x,f′(x),f(x)的变化情况的表格,求出极大值,列出方程求出m的值.(II)将(I)求出的m的值代入导函数,利用曲线在切点处的导数值是切线的斜率,令导数等于﹣5,求出x即切点横坐标,将横坐标代入f(x)求出切点坐标,利用直线方程的点斜式写出切线方程.【解答】解:(Ⅰ)f’(x)=3x2+2mx﹣m2=(x+m)(3x﹣m)=0,则x=﹣m或x=m,当x变化时,f’(x)与f(x)的变化情况如下表:,从而可知,当x=﹣m时,函数f(x)取得极大值9,即f(﹣m)=﹣m3+m3+m3+1=9,∴m=2.(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2﹣4x+1,依题意知f’(x)=3x2+4x﹣4=﹣5,∴x=﹣1或x=﹣.又f(﹣1)=6,f(﹣)=,所以切线方程为y ﹣6=﹣5(x+1),或y﹣=﹣5(x+),即5x+y﹣1=0,或135x+27y﹣23=0.【点评】本题考查利用导数求函数的极值的步骤:求出导数;令导数为0求出根;列出表格判断根左右两边导函数的符号;求出极值.考查导数的几何意义:导数在切点处的值是曲线的切线斜率.23.已知函数f(x)=lnx+ax﹣a2x2(a≥0).(1)若x=1是函数y=f(x)的极值点,求a的值;(2)求函数y=f(x)的单调区间.【分析】(1)确定函数的定义域,求导函数,利用x=1是函数y=f(x)的极值点,即可求a的值;(2)分类讨论,利用导数的正负,结合函数的定义域,可得函数的单调区间.【解答】解:(1)函数定义域为(0,+∞),因为x=1是函数y=f(x)的极值点,所以f′(1)=1+a﹣2a2=0,解得或a=1,因为a>0,所以a=1;(2)若a=0,>0,∴函数f(x)的单调增区间为(0,+∞);若a≠0,则a>0,=由f′(x)>0,结合函数的定义域,可得0<x<;由f′(x)<0,结合函数的定义域,可得x>;∴函数的单调增区间为(0,);单调减区间为(,+∞).【点评】本题考查导数知识的运用,考查函数的极值,考查函数的单调性,正确求导,合理分类是关键.24.设函数f(x)=(x2+ax+b)e x(x∈R).(Ⅰ)若x=1是函数f(x)的一个极值点,试求出a关于b的关系式(用a表示b),并确定f(x)的单调区间;(Ⅱ)在(Ⅰ)的条件下,设a>0,函数g(x)=(a2+14)e x+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)﹣g(ξ2)|<1成立,求a的取值范围.【分析】(Ⅰ)据极值点处的导函数值为0得到a,b的关系;代入导函数中求出导函数的两根,讨论两根的大小;判断根左右两边导函数的符号,据导函数与单调性的关系求出单调区间.(Ⅱ)据函数的单调性求出两根函数的值域,求出函数值的最小距离,最小距离小于1求出a的范围【解答】解:(Ⅰ)∵f'(x)=(2x+a)e x+(x2+ax+b)e x=[x2+(2+a)x+(a+b)]e x﹣﹣﹣(1分)且x=1是函数f(x)的一个极值点∴f'(1)=0﹣﹣﹣﹣﹣﹣(2分)即e[1+(2+a)+(a+b)]=0,解得b=﹣3﹣2a﹣﹣﹣(3分)则f′(x)=e x[x2+(2+a)x+(﹣3﹣a)]=e x(x﹣1)[x+(3+a)]令f′(x)=0,得x1=1或x2=﹣3﹣a﹣﹣﹣﹣﹣﹣﹣(4分)∵x=1是极值点,∴﹣3﹣a≠1,即a≠﹣4当﹣3﹣a>1即a<﹣4时,由f′(x)>0得x∈(﹣3﹣a,+∞)或x∈(﹣∞,1)由f'(x)<0得x∈(1,﹣3﹣a)﹣﹣﹣﹣﹣﹣(5分)当﹣3﹣a<1即a>﹣4时,由f′(x)>0得x∈(1,+∞)或x∈(﹣∞,﹣3﹣a)由f′(x)<0得x∈(﹣3﹣a,1)﹣﹣﹣﹣﹣﹣﹣﹣(6分)综上可知:当a<﹣4时,函数f(x)的单调递增区间为(﹣∞,1)和(﹣3﹣a,+∞),单调递减区间为(1,﹣3﹣a);当a>﹣4时,函数f(x)单调递增区间为(﹣∞,﹣3﹣a)和(1,+∞),单调递减区间为(﹣3﹣a,1)﹣﹣﹣﹣﹣(8分)(Ⅱ)由(1)知,当a>0时,f(x)在区间(0,1)上的单调递减,在区间(1,4)上单调递增,∴函数f(x)在区间[0,4]上的最小值为f(1)=﹣(a+2)e﹣﹣﹣﹣(9分)又∵f(0)=be x=﹣(2a+3)<0,f(4)=(2a+13)e4>0,∴函数f(x)在区间[0,4]上的值域是[f(1),f(4)],即[﹣(a+2)e,(2a+13)e4]﹣﹣﹣(11分)又g(x)=(a2+14)e x+4在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[(a2+14)e4,(a2+14)e8]﹣﹣﹣﹣﹣﹣(12分)∵(a2+14)e4﹣(2a+13)e4=(a2﹣2a+1)e4=(a﹣1)2e4≥0,∴存在ξ1,ξ2∈[0,4]使得|f(ξ1)﹣g(ξ2)|<1成立只须仅须(a2+14)e4﹣(2a+13)e4<1.﹣﹣﹣﹣(14分)【点评】本题考查利用导函数研究函数的极值:极值点处的值为0;研究函数的单调性:导数大于0对应区间为单调递增区间,导数小于0对应区间为单调递减区间;将存在性问题转化成最值问题.25.已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然对数的底.(1)若f(x)在x=1处取得极值,求a的值;(2)求f(x)的单调区间;(3)设,存在x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.【分析】(Ⅰ)先求导得到f′(x),令f′(x)=0,解出a的值,并验证a的值是否满足极值的条件.(Ⅱ)先求导得到f′(x),然后对a分类讨论,看f′(x)是大于0还是小于0,从而得到f(x)的单调区间.(Ⅲ)把要求的问题:“存在x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,”转化为“对于x∈(0,e],|f(x)min﹣g(x)max|<9”.进而求出a的取值范围.【解答】解:(Ⅰ),x∈(0,e].由已知f'(1)=2a﹣2=0,解得a=1,此时.在区间(0,1)上,f′(x)<0;在区间(1,e)上,f′(x)>0.∴函数f(x)在x=1时取得极小值.因此a=1时适合题意.(Ⅱ),x∈(0,e].1)当a≤0时,f'(x)<0,∴f(x)在(0,e]上是减函数.2)当a>0时,.①若,即,则f(x)在上是减函数,在上是增函数;②若,即,则f(x)在(0,e]上是减函数.综上所述,当时,f(x)的减区间是(0,e],当时,f(x)的减区间是,增区间是.(Ⅲ)当时,由(Ⅱ)可知:当x=时,函数f(x)取得最小值,且.∵g(x)=﹣5,∴函数g(x)在区间(0,e]上单调递增.∴当x=e时,函数g(x)取得最大值,且g(x)max=g(e)=﹣4﹣lna.∵存在x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,∴必有对于x∈(0,e],|f(x)min﹣g(x)max|<9.又∵,联立得,解得.∴a的取值范围是.【点评】本题综合考查了函数的极值、单调区间及恒成立问题,掌握方法和正确计算及分类讨论是解决问题的关键.26.已知x=4是函数f(x)=alnx+x2﹣12x+11的一个极值点.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.【分析】(1)求导函数,利用x=4是函数f(x)=alnx+x2﹣12x+11的一个极值点,可得f′(4)=0,从而可求a的值;(2)利用导数的正负,可得函数f(x)的单调区间;(3)确定函数的极值,从而可得不等式,即可求b的取值范围.【解答】解:(1)求导函数可得f′(x)=+2x﹣12,∵x=4是函数f(x)=alnx+x2﹣12x+11的一个极值点∴f′(4)=+8﹣12=0,∴a=16 …3分(2)由(1)知,f(x)=16lnx+x2﹣12x+11,x∈(0,+∞)f′(x)=…5分当x∈(0,2)∪(4,+∞)时,f′(x)>0;当x∈(2,4)时,f′(x)<0…7分所以f(x)的单调增区间是(0,2),(4,+∞),f(x)的单调减区间是(2,4)…8分(3)由(2)知,f(x)的极大值为f(2)=16ln2﹣9,极小值为f(4)=32ln2﹣21所以在f(x)的三个单调区间(0,2),(2,4),(4,+∞)内,直线y=b与y=f(x)的图象各有一个交点,当且仅当f(4)<b<f(2)成立…13分因此,b的取值范围为(32ln2﹣21,16ln2﹣9).…14分.【点评】本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查学生的计算能力,正确求导是关键.27.已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)=﹣+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(3)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.【分析】(1)函数f(x)=ln(x+a)﹣x2﹣x,对其进行求导,在x=0处取得极值,可得f′(0)=0,求得a值;(2)关于x的方程f(x)=﹣+b在区间[0,2]上恰有两个不同的实数根,将问题转化为φ(x)=0,在区间[0,2]上恰有两个不同的实数根,对φ(x)对进行求导,从而求出b的范围;(3)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},利用导数研究其单调性,可以推出ln(x+1)﹣x2﹣x≤0,令x=,可以得到ln(+1)<+利用此不等式进行放缩证明;【解答】解:(1)函数f(x)=ln(x+a)﹣x2﹣xf′(x)=﹣2x﹣1 …(1分)当x=0时,f(x)取得极值,∴f′(0)=0 …(2分)故解得a=1,经检验a=1符合题意.…(3分)(2)由a=1知f(x)=ln(x+1)﹣x2﹣x由f(x)=﹣x+b,得ln(x+1)﹣x2+x﹣b=0令φ(x)=ln(x+1)﹣x2+﹣b,则f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根等价于φ(x)=0在区间[0,2]上恰有两个不同的实数根.…(4分)φ′(x)=﹣2x+=,…(5分)当x∈[0,1]时,φ′(x)>0,于是φ(x)在{0,1)上单调递增;当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,依题意有φ(0)=﹣b≤0,φ(1)=ln(1+1)﹣1+﹣b>0,φ(2)=ln(1+2)﹣4+3﹣b≤0解得,ln3﹣1≤b<ln2+;…(9分)(3)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},由(1)知f'(x)=,令f′(x)=0得,x=0或x=﹣(舍去),∴当﹣1<x<0时,f′(x)>0,f(x)单调递增;当x>0时,f′(x)<0,f(x)单调递减.∴f(0)为f(x)在(﹣1,+∞)上的最大值.∴f(x)≤f(0),故ln(x+1)﹣x2﹣x≤0(当且仅当x=0时,等号成立)…(11分)对任意正整数n,取x=>0得,ln(+1)<+…(12分)∴ln()<故2+++…+>ln2+ln+ln+…+ln=ln(n+1).…(14分)【点评】本题考查利用导数研究函数的极值及单调性,解题过程中用到了分类讨论的思想,分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用,第三问难度比较大,利用了前两问的结论进行证明,此题是一道中档题;28.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为﹣3.(Ⅰ)求f(x)的解析式;(Ⅱ)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.【分析】(Ⅰ)由函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为﹣3,求导,可得±1是f′(x)=0的两根,且f′(0)=﹣3,解方程组即可求得,a,b,c的值,从而求得f(x)的解析式;(Ⅱ)设切点,求切线方程,得到m=﹣2x03+6x02﹣6,要求过点A(2,m)可作曲线y=f(x)的三条切线,即求m=﹣2x03+6x02﹣6有三个零点,画出函数的草图,即可求得实数m的取值范围.【解答】解:(Ⅰ)f'(x)=3ax2+2bx+c依题意又f'(0)=﹣3∴c=﹣3∴a=1∴f(x)=x3﹣3x(Ⅱ)设切点为(x0,x03﹣3x0),∵f'(x)=3x2﹣3∴f'(x0)=3x02﹣3∴切线方程为y﹣(x03﹣3x0)=(3x02﹣3)(x﹣x0)又切线过点A(2,m)∴m﹣(x03﹣3x0)=(3x02﹣3)(2﹣x0)∴m=﹣2x03+6x02﹣6令g(x)=﹣2x3+6x2﹣6则g'(x)=﹣6x2+12x=﹣6x(x﹣2)由g'(x)=0得x=0或x=2g(x)极小值=g(0)=﹣6,g(x)极大值=g(2)=2画出草图知,当﹣6<m<2时,m=﹣2x3+6x2﹣6有三解,所以m的取值范围是(﹣6,2).【点评】此题是中档题.考查利用导数研究函数的单调性和极值问题,和利用导数研究曲线上某点的切线问题,体现了数形结合和转化的思想,考查了学生灵活应用知识分析解决问题的能力.。

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值课时作业一、选择题1.如图2是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:图2①-2是函数y=f(x)的极值点;②1是函数y=f(x)的极值点;③y=f(x)的图象在x=0处切线的斜率小于零;④函数y=f(x)在区间(-2,2)上单调递增.则正确命题的序号是()A.①③B.②④C.②③D.①④解析:根据导函数图象可知,-2是导函数的零点且-2的左右两侧导函数符号异号,故-2是极值点;1不是极值点,因为1的左右两侧导函数符号一致;0处的导函数值即为此点的切线斜率,显然为正值,导函数在(-2,2)上恒大于或等于零,故为函数的增区间,所以选D.答案:D2.设f(x)=12x2-x+cos(1-x),则函数f(x)()A.仅有一个极小值B.仅有一个极大值C.有无数个极值D.没有极值解析:由f(x)=12x2-x+cos(1-x),得f′(x)=x-1+sin(1-x).设g(x)=x-1+sin(1-x),则g′(x)=1-cos(1-x)≥0.所以g(x)为增函数,且g(1)=0.所以当x∈(-∞,1)时,g(x)<0,f′(x)<0,则f(x)单调递减;当x∈(1,+∞)时,g(x)>0,f′(x)>0,则f(x)单调递增.又f′(1)=0,所以函数f(x)仅有一个极小值f(1).故选A.答案:A3.已知函数f(x)=x3+ax2+bx+a2在x=1处取极值10,则a=()A .4或-3B .4或-11C .4D .-3 解析:∵f (x )=x 3+ax 2+bx +a 2, ∴f ′(x )=3x 2+2ax +b .由题意得⎩⎨⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 即⎩⎨⎧2a +b =-3,a +b +a 2=9,解得⎩⎨⎧a =-3,b =3或⎩⎨⎧a =4,b =-11.当⎩⎨⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故函数f (x )单调递增,无极值.不符合题意.∴a =4.故选C. 答案:C 4.函数f (x )=2+ln x x +1在[1e ,e]上的最小值为 ( ) A .1 B.e 1+e C.21+e D.31+e解析:∵f ′(x )=x +1x -(2+ln x )(x +1)2=1x-1-ln x (x +1)2,∴当e ≥x >1时,f ′(x )<0;当1e ≤x <1时,f ′(x )>0. 所以f (x )的最小值为min ⎩⎨⎧⎭⎬⎫f (1e ),f (e )=min{e 1+e ,31+e }=e 1+e ,选B.答案:B5.若函数f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点,则实数a 的取值范围是 ( )A .(0,62)B .(1,62)C .(-62,62)D .(63,1)∪(1,62) 解析:∵f (x )=(a +1)e 2x -2e x +(a -1)x , ∴f ′(x )=2(a +1)e 2x -2e x +a -1,∵f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点, ∴f ′(x )=0有两个不等实根,设t =e x >0,则关于t 的方程2(a +1)t 2-2t +a -1=0有两个不等正根,可得⎩⎪⎨⎪⎧a -12(a +1)>0,22(a +1)>0,4-8(a -1)(a +1)>0⇒1<a <62,∴实数a 的取值范围是(1,62),故选B. 答案:B 6.图1如图1,可导函数y =f (x )在点P (x 0,f (x 0))处的切线为l :y =g (x ),设h (x )=f (x )-g (x ),则下列说法正确的是( )A .h ′(x 0)=0,x =x 0是h (x )的极大值点B .h ′(x 0)=0,x =x 0是h (x )的极小值点C .h ′(x 0)≠0,x =x 0不是h (x )的极值点D .h ′(x 0)≠0,x =x 0是h (x )的极值点解析:由题意可得函数f (x )在点(x 0,f (x 0))处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), ∴h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), ∴h ′(x )=f ′(x )-f ′(x 0), ∴h ′(x 0)=f ′(x 0)-f ′(x 0)=0. 又当x <x 0时,f ′(x )<f ′(x 0), 故h ′(x )<0,h (x )单调递减; 当x >x 0时,f ′(x )>f ′(x 0), 故h ′(x )>0,h (x )单调递增.∴x =x 0是h (x )的极小值点.故选B. 答案:B7.若函数g (x )=mx +sin xe x 在区间(0,2π)内有一个极大值和一个极小值,则实数m 的取值范围是 ( )A .[-e -2π,e -π2)B .(-e -π,e -2π)C .(-e π,e -5π2) D .(-e -3π,e π) 解析:函数g (x )=mx +sin xe x , 求导得g ′(x )=m +cos x -sin xe x. 令f (x )=m +cos x -sin x e x,则f ′(x )=-2cos xe x .易知,当x ∈(0,π2)时,f ′(x )<0,f (x )单调递减; 当x ∈(π2,3π2)时,f ′(x )>0,f (x )单调递增; 当x ∈(3π2,2π)时,f ′(x )<0,f (x )单调递减. 且f (0)=m +1,f (π2)=m -e -π2,f (3π2)=m +e -3π2, f (2π)=m +e -2π,有f (π2)<f (2π),f (0)>f (3π2).根据题意可得⎩⎪⎨⎪⎧f (π2)=m -e -π2<0,f (2π)=m +e -2π≥0,解得-e-2π≤m <e -π2.故选A.答案:A8.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是 ( )A .-4,-15B .5,-15C .5,-4D .5,-16 解析:由题意知y ′=6x 2-6x -12, 令y ′>0,解得x >2或x <-1,故函数y=2x3-3x2-12x+5在[0,2]上递减,在[2,3]上递增,当x=0时,y=5;当x=3时,y=-4;当x=2时,y=-15.由此得函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是5,-15.故选B.答案:B9.若函数f(x)=13x3-⎝⎛⎭⎪⎫1+b2x2+2bx在区间[-3,1]上不是单调函数,则f(x)在R上的极小值为()A.2b-43 B.32b-23C.0 D.b2-16b3解析:由题意得f′(x)=(x-b)(x-2).因为f(x)在区间[-3,1]上不是单调函数,所以-3<b<1.由f′(x)>0,解得x>2或x<b;由f′(x)<0,解得b<x<2.所以f(x)的极小值为f(2)=2b-43.故选A.答案:A10.已知函数f(x)=ln x+a,g(x)=ax+b+1,若∀x>0,f(x)≤g(x),则ba的最小值是()A.1+e B.1-e C.e-1D.2e-1解析:由题意,∀x>0,f(x)≤g(x),即ln x+a≤ax+b+1,即ln x-ax+a≤b+1,设h(x)=ln x-ax+a,则h′(x)=1x-a,当a≤0时,h′(x)=1x-a>0,函数h(x)单调递增,无最大值,不合题意;当a>0时,令h′(x)=1x-a=0,解得x=1a,当x∈(0,1a)时,h′(x)>0,函数h(x)单调递增;当x∈(1a,+∞)时,h′(x)<0,函数h(x)单调递减,所以h(x)max=h(1a)=-ln a+a-1,故-ln a+a-1≤b+1,即-ln a+a-b-2≤0,令ba=k,则b=ak,所以-ln a+(1-k)a-2≤0,设φ(a)=-ln a+(1-k)a-2,则φ′(a)=-1a+(1-k),若1-k≤0,则φ′(a)<0,此时φ(a)单调递减,无最小值,所以k<1,由φ′(a)=0,得a=11-k,此时φ(a)min=ln(1-k)-1≤0,解得k≥1-e,所以k的小值为1-e,故选B.答案:B11.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是()A.-13 B.-15 C.10 D.15解析:∵f′(x)=-3x2+2ax,函数f(x)=-x3+ax2-4在x=2处取得极值,∴-12+4a=0,解得a=3,∴f′(x)=-3x2+6x,f(x)=-3x3+3x2-4,∴n∈[-1,1]时,f′(n)=-3n2+6n,当n=-1时,f′(n)最小,最小为-9,当m∈[-1,1]时,f(m)=-m3+3m2-4,f′(m)=-3m2+6m,令f′(m)=0,得m=0或m=2,所以当m=0时,f(m)最小,最小为-4,故f(m)+f′(n)的最小值为-9+(-4)=-13.故选A.答案:A12.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=16x3-12mx2+x在(-1,2)上是“凸函数”,则f(x)在(-1,2)上() A.既有极大值,也有极小值B.没有极大值,有极小值C.有极大值,没有极小值D.没有极大值,也没有极小值解析:由题设可知,f″(x)<0在(-1,2)上恒成立,由于f ′(x )=12x 2-mx +1,从而f ″(x )=x -m ,所以有x -m <0在(-1,2)上恒成立,故知m ≥2,又因为m ≤2,所以m =2,从而f (x )=16x 3-x 2+x ,f ′(x )=12x 2-2x +1=0,得x 1=2-2∈(-1,2),x 2=2+2∉(-1,2),且当x ∈(-1,2-2)时,f ′(x )>0,当x ∈(2-2,2)时,f ′(x )<0,所以f (x )在x =2-2处取得极大值,没有极小值.答案:C 二、填空题13.已知函数f (x )=1-x x +ln x ,则f (x )在[12,2]上的最大值等于________.解析:∵函数f (x )=1-xx +ln x , ∴f ′(x )=-1x 2+1x =x -1x 2.故f (x )在[12,1]上单调递减,在[1,2]上单调递增, 又∵f (12)=1-ln2,f (2)=ln2-12,f (1)=0, f (12)-f (2)=32-2ln2>0,∴f (x )max =1-ln2,故答案为1-ln2. 答案:1-ln214.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:求导得f ′(x )=3x 2+6ax +3b ,因为函数f (x )在x =2处取得极值,所以f ′(2)=3·22+6a ·2+3b =0,即4a +b +4=0 ①,又因为图象在x =1处的切线与直线6x +2y +5=0平行, 所以f ′(1)=3+6a +3b =-3,即2a +b +2=0 ②, 联立①②可得a =-1,b =0, 所以f ′(x )=3x 2-6x =3x (x -2), 当f ′(x )>0时,x <0或x >2; 当f ′(x )<0时,0<x <2,∴函数的单调增区间是(-∞,0)和(2,+∞),函数的单调减区间是(0,2), 因此求出函数的极大值为f (0)=c , 极小值为f (2)=c -4,故函数的极大值与极小值的差为c -(c -4)=4, 故答案为4. 答案:415.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:由f ′(x )=6x 2-2ax =0,得x =0或x =a3,因为函数f (x )在(0,+∞)上有且仅有一个零点且f (0)=1,所以a 3>0,f (a 3)=0,因此2(a 3)3-a (a3)2+1=0,a =3.从而函数f (x )在[-1,0]上单调递增,在[0,1]上单调递减,所以f (x )max =f (0),f (x )min =min{f (-1),f (1)}=f (-1),f (x )max +f (x )min =f (0)+f (-1)=1-4=-3.答案:-316.已知函数f (x )=x 3+ax 2+(a +6)x +1,(1)若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a =________;(2)若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是________.解析:∵f (x )=x 3+ax 2+(a +6)x +1, ∴f ′(x )=3x 2+2ax +(a +6), ∴f ′(1)=3a +9=6,∴a =-1.函数在(-1,3)内既有极大值又有极小值,则f ′(x )=3x 2+2ax +(a +6)=0在(-1,3)内有不同的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)=-a +9>0,f ′(3)=7a +33>0,-1<-2a 6<3,∴-337<a <-3.答案:-1 (-337,-3) 三、解答题17.已知函数f (x )=x +ax ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )=x +ax ln x 存在极大值,且极大值点为1,证明:f (x )≤e -x +x 2. 解:(1)由题意x >0,f ′(x )=1+a +a ln x ,①当a =0时,f (x )=x ,函数f (x )在(0,+∞)上单调递增; ②当a >0时,函数f ′(x )=1+a +a ln x 单调递增,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )<0,当x ∈(e -1-1a ,+∞)时,f ′(x )>0,所以函数f (x )在(0,e -1-1a )上单调递减,函数f (x )在(e -1-1a ,+∞)上单调递增;③当a <0,函数f ′(x )=1+a +a ln x 单调递减,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫e -1-1a ,+∞时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,e -1-1a 上单调递增,函数f (x )在⎝ ⎛⎭⎪⎫e -1-1a ,+∞上单调递减. (2)由f ′(1)=0,得a =-1,令h (x )=e -x +x 2-x +x ln x ,则h ′(x )=-e -x +2x +ln x ,h ″(x )=e -x +2+1x >0,∴h ′(x )在(0,+∞)上单调递增,∵h ′⎝ ⎛⎭⎪⎫1e =-e -1e +2e -1<0,h ′(1)=-e -1+2>0, ∴∃x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得h ′(x 0)=0,即-e -x 0+2x 0+ln x 0=0. ∴当x ∈(0,x 0)时,h ′(x )<0; 当x ∈(x 0,+∞)时,h ′(x )>0,∴h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, ∴h (x )≥h (x 0).由-e -x 0+2x 0+ln x 0=0,得e -x 0=2x 0+ln x 0, ∴h (x 0)=e -x 0+x 20-x 0+x 0ln x 0 =(x 0+1)(x 0+ln x 0).当x 0+ln x 0<0时,ln x 0<-x 0⇒x 0<e -x 0 ⇒-e -x 0+x 0<0,所以-e -x 0+x 0+x 0+ln x 0<0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0>0时,ln x 0>-x 0⇒x 0>e -x 0⇒-e -x 0+x 0>0, 所以-e -x 0+x 0+x 0+ln x 0>0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0=0时,ln x 0=-x 0⇒x 0=e -x 0⇒-e -x 0+x 0=0, 得-e -x 0+2x 0+ln x 0=0,故x 0+ln x 0=0成立, 得h (x 0)=(x 0+1)(x 0+ln x 0)=0,所以h (x )≥0, 即f (x )≤e -x +x 2.18.已知函数f (x )=x ln x .(1)求函数y =f (x )的单调区间和最小值;(2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值; (3)若k ∈Z ,且f (x )+x -k (x -1)>0对任意x >1恒成立,求k 的最大值. 解:(1)f (x )的单调增区间为[1e ,+∞),单调减区间为⎝ ⎛⎦⎥⎤0,1e , f (x )min =f (1e )=-1e .(2)F (x )=ln x -ax ,F ′(x )=x +a x 2,(ⅰ)当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉[0,+∞),舍去.(ⅱ)当a <0时,F (x )在(0,-a )在上单调递减, 在(-a ,+∞)上单调递增,①若a ∈(-1,0),F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去;②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减,在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,解得a =-e ∈[-e ,-1];③若a ∈(-∞,-e), F (x )在[1,e]上单调递减, F (x )min =F (e)=1-a e =32,所以a =-e 2∉(-∞,-e),舍去.综上所述, a =- e.(3)由题意得,k (x -1)<x +x ln x 对任意x >1恒成立,即k <x ln x +x x -1对任意x >1恒成立. 令h (x )=x ln x +x x -1,则h ′(x )=x -ln x -2(x -1)2, 令φ(x )=x -ln x -2(x >1),则φ′(x )=1-1x =x -1x >0,所以函数φ(x )在(1,+∞)上单调递增,因为方程φ(x )=0在(1,+∞)上存在唯一的实根x 0,且x 0∈(3,4),当1<x <x 0时,φ(x )<0,即h ′(x )<0,当x >x 0时,φ(x )>0,即h ′(x )>0.所以函数h (x )在(1,x 0)上递减,在(x 0,+∞)上单调递增.所以h (x )min =h (x 0)=x 0(1+ln x 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0∈(3,4),所以k <g (x )min =x 0, 又因为x 0∈(3,4),故整数k 的最大值为3.19.高三模拟考试)已知函数f (x )=-4x 3+ax ,x ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在[-1,1]上的最大值为1,求实数a 的取值集合.解:(1)f ′(x )=-12x 2+a .当a =0时,f (x )=-4x 3在R 上单调递减;当a <0时,f ′(x )=-12x 2+a <0,即f (x )=-4x 3+ax 在R 上单调递减;当a >0时,f ′(x )=-12x 2+a =0,解得x 1=36a ,x 2=-3a 6,∴当x ∈⎝⎛⎭⎪⎫-∞,-3a 6时,f ′(x )<0, f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减;当x ∈⎝⎛⎭⎪⎫-3a 6,3a 6时,f ′(x )>0, f (x )在⎝⎛⎭⎪⎫-3a 6,3a 6上递增; 当x ∈⎝ ⎛⎭⎪⎫3a 6,+∞时,f ′(x )<0, f (x )在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. 综上,当a ≤0时,f (x )在R 上单调递减;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减; 在⎝ ⎛⎭⎪⎫-3a 6,3a 6上递增;在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. (2)∵函数f (x )在[-1,1]上的最大值为1,∴对任意x ∈[-1,1],f (x )≤1恒成立,即-4x 3+ax ≤1对任意x ∈[-1,1]恒成立,变形可得ax ≤1+4x 3.当x =0时,a ·0≤1+4·03,即0≤1,可得a ∈R ;当x ∈(0,1]时,a ≤1x +4x 2,则a ≤⎝ ⎛⎭⎪⎫1x +4x 2min, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2.当x ∈⎝ ⎛⎭⎪⎫0,12时,g ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤12,1时, g ′(x )>0. 因此,g (x )min =g ⎝ ⎛⎭⎪⎫12=3, ∴a ≤3.当x ∈[-1,0)时,a ≥1x +4x 2,则a ≥⎝ ⎛⎭⎪⎫1x +4x 2max, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2,当x ∈[-1,0)时,g ′(x )<0,因此,g (x )max =g (-1)=3,∴a ≥3.综上,a=3.∴a的取值集合为{3}。

近五年高考函数的极值和最值真题版(理科复习)

近五年高考函数的极值和最值真题版(理科复习)

题型全归纳18——函数的极值和最值一 极值问题1求函数的极值1(2017新课标Ⅱ)若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则21()(1)x f x x ax e -=+-的极小值为A .1-B .32e --C .35e - D .1 .A 【解析】∵21()[(2)1]x f x x a x a e-'=+++-,∵(2)0f '-=,∴1a =-,所以21()(1)x f x x x e-=--,21()(2)x f x x x e -'=+-,令()0f x '=,解得2x =-或1x =,所以当(,2)x ∈-∞-,()0f x '>,()f x 单调递增;当(2,1)x ∈-时,()0f x '<,()f x 单调递减;当(1,)x ∈+∞,()0f x '>,()f x 单调递增,所以()f x 的极小值为11(1)(111)1f e -=--=-,选A .2 极值点的个数问题。

1 (2015山东理21(1)) 设函数()()()2ln 1f x x a x x =++-,其中a ∈R . 讨论函数()f x 极值点的个数,并说明理由.解析 由题意知,函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+'=+-=++.令()221g x ax ax a =+-+,()1,x ∈-+∞.当0a =时,()1g x =,此时()0f x '>,函数()f x 在()1,-+∞上单调递增,无极值点; 当0a >时,()()28198a a a a a ∆=--=-.① 当809a <„时,0∆„,()0g x …,()0f x '…, ② 函数()f x 在()1,-+∞上单调递增,无极值点; ③ 当89a >时,0∆>,设方程2210ax ax a +-+=的两根为1x ,2x ()12x x <.因为1212x x +=-,所以114x <-,214x >-.由()110g -=>,可得1114x -<<-.所以当()11,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()12,x x x ∈时,()0g x <,()0f x '<,函数()f x 单调递减;当()2,x x ∈+∞时()0g x >,()0f x '>,函数()f x 单调递增.因此函数有两个极值点.当0a <时,0∆>.由()110g -=>,可得11x <-.当()21,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()2,x x ∈+∞时,()0g x <,()0f x '<,函数()f x 单调递减,所以函数有一个极值点. 综上所述,当0a <时,函数有()f x 一个极值点; 当809a剟时,函数()f x 无极值点;当89a >时,函数()f x 有两个极值点. 3 极值点的存在问题1(2014新课标Ⅱ)设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是A .()(),66,-∞-⋃+∞B .()(),44,-∞-⋃+∞C .()(),22,-∞-⋃+∞D .()(),11,-∞-⋃+∞C 【解析】由正弦型函数的图象可知:()f x 的极值点0x 满足0()f x =,则22x k m πππ=+()k Z ∈,从而得01()()2x k m k Z =+∈.所以不等式()22200[]x f x m +<,即为2221()32k m m ++<,变形得21[1()]32m k -+>,其中k Z ∈.由题意,存在整数k 使得不等式21[1()]32m k -+>成立.当1k ≠-且0k ≠时,必有21()12k +>,此时不等式显然不能成立,故1k =-或0k =,此时,不等式即为2334m >,解得2m <-或2m >.2 设函数,其中为常数.若函数的有极值点,求的取值范围及的极值点;思路:()()2'2221b x x bf x x x x -+=-+=,定义域为()0,+∞,若函数的有极值点,则()'0f x =有正根且无重根,进而转化为二次方程根分布问题,通过韦达定理刻画根的符号,进而确定b 的范围解:(1)()()2'2221b x x bf x x x x -+=-+=,令()'0f x =即2220x x b -+=()f x Q 有极值点∴2220x x b -+=有正的实数根,设方程的根为12,x x ① 有两个极值点,即12,0x x >,1212480110202b x x b bx x ⎧⎪∆=->⎪∴+=⇒<<⎨⎪⎪=>⎩② 有一个极值点,即12=002bx x b ≤⇒≤∴综上所述:1,2b ⎛⎫∈-∞ ⎪⎝⎭ (2)思路:利用第(1)问的结论根据极值点的个数进行分类讨论方程2220x x b -+=的两根为:1x ==±① 当102b <<时,1211x x ==()f x ∴的单调区间为:∴()f x 的极大值点为1x =-1x =+x b x x f ln )1()(2+-=b ()f x b ()f x ()f x② 当0b ≤时,1210,1x x =<=+()f x ∴的单调区间为:∴()f x 的极小值点为1x =+综上所述:当102b <<时,()f x 的极大值点为1x =-1x =+当0b ≤时,()f x 的极小值点为1x =+3 (2019.2.21)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点; (1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x'<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.4 已知函数f (x )=x (lnx ﹣ax ),(a ∈R ).(2)若函数f (x )既有极大值又有极小值,求实数a 的取值范围. ②当a >0时,令h'(x )=0,可得,列表:xh'(x )+0 ﹣h(x)↗极大值↘若,即,,即f'(x)≤0,故函数f(x)在(0,+∞)上单调递减,函数f(x)在(0,+∞)上不存在极值,与题意不符,若,即时,由于,且=,故存在,使得h(x)=0,即f'(x)=0,且当x∈(0,x1)时,f'(x)<0,函数f(x)在(0,x1)上单调递减;当时,f'(x)>0,函数f(x)在(0,x1)上单调递增,函数f (x)在x=x1处取极小值.由于,且=(事实上,令,=,故μ(a)在(0,1)上单调递增,所以μ(a)<μ(1)=﹣1<0).故存在,使得h(x)=0,即f'(x)=0,且当时,f'(x)>0,函数f(x)在上单调递增;当x∈(x2,+∞)时,f'(x)<0,函数f(x)在(x2,+∞)上单调递减,函数f(x)在x=x2处取极大值.综上所述,当时,函数f(x)在(0,+∞)上既有极大值又有极小值.5 已知函数f(x)=e x﹣m﹣xlnx﹣(m﹣1)x,m∈R,f′(x)为函数f(x)的导函数.(1)若m=1,求证:对任意x∈(0,+∞),f′(x)≥0;(2)若f(x)有两个极值点,求实数m的取值范围.【解答】(2)f(x)有两个极值点,即f′(x)=e x﹣m﹣lnx﹣m有两个变号零点.①当m≤1时,f′(x)=e x﹣m﹣lnx﹣m≥e x﹣1﹣lnx﹣1,由(1)知f′(x)≥0,则f(x)在(0,+∞)上是增函数,无极值点;(6分)②当m >1时,令g (x )=f′(x ),则,∵g′(1)=e 1﹣m ﹣1<0>0,且g′(x )在(0,+∞)上单增,∴∃x 0∈(1,m ),使g′(x 0)=0.当x ∈(0,x 0)时,g′(x )<0;当x ∈(x 0,+∞)时,g′(x )>0. 所以,g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增. 则g (x )在x=x 0处取得极小值,也即最小值g (x 0)=.(8分)由g′(x 0)=0得m=x 0+lnx 0,则g (x 0)=(9分)令h (x )=(1<x <m )则,h (x )在(1,m )上单调递减,所以h (x )<h (1)=0.即g (x 0)<0,(10分)又x→0时,g (x )→+∞,x→+∞时,g (x )→+∞,故g (x )在(0,+∞)上有两个变号零点,从而f (x )有两个极值点.所以,m >1满足题意.(11分) 综上所述,f (x )有两个极值点时,m 的取值范围是(1,+∞).(12分)(其他解法酌情给分)【点评】题主要考查导数的综合应用,利用函数单调性极值和导数之间的关系是解决本题的关键.,对于参数要进行分类讨论,综合性较强,难度较大.4 极值和零点。

2023届高三数学一轮复习大题专练03导数极值极值点问题1

2023届高三数学一轮复习大题专练03导数极值极值点问题1

一轮大题专练3—导数(极值、极值点问题1)(1)若a =()y f x =f (1))处的切线方程.(2)若a >()f x 存在极小值.(1)解:当a =所以1()2()x f x e lnx x'=+.所以f (1)1=,f '(1)2e =.所以曲线()y f x =在点(1,f (1))处的切线方程为12(1)y e x -=-,即2210ex y e --+=.(21()2()x f x e lnx a x'=+-.令1()h x lnx a x =+-,则22111()x h x x x x-'=-=.当01x <<时,()0h x '<;当1x >时,()0h x '>.所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以()h x 的最小值为h (1)1a =-.因为1a >,所以h (1)10a =-<,1()0a ah e e =>.因为()h x 在(1,)+∞上单调递增,0()0h x =,()0h x <,)+∞上,()0h x >,()0f x '<,)+∞上,()0f x '>,所以()f x ,)+∞上单调递增,所以()f x 存在极小值.2.已知函数2()2m f x lnx x =+R ∈.最小值时的切线方程;22e -解:(1,0x >,1所以1m =,此时切线方程(2,0x >,因为()F x ,2x ,121x x +=,2212121212()()()()2m F x F x lnx lnx x x m x x +=+++-+所以()g m 由22()3()2e g m g e --=…,所以24m e <….3.已知函数()(1)f x x a lnx =-+的最小值为0.121()()4g x g x +<解:(Ⅰ)()(1)f x x a lnx =-+0a …()f x 0a >时,令,解得:x a >,解得:x a <,故()f x 故()min f x f=(a(Ⅱ)证明:由(Ⅰ)2()()g x xf x x x xlnx==--,则()21122g x x lnx x lnx '=---=--,,令()0g x ''>故()g x ')+∞递增,21(0g e '>1)0=,故()g x '有2由1()0g x '=,得:=”成立,显然“=”不成立,故121()()4g x g x +<.4.已知函数()sin (x f x e x ax a R =-∈()cos x x e x=.解:(Ⅰ)当0a =时,()sin x f x e x=,所以当37(2,2),44x k k k Z ππππ∈++∈()f x 在此区间上单调递减,时,()0f x '>所以单调增区间为3(2,2),44k k k Z ππππ-++∈,单调减区间为(Ⅱ)设函数()()()sin cos (sin cos )x x x F x f x g x e x ax e x e x x ax=-=--=--,令()()2sin x H x F x e x a'==-,则()H x 在()2(sin cos )sin(4x x H x e x x x π'=+=+,故当3(,)24x ππ∈,则()H x 单调递增,时,()0H x '<,则又()H x2342000e a a e a π⎧-<⎪⎪-<⎨⎪⎪->⎩,解得324(2)e e ππ.解:(1)证明:当0a =时,当(1,2x π∈-令()1cos h xx x =+-,所以()h x 又(0)0h=,所以当(1,0)x ∈-()0f x '<当(0,2x π∈()0f x '>所以()(0)0f x f=…,所以对任意(1,2x π∈-(2222()(21)cos (1)ax ax xx -++=+,()f x所以3cos (1)sin ()2(1)[]x x xg x x a cos x++'=+-,]4π当1[4x ∈-4444322(1)cos 2sin 2223(1)cos 52(1)4120x x x x x x x x x x x cos x cos x cos x cos x +-++++-++-++==………,所以1[4x ∈-()0x ϕ'…,]4π1a …时,(0,4x π∈(0,)4π上单调递增,又因为(0)0g =,所以()0g x …所以()0f x '…在所以()f x所以1a …舍去,0x ∃所以()0g x '…在,0)所以1(4x ∈-时,()0g x >,()f x 单调递增,0(0,)x x ∈,()0f x '<,所以()f x(1,)+∞.6.已知函数()(1)f x ln x mx =++解:(1)()f x 的定义域是f ∴'(1令()0f x '=令()0f x '>,解得:令()0f x '<,解得:故()f x 在,2)x 递减,在即()f x )+∞6.(2)由题意得2()(1)sing x ln x mx x=++-(0)21h m'=-,若12m<<故()h x'在21(2102(1)2h mππ'=+->+,()0h x'=,故当(1,0)x∈-时,(0,2xπ∈故()h x(0,2π上递增,故0x=不可能是综上,当0x=是。

高中数学利用导数研究函数的极值精选题

高中数学利用导数研究函数的极值精选题

利用导数研究函数的极值精选题27道一.选择题(共8小题) 1.设函数()(21)xf x e x a x a=--+,其中1a<,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[,1)2e -B .33[,)24e -C .33[,)24e D .3[,1)2e2.若2x=-是函数21()(1)x f x x a x e-=+-的极值点,则()f x 的极小值为()A .1-B .32e --C .35e -D .13.已知a 为函数3()12f x x x=-的极小值点,则(a =)A .4-B .2-C .4D .24.已知a 为常数,函数()()f x x ln x a x =-有两个极值点1x ,212()(x x x <)A .121()0,()2f x f x >>-B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-5.已知函数()()f x x ln x a x =-有两个极值点,则实数a 的取值范围是()A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞6.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x=-处取得极小值,则函数()y x f x ='的图象可能是( )A .B .C .D .7.设函数32()2f x x e x m x ln x=-+-,记()()f xg x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是( )A .(-∞,21]e e+B .(0,21]e e+C .21(e e+,)+∞D .21(e e--,21]e e+8.已知函数322()f x x a x b x a=+++在1x=处有极值10,则f(2)等于()A .11或18B .11C .18D .17或18二.填空题(共14小题) 9.若函数2()1xaf x x +=+在1x=处取极值,则a=.10.若函数32()4f x x x a x =+--在区间(1,1)-恰有一个极值点,则实数a 的取值范围为 .11.已知函数21()2f x x ln x x=+,0x 是函数()f x 的极值点,给出以下几个命题:①010x e<<;②01x e>;③00()0f x x +<;④00()0f x x +>;其中正确的命题是 .(填出所有正确命题的序号) 12.已知32()31f x a x x =+-存在唯一的零点0x ,且0x <,则实数a 的取值范围是 .13.直线ya=与函数3()3f x x x=-的图象有相异的三个公共点,则a 的取值范围是 .14.已知函数32()3(0)f x x a x a a =-+>的极大值为正数,极小值为负数,则a 的取值范围是 . 15.若函数21()2f x xx a ln x=-+有两个不同的极值点,则实数a 的取值范围是 . 16.设函数()xf x x e=,则()f x 的极值为 ;17.已知1x ,2x 是函数2()2f x x m ln x x=+-,mR∈的两个极值点,若12x x <,则12()f x x 的取值范围为 . 18.2()()f x x x c =-在2x=处有极大值,则常数c 的值为 .19.已知函数213,10()132,01x g x x x x x ⎧--<⎪=+⎨⎪-+<⎩……,若方程()0g x m x m --=有且仅有两个不等的实根,则实数m 的取值范围是 . 20.已知函数()2xf x e ln x =--,下列说法正确的是 .①()f x 有且仅有一个极值点; ②()f x 有零点;③若()f x 极小值点为0x ,则010()2f x <<; ④若()f x 极小值点为0x ,则01()12f x <<.21.已知函数2()xf x a e x=-有两个极值点,则实数a 的取值范围是 .22.已知函数211,0,2(),0xe x x x ef x ln x x x⎧--+⎪⎪=⎨⎪>⋅⎪⎩…若方程()0f x m -=恰有两个实根,则实数m 的取值范围是 . 三.解答题(共5小题) 23.已知函数2()f x a x a x x ln x=--,且()0f x ….(1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.24.已知函数2()x f x e a x=-. (1)若1a =,证明:当0x …时,()1f x …;(2)若()f x 在(0,)+∞只有一个零点,求a .25.已知函数21()xa xx f x e+-=.(1)求曲线()yf x =在点(0,1)-处的切线方程;(2)证明:当1a …时,()0f x e +….26.已知函数2()(2)(1)2f x x a x ln x x=+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x>时,()0f x >;(2)若0x =是()f x 的极大值点,求a .27.设函数2()(1)()f x ln x a x x =++-,其中a R∈,(Ⅰ)讨论函数()f x 极值点的个数,并说明理由;(Ⅱ)若0x∀>,()0f x …成立,求a 的取值范围.利用导数研究函数的极值精选题27道参考答案与试题解析一.选择题(共8小题) 1.设函数()(21)xf x e x a x a=--+,其中1a<,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[,1)2e -B .33[,)24e -C .33[,)24e D .3[,1)2e【分析】设()(21)xg x e x =-,ya x a=-,问题转化为存在唯一的整数0x 使得0()g x 在直线y a x a=-的下方,求导数可得函数的极值,数形结合可得(0)1a g ->=-且1(1)3g e a a--=---…,解关于a 的不等式组可得.【解答】解:设()(21)xg x e x =-,ya x a=-,由题意知存在唯一的整数0x 使得0()g x 在直线ya x a=-的下方,()(21)2(21)xxxg x e x ee x '=-+=+,∴当12x <-时,()0g x '<,当12x>-时,()0g x '>,∴当12x=-时,()g x 取最小值122e--,当0x=时,(0)1g =-,当1x=时,g (1)0e =>,直线y a x a=-恒过定点(1,0)且斜率为a , 故(0)1ag ->=-且1(1)3g e a a--=---…,解得312a e<…故选:D .【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.2.若2x=-是函数21()(1)x f x x a x e-=+-的极值点,则()f x 的极小值为()A .1-B .32e --C .35e -D .1【分析】求出函数的导数,利用极值点,求出a ,然后判断函数的单调性,求解函数的极小值即可. 【解答】解:函数21()(1)x f x x a x e-=+-, 可得121()(2)(1)x x f x x a ex a x e--'=+++-,2x =-是函数21()(1)x f x x a x e-=+-的极值点,可得:33(2)(4)(421)0f a ea e --'-=-++--=,即4(32)0a a -++-=.解得1a =-.可得121()(21)(1)x x f x x e x x e--'=-+--,21(2)x x x e-=+-,函数的极值点为:2x =-,1x=,当2x<-或1x>时,()0f x '>函数是增函数,(2,1)x ∈-时,函数是减函数, 1x =时,函数取得极小值:f(1)211(111)1e-=--=-.故选:A .【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查计算能力. 3.已知a 为函数3()12f x x x=-的极小值点,则(a=)A .4-B .2-C .4D .2【分析】可求导数得到2()312f x x '=-,可通过判断导数符号从而得出()f x 的极小值点,从而得出a 的值. 【解答】解:2()312f x x '=-;2x ∴<-时,()0f x '>,22x -<<时,()0f x '<,2x>时,()0f x '>;2x ∴=是()f x 的极小值点;又a 为()f x 的极小值点;2a ∴=.故选:D .【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象. 4.已知a 为常数,函数()()f x x ln x a x =-有两个极值点1x ,212()(x x x <)A .121()0,()2f x f x >>-B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-【分析】先求出()f x ',令()0f x '=,由题意可得21ln xa x =-有两个解1x ,2x ⇔函数()12g x l n x a x =+-有且只有两个零点()g x ⇔'在(0,)+∞上的唯一的极值不等于0.利用导数与函数极值的关系即可得出. 【解答】解:()12f x ln x a x'=+-,(0)x>令()0f x '=,由题意可得21ln xa x =-有两个解1x ,2x ⇔函数()12g x ln x a x =+-有且只有两个零点()g x ⇔'在(0,)+∞上的唯一的极值不等于0.112()2a xg x a xx-'=-=. ①当0a …时,()g x '>,()f x '单调递增,因此()()g x f x ='至多有一个零点,不符合题意,应舍去. ②当0a>时,令()g x '=,解得12xa=,1(0,)2x a∈,()g x '>,函数()g x 单调递增;1(,)2x a∈+∞时,()0g x '<,函数()g x 单调递减.12x a∴=是函数()g x 的极大值点,则1()02g a>,即111(2)02lnln a a+-=->,(2)0ln a ∴<,021a ∴<<,即102a <<.故当102a <<时,()g x =有两个根1x ,2x ,且1212x x a<<,又g (1)120a =->,12112x x a∴<<<,从而可知函数()f x 在区间1(0,)x 上递减,在区间1(x ,2)x 上递增,在区间2(x ,)+∞上递减.1()f x f∴<(1)0a =-<,2()f x f>(1)12a =->-.故选:D .【点评】本题考查了利用导数研究函数极值的方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.5.已知函数()()f x x ln x a x =-有两个极值点,则实数a 的取值范围是()A .(,0)-∞B .1(0,)2 C .(0,1)D .(0,)+∞【分析】先求导函数,函数()()f x x ln x a x =-有两个极值点,等价于()21f x ln x a x '=-+有两个零点,等价于函数yln x=与21y a x =-的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a 的取值范围. 【解答】解:函数()()f x x ln x a x =-,则1()()21f x ln x a x x a ln x a x x'=-+-=-+,令()210f x ln x a x '=-+=得21ln xa x =-,函数()()f x x ln x a x =-有两个极值点,等价于()21f x ln x a x '=-+有两个零点,等价于函数y ln x=与21y a x =-的图象有两个交点,在同一个坐标系中作出它们的图象(如图) 当12a=时,直线21y a x =-与y ln x =的图象相切,由图可知,当102a <<时,y ln x=与21y a x =-的图象有两个交点.则实数a 的取值范围是1(0,)2. 另解:函数()()f x x ln x a x =-,则1()()21f x ln x a x x a ln x a x x'=-+-=-+,令()210f x ln x a x '=-+=得21ln xa x =-,可得12ln xa x +=有两个不同的解, 设1()ln xg x x+=,则2()ln x g x x-'=,当1x>时,()g x 递减,01x <<时,()g x 递增,可得g (1)取得极大值1, 作出()y g x =的图象,可得021a <<,即102a <<,故选:B .【点评】本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷. 6.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x=-处取得极小值,则函数()y x f x ='的图象可能是( )A .B .C .D .【分析】由题设条件知:当2x>-时,()0x f x '<;当2x =-时,()x f x '=;当2x<-时,()0x f x '>.由此观察四个选项能够得到正确结果.【解答】解:函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x=-处取得极小值,∴当2x>-时,()0f x '>;当2x =-时,()0f x '=; 当2x<-时,()0f x '<.∴当2x>-时,()0x f x '<;当2x =-时,()0x f x '=; 当2x<-时,()x f x '>.故选:A .【点评】本题考查利用导数研究函数的极值的应用,解题时要认真审题,注意导数性质和函数极值的性质的合理运用. 7.设函数32()2f x x e x m x ln x=-+-,记()()f xg x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是( )A .(-∞,21]e e+B .(0,21]e e+C .21(e e+,)+∞ D .21(e e--,21]e e+【分析】由题意先求函数的定义域,再化简为方程3220x e x m x ln x -+-=有解,则32222x e xln xln x m x e x xx-++==-++,求导求函数22ln x mx e x x=-++的值域,从而得m 的取值范围. 【解答】解:32()2f x x e x m x ln x=-+-的定义域为(0,)+∞,又()()f x g x x=,∴函数()g x 至少存在一个零点可化为函数32()2f x x e x m x ln x=-+-至少有一个零点;即方程3220x e x m x ln x -+-=有解,则32222x e xln xln x mx e x xx-++==-++, 2211222()ln x ln x m x e x e xx--'=-++=--+;故当(0,)x e ∈时,0m '>, 当(,)x e ∈+∞时,0m '<;则22ln x mxe x x=-++在(0,)e 上单调递增,在(,)e +∞上单调递减,故22112m ee e eee-+⋅⋅+=+…;又当0x +→时,22ln x mxe x x=-++→-∞,故21m ee+…;故选:A .【点评】本题考查了导数的综合应用及函数的零点与方程的关系,属于中档题. 8.已知函数322()f x x a x b x a=+++在1x=处有极值10,则f(2)等于()A .11或18B .11C .18D .17或18【分析】根据函数在1x =处有极值时说明函数在1x =处的导数为0,又因为2()32f x x a x b'=++,所以得到:f '(1)320a b =++=,又因为f(1)10=,所以可求出a 与b 的值确定解析式,最终将2x =代入求出答案.【解答】解:2()32f x x a x b'=++,∴2232032411012011a b b a a a b a a a b ++=⎧=--=⎧⎧⎪⇒⇒⎨⎨⎨+++=--==-⎪⎩⎩⎩或33a b =-⎧⎨=⎩①当33a b =-⎧⎨=⎩时,2()3(1)0f x x '=-…,∴在1x=处不存在极值;②当411a b =⎧⎨=-⎩时,2()3811(311)(1)f x x x x x '=+-=+-(x ∴∈113-,1),()0f x '<,(1,)x ∈+∞,()0f x '>,符合题意.∴411a b =⎧⎨=-⎩,f ∴(2)816221618=+-+=.故选:C .【点评】本题主要考查导数为0时取到函数的极值的问题,这里多注意联立方程组求未知数的思想,本题要注意0()0f x '=是0xx =是极值点的必要不充分条件,因此对于解得的结果要检验.二.填空题(共14小题) 9.若函数2()1xaf x x +=+在1x=处取极值,则a=3 .【分析】先求出()f x ',因为1x=处取极值,所以1是()0f x '=的根,代入求出a 即可.【解答】解:22222222()(1)(1)x x x ax x a f x x x +--+-'==++.因为()f x 在1处取极值,所以1是()0f x '=的根, 将1x=代入得3a=.故答案为3【点评】考查学生利用导数研究函数极值的能力. 10.若函数32()4f x x x a x =+--在区间(1,1)-恰有一个极值点,则实数a 的取值范围为[1,5).【分析】首先利用函数的导数与极值的关系,由于函数32()4f x x x a x =+--在区间(1,1)-恰有一个极值点,所以(1)f f '-'(1)0<,故可求实数a 的取值范围. 【解答】解:由题意,2()32f x x x a'=+-,则(1)f f '-'(1)0<,即(1)(5)0a a --<,解得15a <<,另外,当1a =时,函数32()4f x x xx =+--在区间(1,1)-恰有一个极值点,当5a=时,函数32()54f x x x x =+--在区间(1,1)-没有一个极值点,故答案为:[1,5).【点评】考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法,属于中档题. 11.已知函数21()2f x x ln x x=+,0x 是函数()f x 的极值点,给出以下几个命题:①010x e<<;②01x e>;③00()0f x x +<;④00()0f x x +>;其中正确的命题是 ①③ .(填出所有正确命题的序号)【分析】求导数,利用零点存在定理,可判断①②;20000000000111()(1)0222f x x x ln x x x x ln x x x +=++=++=-<,可判断③④.【解答】解:函数21()2f x x ln x x=+,(0)x>()1f x ln x x ∴'=++,易得()1f x ln x x'=++在(0,)+∞递增,11()0f e e ∴'=>,x →,()f x '→-∞,010x e∴<<,即①正确,②不正确;0010ln x x ++=220000000000111()(1)0222f x x x ln x x x x ln x x x ∴+=++=++=-<,即③正确,④不正确.故答案为:①③.【点评】本题考查利用导数研究函数的极值,考查学生的计算能力、转化思想,属于中档题. 12.已知32()31f x a x x =+-存在唯一的零点x ,且00x <,则实数a 的取值范围是(,2)-∞- .【分析】讨论a 的取值范围,求函数的导数判断函数的极值,根据函数极值和单调性之间的关系进行求解即可.【解答】解:()i 当0a =时,2()31f x x =-+,令()0f x =,解得3x=±,函数()f x 有两个零点,舍去.()ii 当0a≠时,22()363()f x a xx a x x a'=+=+,令()0f x '=,解得0x=或2a-.①当0a <时,20a->,当2xa>-或0x<,()0f x '<,此时函数()f x 单调递减;当20x a<<-时,()0f x '>,此时函数()f x 单调递增.∴故2x a=-是函数()f x 的极大值点,0是函数()f x 的极小值点.函数32()31f x a x x =+-存在唯一的零点x ,且00x <,则22228124()110f aa aa-=-+-=-<,即24a >得2a >(舍)或2a<-.②当0a >时,20a -<,当2xa<-或0x>时,()0f x '>,此时函数()f x 单调递增;当20x a-<<时,()0f x '<,此时函数()f x 单调递减.2x a∴=-是函数()f x 的极大值点,0是函数()f x 的极小值点.(0)10f =-<,∴函数()f x 在(0,)+∞上存在一个零点,此时不满足条件.综上可得:实数a 的取值范围是(,2)-∞-. 故答案为:(,2)-∞-.【点评】本题考查了利用导数研究函数的单调性极值与最值、函数的零点,考查了分类讨论方法、推理能力与计算能力,属于中档题. 13.直线y a=与函数3()3f x x x =-的图象有相异的三个公共点,则a的取值范围是(2,2)- .【分析】先求出其导函数,利用其导函数求出其极值以及图象的变化,进而画出函数3()3f x x x=-对应的大致图象,平移直线ya=即可得出结论.【解答】解:令2()330f x x '=-=,得1x=±,可求得()f x 的极大值为(1)2f -=,极小值为f(1)2=-,如图所示,当满足22a -<<时,恰有三个不同公共点.故答案为:(2,2)-【点评】本题主要考查利用导数研究函数的极值以及数形结合思想的应用,是对基础知识的考查,属于基础题. 14.已知函数32()3(0)f x x a x a a =-+>的极大值为正数,极小值为负数,则a 的取值范围是)2+∞ .【分析】先利用导数求函数的极大值和极小值,再解不等式. 【解答】解22()33(0)f x x a a '=->,∴由()0f x '>得:xa>或xa<-,由()0f x '<得:ax a-<<.∴当x a=时,()f x 有极小值,xa=-时,()f x 有极大值.由题意得:333330300a a a a a a a ⎧-+<⎪-++>⎨⎪>⎩解得2a>.故答案为)2+∞【点评】本题考查导数求函数的极值.解决函数的极值问题,导数是唯一方法.极值点左右两边的导数符号必须相反. 15.若函数21()2f x xx a ln x=-+有两个不同的极值点,则实数a 的取值范围是1(0,)4.【分析】求出函数的导数,结合二次函数的性质可求. 【解答】解:因为21()2f x xx a ln x=-+有两个不同的极值点,所以2()10a xx a f x x xx-+'=-+==在(0,)+∞有2个不同的零点,所以2x x a -+=在(0,)+∞有2个不同的零点,所以1400a a =->⎧⎨>⎩,解可得,104a <<.故答案为:1(0,)4.【点评】本题主要考查了函数极值的存在条件的应用,属于基础试题. 16.设函数()xf x x e=,则()f x 的极值为1e-;【分析】求导,解关于导函数的不等式,根据极值定义得解. 【解答】解:函数的定义域为R ,()(1)x xxf x e x ex e'=+=+,令()0f x '>,得1x >-;令()0f x '<,得1x<-;故函数()f x 在1x=-处取得极小值,且极小值为1e-.故答案为:1e-.【点评】本题考查利用导数研究函数的极值,属于基础题. 17.已知1x ,2x 是函数2()2f x x m ln x x=+-,mR∈的两个极值点,若12x x <,则12()f x x 的取值范围为3(22ln --,0) .【分析】可得方程2220x x m -+=在(0,)+∞上有两个不等的正根.1212480110022m x x m m x x ⎧⎪=->⎪+=>⇒<<⎨⎪⎪=>⎩.1102x <<,则2211111111112211()2(1)1121211f x x x m ln x x x ln x x x ln x x x x x -+--==+=-++--.令1()121g x x x ln xx =-++-,1(0)2x <<.利用导数即可求得12()f x x 的取值范围故答案.【解答】解:因为2()2f x x x m ln x=-+,222()x x mt x x-+'=,所以()f x 有两个极值点1x 、2x 等价于方程2220x x m -+=在(0,)+∞上有两个不等的正根.∴1212480110022m x x m m x x ⎧⎪=->⎪+=>⇒<<⎨⎪⎪=>⎩.1102x <<,则2211111111112211()2(1)1121211f x x x m ln x x x ln x x x ln x x x x x -+--==+=-++--.令1()121g x x x ln xx =-++-,1(0)2x <<.21()21(1)g x ln x x '=+--102x <<,212210ln x ln ∴+<-+<.102x ∴<<时,()0g x '<.故()g x 在1(0,)2递减,32()02ln g x --<<.则12()f x x 的取值范围为3(22ln --,0).故答案为:3(22ln --,0).【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查转化思想以及计算能力. 18.2()()f x x x c =-在2x=处有极大值,则常数c 的值为 6 .【分析】先求出()f x ',根据()f x 在2x=处有极大值则有f '(2)0=得到c 的值为2或6,先让2c=然后利用导数求出函数的单调区间,从而得到2x =取到极小值矛盾,所以舍去,所以得到c 的值即可. 【解答】解:322()2f x x cxc x=-+,22()34f x x c x c'=-+, f '(2)02c =⇒=或6c =.若2c =,2()384f x x x '=-+,令2()03f x x '>⇒<或2x>,2()023f x x '<⇒<<,故函数在2(,)3-∞及(2,)+∞上单调递增,在2(3,2)上单调递减,2x ∴=是极小值点.故2c =不合题意,6c=.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.19.已知函数213,10()132,01x g x x x x x ⎧--<⎪=+⎨⎪-+<⎩……,若方程()0g x m x m --=有且仅有两个不等的实根,则实数m 的取值范围是 9(,2][0,2)4m ∈-- .【分析】()0g x m x m --=可化为()(1)g x m x =+,从而化为函数()yg x =与(1)ym x =+的图象有两个不同的交点;再讨论以确定实数m 的取值范围. 【解答】解:由()0g x m x m --=得()(1)g x m x =+,原方程有两个相异的实根等价于两函数()y g x =与(1)y m x =+的图象有两个不同的交点.当0m>时,易知临界位置为(1)ym x =+过点(0,2)和(1,0), 分别求出这两个位置的斜率12k =和2k =,由图可知此时[0m ∈,2); 当0m<时,设过点(1,0)-函数1()31g x x =-+,(1x ∈-,0]的图象作切线的切点为0(x ,0)y ,则由函数的导数为21()(1)g x x '=-+得:0200001(1)1131y x x y x ⎧-=⎪++⎪⎨⎪=-⎪+⎩,解得:001332x y ⎧=-⎪⎪⎨⎪=-⎪⎩得切线的斜率为194k =-,而过点(1,0)-,(0,2)-的斜率为12k =-,故可知9(4m ∈-,2]-,则9(4m∈-,2][0-,2).故答案为:9(,2][0,2)4m∈--.【点评】本题考查了方程的根与函数的零点的关系应用,属于中档题. 20.已知函数()2xf x e ln x =--,下列说法正确的是 ①③ .①()f x 有且仅有一个极值点; ②()f x 有零点;③若()f x 极小值点为0x ,则010()2f x <<; ④若()f x 极小值点为0x ,则01()12f x <<.【分析】先求出导函数()f x ',∴(T ex tran slatio n failed ),设()1x g x x e =-,(0,)x ∈+∞,利用导数得到函数()1x g x x e =-在(0,)+∞上单调递增,又1211()110222g e =⨯-=-<,g (1)10e =->,故存在唯一01(,1)2x ∈,使得0()g x =,所以()f x 有且仅有一个极值点,再利用01(,1)2x ∈,分析0()f x 的范围即可.【解答】解:()2xf x e ln x =--,(0,)x ∈+∞,∴(T ex tran slatio n failed ),设()1xg x x e =-,(0,)x ∈+∞,()0x xg x e x e'∴=+>恒成立,∴函数()1xg x x e =-,在(0,)+∞上单调递增,又1211()110222g e =⨯-=-<,g (1)10e =->,∴存在唯一01(,1)2x ∈,使得0()g x =,()f x ∴有且仅有一个极值点,当01(,)2x x ∈时,()g x <,()0f x '<,函数()f x 单调递减;当0(x x ∈,1)时,()g x >,()0f x '>,函数()f x 单调递增,x ∴是()f x 的极小值点,且满足01(,1)2x ∈,00()10x g x x e=-=,∴0011,x ex lnln x x x ===-,∴000001()22x f x e ln x x x =--=+-,对勾函数1yx x=+在1(2,1)上单调递减,∴0011222x x <+<+,∴010()2f x <<,∴函数()f x 恒大于0,无零点,综上所述:正确的是①③, 故答案为:①③.【点评】本题主要考查了利用导数以及函数的极值,是中档题. 21.已知函数2()xf x a e x=-有两个极值点,则实数a 的取值范围是2(0,)e.【分析】求出函数的导数,问题转化为ya=和2()xx g x e=在R 上有2个交点,根据函数的单调性求出()g x 的范围,从而求出a 的范围即可. 【解答】解:()2xf x a e x'=-,若函数2()x f x a e x=-有两个极值点,则ya=和2()xx g x e=在R 上有2个交点,22()xx g x e-'=,(,1)x ∈-∞时,即()0g x '>,()g x 递增,(1,)x ∈+∞时,()0g x '<,()g x 递减, 故()m a x g x g=(1)2e=,而20xx e>恒成立,所以20a e<<,故答案为:2(0,)e .【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.22.已知函数211,0,2(),0xe x x x ef x ln x x x ⎧--+⎪⎪=⎨⎪>⋅⎪⎩…若方程()0f x m -=恰有两个实根,则实数m 的取值范围是1(,0]{}e-∞ . 【分析】研究0x>与0x …时,()f x 的单调性、极值情况,画出图象,然后研究y a=与()y f x =恰有两个交点时a 的取值范围.【解答】解:(1)0x …时,()1x f x e x '=--,易知(0)0f '=,而()10xf x e ''=-<,所以()f x '在(-∞,0]上递减,故()(0)0f x f ''=…,故()f x 在(-∞,0]上递增,且1()(0)1f x f e=+…,当x→-∞时,()f x →-∞.(2)0x >时,21()ln x f x x-'=,令()0f x '>,得0x e<<;()0f x '<得xe>;故()f x 在(0,)e 上递增,在(,)e +∞递减, 故0x >时,1()()m a x f x f e e==;0x→时,()f x →-∞;x→+∞时,()0f x →.由题意,若方程()0f x m -=恰有两个实根,只需ym=与()yf x =恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线ym=在图示①,②位置时,与()yf x =有两个交点,所以m 的范围是:1(,0]{}e-∞.故答案为:1(,0]{}e-∞.【点评】本题考查利用导数研究函数的单调性、极值等性质,进而结合图象研究函数的零点问题.属于中档题. 三.解答题(共5小题) 23.已知函数2()f x a x a x x ln x=--,且()0f x ….(1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.【分析】(1)通过分析可知()0f x …等价于()h x a x a ln x =--…,进而利用1()h x a x'=-可得1()()m in h x h a =,从而可得结论;(2)通过(1)可知2()f x x x x ln x=--,记()()22t x f x x l n x ='=--,解不等式可知1()()2102m in t x t ln ==-<,从而可知()0f x '=存在两根0x ,2x ,利用()f x 必存在唯一极大值点0x 及012x <可知01()4f x <,另一方面可知0211()()f x f e e>=. 【解答】解:(1)因为2()()(0)f x a x a x x ln x x a x a ln x x =--=-->,则()0f x …等价于()h x a x a ln x =--…,求导可知1()h x a x'=-.则当0a …时()0h x '<,即()yh x =在(0,)+∞上单调递减,所以当01x >时,0()h x h<(1)0=,矛盾,故0a>.因为当10x a<<时()0h x '<、当1xa>时()h x '>,所以1()()m inh x h a =,又因为h (1)10a a ln =--=,所以11a =,解得1a=;另解:因为f(1)0=,所以()0f x …等价于()f x 在0x>时的最小值为f(1),所以等价于()f x 在1x=处是极小值,所以解得1a=;(2)由(1)可知2()f x x x x ln x=--,()22f x x ln x'=--,令()0f x '=,可得220xln x --=,记()22t x x ln x=--,则1()2t x x'=-,令()t x '=,解得12x=,所以()t x 在区间1(0,)2上单调递减,在1(2,)+∞上单调递增,所以1()()2102m in t x t ln ==-<,又2212()0t ee=>,所以()t x 在1(0,)2上存在唯一零点,所以()t x =有解,即()0f x '=存在两根0x ,2x ,且不妨设()f x '在0(0,)x 上为正、在0(x ,2)x 上为负、在2(x ,)+∞上为正,所以()f x 必存在唯一极大值点0x ,且00220x ln x --=,所以222200000000000()22f x x x x ln x x x x x x x =--=-+-=-,由012x <可知20002111()()224m a x f x x x <-=-+=;由1()0f e'<可知0112x e<<,所以()f x 在0(0,)x 上单调递增,在0(x ,1)e 上单调递减,所以0211()()f x f e e>=;综上所述,()f x 存在唯一的极大值点0x ,且220()2e f x --<<.【点评】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题. 24.已知函数2()xf x e a x=-. (1)若1a =,证明:当0x …时,()1f x …;(2)若()f x 在(0,)+∞只有一个零点,求a .【分析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明, (2)方法一:分离参数可得2x e ax=在(0,)+∞只有一个根,即函数ya=与2()x e G x x=的图象在(0,)+∞只有一个交点.结合图象即可求得a . 方法二:①当0a …时,2()0x f x e a x=->,()f x 在(0,)+∞没有零点.②当0a>时,设函数2()1xh x a x e-=-.()f x 在(0,)+∞只有一个零点()h x ⇔在(0,)+∞只有一个零点. 利用()(2)xh x a x x e-'=-,可得())h x 在(0,2)递减,在(2,)+∞递增,结合函数()h x 图象即可求得a .【解答】解:(1)证明:当1a =时,函数2()x f x e x=-.则()2xf x e x'=-, 令()2xg x e x=-,则()2xg x e '=-,令()g x '=,得2x ln =.当(0,2)x ln ∈时,()0g x '<,当(2,)x ln ∈+∞时,()g x '>,2()(2)222220ln g x g ln eln ln ∴=-⋅=->…,()f x ∴在[0,)+∞单调递增,()(0)1f x f ∴=….(2)方法一:()f x 在(0,)+∞只有一个零点⇔方程2xe a x-=在(0,)+∞只有一个根,2x e a x⇔=在(0,)+∞只有一个根,即函数ya=与2()x e G x x=的图象在(0,)+∞只有一个交点.3(2)()xe x G x x-'=,当(0,2)x ∈时,()0G x '<,当(2,)∈+∞时,()G x '>,()G x ∴在(0,2)递减,在(2,)+∞递增, 当0x→时,()G x →+∞,当→+∞时,()G x →+∞, ()f x ∴在(0,)+∞只有一个零点时,aG=(2)24e=.方法二:①当0a …时,2()0x f x e a x=->,()f x 在(0,)+∞没有零点.②当0a>时,设函数2()1xh x a x e-=-.()f x 在(0,)+∞只有一个零点()h x ⇔在(0,)+∞只有一个零点.()(2)xh x a x x e-'=-,当(0,2)x ∈时,()0h x '<,当(2,)x ∈+∞时,()h x '>,()h x ∴在(0,2)递减,在(2,)+∞递增,∴24()(2)1m in a h x h e==-,(0)x ….当h (2)0<时,即24ea >,()i 由于(0)1h =,当0x>时,2xe x>,可得33342241616161(4)11110()(2)aaa a ah a eea a=-=->-=->.()h x 在(0,)+∞有2个零点()ii 当h (2)0>时,即24ea <,()h x 在(0,)+∞没有零点, ()iii 当h (2)0=时,即24ea=,()h x 在(0,)+∞只有一个零点,综上,()f x 在(0,)+∞只有一个零点时,24ea=.【点评】本题考查了利用导数探究函数单调性,以及函数零点问题,考查了转化思想、数形结合思想,属于中档题. 25.已知函数21()xa xx f x e+-=.(1)求曲线()yf x =在点(0,1)-处的切线方程;(2)证明:当1a …时,()0f x e +….【分析】(1)22(21)(1)()()xxxa x e a xx ef x e +-+-'=由(0)2f '=,可得切线斜率2k=,即可得到切线方程.(2)可得22(21)(1)(1)(2)()()xxxxa x e a x x ea x x f x e e+-+-+-'==-.可得()f x 在1(,)a-∞-,(2,)+∞递减,在1(a-,2)递增,注意到1a …时,函数2()1g x a x x =+-在(2,)+∞单调递增,且g (2)410a =+>只需1()a m inx e e=--…,即可.【解答】解:(1)22(21)(1)(1)(2)()()xxxxa x e a x x ea x x f x e e +-+-+-'==-.(0)2f ∴'=,即曲线()yf x =在点(0,1)-处的切线斜率2k=,∴曲线()yf x =在点(0,1)-处的切线方程为(1)2y x--=.即210xy --=为所求.(2)证明:函数()f x 的定义域为:R ,可得22(21)(1)(1)(2)()()xxxxa x e a x x ea x x f x e e+-+-+-'==-.令()0f x '=,可得1212,0x x a==-<,当1(,)x a ∈-∞-时,()0f x '<,1(,2)x a ∈-时,()0f x '>,(2,)x ∈+∞时,()0f x '<.()f x ∴在1(,)a-∞-,(2,)+∞递减,在1(a-,2)递增,注意到1a …时,函数2()1g x a x x =+-在(2,)+∞单调递增,且g (2)410a =+>,故()g x 在(2,)+∞上恒大于零,即21()xa xx f x e+-=在(2,)+∞上恒大于零.函数()f x 的图象如下:1a …,∴1(0,1]a ∈,则11()a f e ea-=--…,1()a m inf x e e∴=--…,∴当1a …时,()0f x e +….【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.。

《导数与极值、最值关系》能力练习题

《导数与极值、最值关系》能力练习题

《导数与极值、最值关系》能力练习题一、单选题1.若1x =是函数()xf x e ax =-的极值点,则方程()f x a =在()2,+∞的不同实根个数为( )A .1B .2C .3D .02.函数32()422f x x ax bx =--+在1x =处有极大值3-,则+a b 的值等于( )A .9B .6C .3D .23.已知函数()ln f x x ax =-的图象在1x =处的切线方程为0x y b ++=,则()f x 的极大值为( )A .ln21--B .ln21-+C .1-D .14.已知1x =是函数32()3f x ax x =-的极小值点,则函数()f x 的极小值为( )A .0B .1-C .2D .45.已知函数()2()xf x x a e =-,则“1a ≥-”是“()f x 有极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.函数f (x )=x 3+3ax 2+3[(a +2)x +1]既有极大值又有极小值,则a 的取值范围是( )A .(-1,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-∞,-1)∪(2,+∞)7.已知32()f x x px qx =++的图像与x 轴相切于非原点的一点,且f (x )极小值=-4,那么p ,q 值分别为( )A .8,6B .9,6C .4,2D .6,98.若函数321()13f x x x =+-在区间(,3)m m +上存在最小值,则实数m 的取值范围是( ) A .[5,0)-B .(5,0)-C .[3,0)-D .(3,0)-9.已知函数2(1)1ax y x x =>-有最大值4-,则a 的值为( )A .1B .1-C .4D .4-10.若函数322312y x x x m =--+在[0,3]上的最大值为5,则m =( )A .3B .4C .5D .811.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m 等于( ) A .0 B .1 C .2 D .5212.已知函数2()(0)x f x a x a =>+在[1,)+∞上的最大值为3,则a 的值为( )A .31-B .34C .43D .31+13.已知函数()2()xf x x a e =+有最小值,则函数()y f x '=的零点个数为( )A .0B .1C .2D .不确定14.已知定义在[,]m n 上的函数()f x ,其导函数()'f x 的大致图象如图所示,则下列叙述正确的个数为( )①函数()f x 的值域为[(),()]f d f n ;②函数()f x 在[,]a b 上递增,在[,]b d 上递减; ③()f x 的极大值点为x c =,极小值点为x e =;④()f x 有两个零点. A .0B .1C .2D .315.已知函数()()211x f x x ax e-=+-在(),2x ∈-∞-单调递增,在()2,1x ∈-单调递减,则函数()f x 在[]2,2x ∈-的值域是( ) A .[]1,e - B .31,5e -⎡⎤-⎣⎦C .11,e ---⎡⎤⎣⎦D .35,e e -⎡⎤⎣⎦二、填空题 16.若函数321()53f x x ax x =-+-无极值点,则实数a 的取值范围是_________. 17.若函数2()2(0)x f x m e x x m =⋅-+<在(0,1)上有极值点,则m 的取值范围为___________. 18.已知函数在()3223(,)f x x mx nx m m n R =+++∈,1x =-时取得极小值0,则m n +=__________. 19.已知函数()()321233f x x ax a x =++++在(),-∞+∞上存在极值点,则实数a 的取值范围是_____________.20.已知()3222f x x cx c x =-+在2x =处有极小值,则常数c 的值为___________.21.已知32()263f x x x =-+,对任意的2][2x ∈-,都有()f x a ≤,则a 的取值范围为_______.22.已知函数()1ln x f x x =+在区间1,2a a ⎛⎫+ ⎪⎝⎭(其中0a >)上存在最大值,则实数a 的取值范围是_______.23.若函数()33f x x x =-在区间()25,a a -上有最大值,则实数a 的取值范围是______.24.若函数()3213f x x x =-在区间(),4a a +内存在最大值,则实数a 的取值范围是________. 三、解答题 25.已知.函数.e 为自然对数的底.(1)当时取得最小值,求的值;(2)令,求函数在点P 处的切线方程.26.已知函数32()3()f x x ax x a =-+∈R 在1x =处有极值.(1)求a 的值;(2)求函数()f x 的单调区间.27.已知函数e 1()ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭,其中k 为常数, 2.71828e =…为自然对数的底数. (1)若2e k =,求函数()f x 的极值;(2)若函数()f x 在区间(1,2)上单调,求k 的取值范围.28.已知32()1f x x ax bx =+++在1x =与1=3x -时取得极值. (1)求,a b 的值;(2)求()f x 的极大值和极小值;(3)求()f x 在[]1,2-上的最大值与最小值.29.已知函数()2ln f x a x bx =-,a 、b R ∈,若()f x 在1x =处与直线12y相切. (1)求a ,b 的值;(2)求()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的极值.30.设函数3()65,f x x x x R =-+∈.(1)求(2)f '的值;(2)求()f x 的单调区间和极值;(3)若关于x 的方程()f x a =有3个不同实根,求实数a 的取值范围.《导数与极值、最值关系》能力练习题参考答案1.A 【解析】由()'x f x e a =-,得()10'=-=f e a ,则a e =,()xf x e ex =-,函数()f x 在()2,+∞,()()'0,f x f x >单调递增,()222f e e e =-<,函数()y f x =与y a =的交点个数为1个.故选A .2.B 【解析】由题意得2()1222f x x ax b '=--,因为()f x 在1x =处有极大值3-,所以(1)12220(1)4223f a b f a b =--=⎧⎨=--+=-'⎩,解得3,3a b ==,所以6a b +=,故选:B 3.A 【解析】因为()ln f x x ax =-,所以1()f x a x'=-,又因为函数()f x 在图象在1x =处的切线方程为0x y b ++=,所以(1)1f a b =-=--,(1)11f a ='-=-,解得2a =,1b =.由112()2x f x x x-'=-=,102x <<,()0f x '>,12x >,()0f x '<,知()f x 在12x =处取得极大值,11ln 1ln 2122f ⎛⎫=-=--⎪⎝⎭.故选:A. 4.B 【解析】由题意,函数32()3f x ax x =-,可得2()363(2)f x ax x x ax '=-=-,因为1x =是函数32()3f x ax x =-的极小值点,则()01f '=,即31(2)0a ⨯⨯-=,解得2a =,可得()6(1)f x x x '=-,当0x <或1x >时,()0f x '>,()f x 单调递增;当01x <<时,()0f x '<,()f x 单调递减,所以当1x =是函数32()3f x ax x =-的极小值点,所以函数的极小值为32(1)21311f =⨯-=-⨯.故选:B.5.B 【解析】()2()20xf x x x a e '=-=+,220x x a +-=,44a .若440a ∆=+≤,1a ≤-则()2()20x f x x x a e '=+-≥恒成立,()f x 为增函数,无极值;若440a ∆=+>,即1a >-,则()f x 有两个极值.所以“1a ≥-”是“()f x 有极值”的必要不充分条件.故选:B6.D 【解析】因为32()33[(2)1]f x x ax a x =++++,所以2()363(2)f x x ax a '=+++,函数()f x 有极大值又有极小值,()0f x ∴'=有两个不相等是实数根,∴23636(2)0a a ∆=-+>,化为220a a -->,解得2a >或1a <-.则a 的取值范围是(-∞,1)(2-,)+∞.故选:D .7.D 【解析】设切点为()(),00a a ≠,()2()f x x x px q =++,由题意得:20x px q ++=有两个相等实根,所以()2223()2f x x x a x ax a x =--+=,()()2233()4f x x ax a x a x a '-+-=-=,令()0f x '=,得3ax =或x a =,因为f (x )极小值=-4,而()04f a =≠-,所以()43a f =-,即2433a a a ⎛⎫-- ⎪⎝⎭,解得3a =-,所以32()69f x x x x =++,所以6,9p q ==.故选:D 8.D 【解析】函数321()13f x x x =+-的导函数为2()2f x x x =+',令()0f x '=,得2x =-或0x =,故()f x 在(,2),(0,)-∞-+∞上单调递增,在(2,0)-上单调递减,则0x =为极小值点,2x =-为极大值点.由()f x 在区间(,3)m m +上存在最小值,可得03m m <<+,解得30m -<<,此时32211()1(3)11(0)33f m m m m m f =+-=+->-=,因此实数m 的取值范围是(3,0)-,故选:D.9.B 【解析】因为函数2(1)1ax y x x =>-,所以2222222(1)2111(1)(1)(1)ax ax x ax ax ax y a x x x x '⎛⎫⎡⎤---====- ⎪⎢⎥----⎣'⎦⎝⎭,令0y '=,解得2x =或0x =(舍去).若函数在区间(1,)+∞上有最大值4-,则最大值必然在2x =处取得,所以441a=-,解得1a =-,此时2(2)(1)x x y x '--=-,当12x <<时,0y '>,当2x >时,0y '<,所以当2x =时y 取得最大值4-,故选:B.10.C 【解析】()()26612612y x x x x '=--=+-,当[]0,2x ∈时,0y '<,函数单调递减,当[]2,3x ∈时,0y '>,函数单调递增,当0x =时,y m =,当3x =时,9y m =-,则函数在[]0,3上的最大值为m ,则5m =.故选:C.11.C 【解析】'2333(1)y x x x x =+=+,易知,当10x -<<时,'0y <,当21x -<<-或01x <<时,'0y >,所以函数y =x 3+32x 2+m 在(2,1)--,(0,1)上单调递增,在(1,0)-上单调递减,又当1x =-时,12y m =+,当1x =时,52y m =+,所以最大值为5922m +=,解得2m =.故选:C 12.A 【解析】由2()x f x x a =+,得()222()a x f x x a '-=+,当1a >时,若x >()0,()f x f x '<单调递减,若1x <<()0,()f x f x '>单调递增,故当x =()f x 有最大值=,解得314a =<,不符合题意.当1a =时,函数()f x 在[1,)+∞上单调递减,最大值为1(1)2f =,不符合题意.当01a <<时,函数()f x 在[1,)+∞上单调递减.此时最大值为1(1)1f a ==+,解得31a ,符合题意.故a 1.故选:A .13.C 【解析】由题意,()2()2xf x x a e x +'=+,因为函数()f x 有最小值,且0x e >,所以函数存在单调递减区间,即()0f x '<有解,所以220x x a ++=有两个不等实根,所以函数()y f x '=的零点个数为2.故选:C.14.B 【解析】根据导函数()'f x 的图象可知,当[,)x m c ∈时,()0f x '>,所以函数()f x 在[,]m c 上单调递增,当(,)x c e ∈时,()0f x '<,所以函数()f x 在[,]c e 上单调递减,当(,]x e n ∈时,()0f x '>,所以函数()f x 在(,]e n 上单调递增,故②错误,③正确,根据单调性可知,函数的最小值为()f m 或()f e ,最大值为()f c 或()f n ,故①错误,当()0>f m 且()0f e >时,函数无零点,故④错误.故选:B.15.A 【解析】由()()2121x x a x a ef x -⎡⎤=+++-⎣⎦',由已知可得()201f a '-=⇒=-,则()()211x f x x x e -=--,()()212x f x x x e -'=+-,当[]2,1x ∈-,()()0f x f x '<⇒单调递减,当(]1,2x ∈,()()0f x f x '>⇒单调递增,则()()min 11f x f ==-,()325f e --=,()2f e =,()()max 2f x f e ==,综上:()[]1,f x e ∈-.故选:A16.[]1,1-【解析】因为321()53f x x ax x =-+-,所以2()21f x x ax '=-+,因为函数321()53f x x ax x =-+-无极值点,所以2240a,解得11a -≤≤,实数a 的取值范围是[]1,1-,17.(2,0)-【解析】因为2()2(0)x f x m e x x m =⋅-+<,所以()22(0)x f x m e x m '=⋅-+<,因为函数2()2(0)x f x m e x x m =⋅-+<在(0,1)上有极值点,所以()22(0)xf x m e x m '=⋅-+<在(0,1)上有零点,因为(0),22x y m e m x y =⋅-=<+在(0,1)上都递减,所以()'f x 在(0,1)上为减函数,所以(0)20(1)0f m f me =+>⎧⎨=<''⎩,解得20m -<<.18.11【解析】322()3f x x mx nx m =+++,2()36f x x mx n ∴'=++,依题意可得(1)0(1)0f f -=⎧⎨'-=⎩即2130360m n m m n ⎧-+-+=⎨-+=⎩,解得29m n =⎧⎨=⎩或13m n =⎧⎨=⎩,当1m =,3n =时函数32()331f x x x x =+++,22()3633(1)0f x x x x '=++=+,函数在R 上单调递增,函数无极值,故舍去;所以29m n =⎧⎨=⎩,所以11+=m n .19.{|1a a <-或}2a >【解析】由题可知:()222f x x ax a '=+++,因为函数()f x 在(),-∞+∞上存在极值点,所以()0f x '=有解,所以()244120a a ∆=-⨯⨯+≥,则1a ≤-或2a ≥,当1a =-或2a =时,函数()y f x ='与x 轴只有一个交点,即()0f x '≥,所以函数()f x 在(),-∞+∞单调递增,没有极值点,故舍去,所以1a <-或2a >,即{|1a a <-或}2a >20.2【解析】由()3222f x x cx c x =-+知,()2234f x x cx c '=-+,因为()f x 在2x =处取极小值,所以()221280f c c '=-+=,解得2c =或6c =,当2c =时,2()384(32)(2)f x x x x x ==-'-+-,()f x 在2x =处取极小值,符合题意,当6c =时,2()324363(2)(6)f x x x x x '=-+=--,()f x 在2x =处取极大值,不符合题意,综上知,2c =.21.[3)+∞,【解析】由2()6120f x x x '=-=得0x =或2x =,在区间[-2,0)上()'0f x >,()f x 单调递增;在(0,2)内时()()'0,f x f x <单调递减.又(2)37f -=-,(0)3f =,(2)5f =-,∴max ()3f x =,又()f x a ≤对于任意的x ∈[-2,2]恒成立,∴3a ≥,即a 的取值范围是[)3,+∞ 22.112a <<【解析】因为()1ln x f x x +=,0x >,所以()2ln x f x x '=-.当01x <<时,()0f x '>;当1x >时,()0f x '<.所以()f x 在区间()0,1上单调递增,在区间()1,+∞上单调递减,所以函数()f x 在1x =处取得极大值.因为函数()f x 在区间1,2a a ⎛⎫+ ⎪⎝⎭(其中0a >)上存在最大值,所以1112a a <⎧⎪⎨+>⎪⎩,解得112a <<. 23.()1,2-【解析】由题意得:233fxx ,令()0f x '<解得11x -<<;令()0f x '>解得1x <-或1x >,所以函数在(),1-∞-上是增函数,在()1,1-上是减函数,在()1,+∞上是增函数,故函数在1x =-处取到极大值2,所以极大值必是区间()25,a a -上的最大值,∴251a a -<-<,解得-1a 2<<.检验满足题意24.(]4,1--【解析】由题可知:()22f x x x '=-.令()00'>⇒<f x x 或2x >,令()002'<⇒<<f x x ,所以函数()f x 在()0,2单调递减,在()(),0,2,-∞+∞单调递增,故函数的极大值为()00f =,所以在开区间(),4a a +内的最大值一定是()00f =,又()()300f f ==,所以0443a a a <<+⎧⎨+≤⎩,得实数a 的取值范围是(]4,1--.25.【解析】(1),由得,由得,(2),26.【解析】(1)∵2()361f x x ax '=-+,函数32()3f x x ax x =-+在1x =处有极值,∴()10f '=,解得23a =(经检验,符合题意). (2)由(1)知32()2=-+f x x x x ,则2()341(1)(31)f x x x x x '=-+=--,令()0f x '=,得11x =,213x =. 当x 变化时,()f x ',()f x 的变化情况如下表:1,3⎛⎫-∞ ⎪⎝⎭131,13⎛⎫ ⎪⎝⎭1(1,)+∞()'f x+-+()f x极大值极小值∴函数()f x 的单调增区间为1,3⎛⎫-∞ ⎪⎝⎭,(1,)+∞,单调减区间为1,13⎛⎫ ⎪⎝⎭.27.【解析】(1)2222(1)e 11(1)e 1()x x x x x f x k k x x x x x ---⎛⎫'=--+=- ⎪⎝⎭,即()2(1)()x x e k f x x--'= 当2e k =时()22(1)()x x e e f x x--'=,0x >。

极值点偏移问题专练B卷—2023届高考数学重难点专题

极值点偏移问题专练B卷—2023届高考数学重难点专题

极值点偏移问题专练B卷1.已知函数,.
若,求的单调区间;
若有两个不同的零点,,证明:.
2.已知函数.
讨论函数的单调性
若函数有两个零点,,求证:.
3. 已知函数.
若在上单调递减,求实数的取值范围;
若是方程的两个不相等的实数根,证明:.
3.已知函数,函数在上存在两个零点,.
求的单调区间;
证明:.
5. 已知函数
求函数在定义域内的最值;
当时,若有两个不同的零点,,求证:
6. 已知函有两个极值点,.
求的取值范围;
当时,证明:.
7. 已知函数为自然对数的底数.
若在上单调递增,求的取值范围;
若,函数的两个极值点为,证明:.
8. 已知函数,
讨论极值点的个数
若有两个极值点,,且,证明:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(木),由(i)知j勋:一1112勋一1=m一(1), 【肋‘一In2kb一1 0…【2),

(1)一(2):k(a+6)(口-b)一111(口/b)=0,贝0k(a+b)= lIl(口/b)/(a—b)代入(+),则只需证明lIl@/b)/(a-b) 一2/(口+b)>0亡,1n;一2(口一6)/(口+6)>0.
(xo一而)】),得到f(xa)>f(2xo一恐)(或地)<八‰一x2));
(5)结合f(x)单调性得到五>2‰一屯(或‘< 2Xo一%),从而(X1+z2)/2>Xo(或(五十x2)/2<‰). 4牛刀小试 例5(2014年3月厦门市质检・理20) (ii)解设G(x)=F(xo+工)-F(xo—z)=4向【0工+
(III)如果五≠X2,且f(x1)=f(x:),证明葺+屯
>2.
万方数据
38
福建中学数学
2015年第9期
分析要证x。+X2>2,即证(五+恐)/2>1,(五+
0,当弋<x<o时G(x)>G(O)=0,故F(xo+功>F(xo-x).
x2)/2就是直线y=h(h=f(xL)=厂(屯))被函数Y=侧
(4)由,(五)=f(x2)=f[Xo一(Xo—x2)】>f[Xo+ (‰一X2)]=f(2Xo—X2)(或=f[Xo一(Xo—x2)]<f[xo+
=:2{・3』!:苎!::芋—-(——1)j1,——————i■———一 。:x—.o而:+-..、,n1,。:x—.o%:}
=2(n+1)(而2一x2)2(一二)”“.
所截线段中点的横坐标,不等式右边的1恰是函数 f(x)=xe。的极值点. (Ⅲ)因为x。≠x2,不妨设五<x:,由(I)可 知xl<1,X2>1,所以厂(五)=f(x2)>g(x2)=f(2一X2). 因为而>1,2--X2<1,根据单调性xl>2一X2,
即Xl+也>2.
F(力=F(功=F【而-(Xo-b)]<F【而+(%一功]=F(2xo一功,
xIx2<(鲫)一:成立?当咒为奇数时五工:<(an)一i不成
立,但有无其他类似的式子? 由于笔者水平有限,对该问题只能得到研究到 此了,本文期待能够抛砖引玉,唤起更多的同行加 入这类问题的研究.
参考文献 【1】邢友宝.极值点便宜问题的处理策略[J].中学数学教学参考,2014(7) (上旬):19 (本文系2013年度厦门市基础教育课程改革科研课题《基于“本质” 的高中数学教学实践与探索》(项目批号:z3003)的阶段性研究性成果)
设昙_f(t>1)’C-(归h一2等t


1,G沁)土t志t
I+1)
(I)若a=2,n=2,求函数的极值; (Ⅱ)若函数f(x)存在两个零点xI,x2,(i) 求a的取值范围;(fi)求证:XlX,>e2h。2(e为自然 对数的底数). (I)略.(Ⅱ)(i)得1<a<e”1/n,n≥2. (ii)证法:由题意,可得axI”一lIl玉一1=0…①, ax2”一x2—1=0…②,①一②可得a=(In‘一In x2)/ (jc?一x;)=ln(xl/x2)/{_]c;[(xl/x2)”一1】},令xl/x2=t
f’(xo)=0.所以厂7(√工。工:)厂’((x。+z2)/2)<f 7(xo)=
0,即√五.砀<Xo=√l/以甩,故e2h-2<XIX2<(口甩)-2h.
5心存遗憾 上述方法只解决了当n为偶数的时候的情况,至 于当n为奇数时,笔者取了一些特殊值发现F(x)并
ln[2k(xo一工)]一h[2后(而+x)],G7(j0=4南龟一2砀/(x3一.妒).
厂(x)=xe一1(工∈R),
(t>1),不妨设xI>x2,故噬=lnf/(t”一1),同理可
得axI”=(1nf)/(1—1/f”). .‘.1+lIl‘=n矸=lIlf/(1—1/t“),.。.1+111x2=口砖= lnf/(t“一1),得h(xlx2)=xI+x2=[@”+1)mf]/(t”一

…慝军磊丽
当n为偶数时2(n+1)(X02一X2)。1坨(一1/,z)“‘”1’>0, 即F(x)在一Xo<x<Xo上单调递增.当0<X<‰时,
f(x+Xo)>f(xo一工);当一工o<工<0时,f(x+XO)<
f(x—Xo);当x=0时,厂(x+Xo)=f(Xo—x).由于 厂(一)=f(x:)=f[xo一(‰一x2)]>f(Xo+Xo—X:),又因 为f(x)在(0,Xo)上单调递减且X1∈(0,Xo),2‰--X2∈ ∈(0,Xo),故一<2xo一屯,即(葺+工2)/2<Xo,又因 为Y=f’(工)在(0,+哟上单调递增,故厂7((五十x:)/2)<
能.
设盹,乃),Q也,咒)线段尸Q的中点为地,乃).若
五=屯,即PQ与x轴垂直,亦即t=0时,显然有D丁
1纵向探究:一枝红杏出墙来 问题1试题中的“直线x=一3”有什么几何特 征?试题的结果表明了什么?
v2 ,.2
平分线段PQ;若五≠X2,则事+吾=l,事+吾=1.
两式相减并整理,
YI-Y2..旦二丝:一篓,即旦二堕.
f(x)=甜“-lIlx-l(n∈N+,n≥2,a>1). 一g(2^了)一1,
(I)求函数F(x)的单调区间; (Ⅱ)若直线,与f(x)和g(x)的图像都相切,则 称,是f(x)与g(x)的公切线,已知函数f(x)与g(x) 有两条公切线“f2. (i)求k的取值范围; (ii)若a,b(a>b)分别为直线“f:与f(x)图 像的两个切点的横坐标,求证:F’((口+6)/2)>0. 要证F7((口+6)/2)>0c≥J|}(口+6)一2/(a+6)>0…
1/a.由(I)知,厂’(Xo)<0.
>2罕+磊趔罕+南Xo,
x2一磊

而“
工2—2。
3豁然开朗 根据这两道题的解答,我们可以归纳出一个一 般性的结论: (1)构造一元差函数F(x)=f(xo+曲一厂(‰一曲; (2)对差函数F(x)求导,判断导数符号,确定 F(x)的单调性; (3)结合F(O)=0,判断F(x)的符号,从而确 定f(Xo+x),f(Xo—z)的大小关系;
不妨设a<‰<b,由0<a<xo,0<2‰一6<Xo,得
a>2‰一b,即(a+b)/2>Xo,F’(x)=2k+1/X2>0,
则,’(x)在(0,+oo)上单调递增,得,’((口+6)/2)>
F’(X01=0.
例6(2015年1月厦门市质检・理21)设函数 的极值点为‰,我们来探究(X1+工:)/2>Xo(或(‘+
2015年第9期
福建中学数学
37
一道质检题目探究本质的心路历程
沈备 祝国华 福建省厦门第二中学(361002) 通过对近几年福建省高三各地市质检卷、高考 题的研究,笔者发现,极值点偏离问题是命题人偏 爱考查的一类题型,究其原因: ①新课程改革后,教材引入了零点的概念,而 函数问题经常伴随着零点的出现. ②该问题几何背景形象、直观,通过几何画板 的探究,较容易命制出新颖、有一定区分度的试题. ③该问题涵盖了函数与导数,不等式,函数与 零点等知识,考察了学生对数形结合思想、化归与 转化的思想、函数与方程的思想、分类与整合的思 想,带点做差,化多元函数为一元函数的方法,综 合考查了学生的各方面的知识与能力. 本文通过对2015年1月厦门市质检理科21题 的研究、拓展、再探究,给出解决这类问题的一般 思路和研究方法,期待大家对这类问题开展更深入 的研究. 1问题的缘起 例1(2015年1月厦门市质检・理21)设函数
x2)/2<Xo).
无独有偶,在201 1年高考数学辽宁卷理科第21 题,再次考到了这类问题: 例4(2011年高考辽宁卷・理21)已知函数
厂(工)=lnx—ax2+(2一a)x,
构造函数F(x)=f(Xo+x)一f(Xo—x)=a(xo+x)2一
ln(%+z)一a(xo一工)”+ln(xo—x), F’(工)=an(xo+工)”_1+ an(xo—x)“~+1/(x一而)一1/(x+xo)=an[(x+xo)“一+@一.吒)”1】
对于椭圆TX2+等:1(日>6>o),圣StT(一竺,f)(其
直线x=一3上任意一点,过F作卵的垂线交椭圆C
于点P,Q.(i)证明OT平分线段PQ(0为坐标
原点);(ii)略.
中c:√=丽)为椭圆左准线x:一竺上任意一点,
过左焦点,(一c,o)作腰的垂线交椭圆于点P,Q,又
这道试题内涵丰富,值得探究,不应解完即止, 可引导学生深入探究,充分挖掘其丰富的内涵和潜
将‰=1/√2后代入,得G 7(z)=一2√2尼x2/(1/2k—x2)≤
万方数据
2015年第9期
福建中学数学
39
非单调函数,此种方法行不通,而用构造函数的方
小于一个含a,n的式子?为什么只有当n为偶数时
2 2
法证明_叠<(伽){,即证明垡≠兰些一2+昙lIl(口n)<
0,也不能得到结果. 6心中疑虑
点).
由TF与尸Q垂直可得直线TF的方程为Y=一÷O+c),

与直线f一竺2联立,可得f:一{(一a+c):一了1.C2_a2.
万方数据
一道质检题目探究本质的心路历程
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 沈备, 祝国华 福建省厦门第二中学 3619)
界函数,但能否证明烨小于一个含n的式
子?从函数图像上可看出,当一=而=‰时,f(Xo)=
当f>l时,可证明y:垡{掣坐是单调递增且无
o,一屯:e;~,此时属于临界情况,但是否存在这
样的a,n,使得XlX:得到另一种临界情况,使得XIX:
问题探究受挫再探究
——对一道高考试题的探究性学习
梁元凡 福建省莆田第二十八中学(351156)
2014年全国高考数学四川卷理科解析几何试题
是:
v2
¨2
问题2试题的结论揭示了椭圆÷+冬=1的左
0 Z
相关文档
最新文档