2018年高考数学一轮复习小题精练系列专题01集合理
2018年高考数学一轮复习经典高考小题狂练7
(ii )若 a b 6 时,满足 综上, a b 2
a b 0 ,恒成立 2
故 要 使 对 x1 0 , x2 x1 , g x2
ba8
f x1 成 立 只 需 a b ab
,画出可行域可 得 2
2a b 7
2.( 1)若复数 z 与其共轭复数 z 满足 z
5 5 , z z 2 ,则 z
z
(2)若函数 f x 解:( 1) 2
ab 1 0
故f x
max 1 a b , 1 a b
max
b 1 a , 4a b 1 0 ,又结合 a 2 ,
b 1 a , 4a b 1 0
可以从规划视角来解题,以 a 为横坐标, b 为横坐标建系,
画出可行域
4a b 1 a2
0
如图 1 所示,
目标函数 b 1 a
b1a
2
视为可行域内的点
2
a,b 到直线 x y 1 0 的距离的
即 12
2a c
8 ac
5
a c 30
所以 a c a c cos AOC 24
解法二: 同前, O , A, C, B 四点共圆
由正弦定理得 R
5
3
3
, sin ABC , tan ABC
3
5
4
又a c
a c cos AOC
2S OAC tan
8 S OAC
3
所以当且仅当 AOC 为等腰三角形时, S OAC max S NAC 9
道底 AB 的张角 最大时,采集效果最好,则采集效果 最 好 时 位 置 C 到 AB 的 距 离
是
。
解:以抛物线顶点为原点建系,则抛物线方程为
2018年高考数学一轮复习 小题精练系列 专题22 综合训练1(含解析)理
专题22 综合训练11.满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A . 1B . 2C . 3D . 4【答案】B2.()sin 150-︒的值为( )A .B .C .D .【答案】A【解析】()1sin 150sin1502-︒=-︒=-,故选A . 3.已知命题p : 26x k ππ≠+, k Z ∈;命题q : 1sin 2x ≠,则p 是q 的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件【答案】B【解析】原命题的的逆否命题是: 若1:2q sinx ⌝=,则:26p x k ππ⌝=+,显然不成立,是假命题, 反之,若¬p 则¬q 成立,故¬q 是¬p 的必要不充分条件,则p 是q 的必要不充分条件,本题选择B 选项.点睛:(1)在判断四种命题的关系时,首先要分清命题的条件与结论,当确定了原命题时,要能根据四种命题的关系写出其他三种命题.(2)当一个命题有大前提时,若要写出其他三种命题,大前提需保持不变. (3)判断一个命题为真命题,要给出推理证明;说明一个命题是假命题,只需举出反例.(4)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.4.已知向量()()1,2,,1,a b x ==-),若a b ⊥,则实数x 的值为( )A . -2B . 2C . -1D . 1【答案】B【解析】()•121202a b a b x x x ⊥⇒=⨯+⨯-=-=⇒= ,故选B .5.若不等式2322x ax a -≤-+≤-有唯一解,则a 的值是( )A . 2或-1B .C .D . 2 【答案】A考点:一元二次不等式.6.成等差数列的三个正数的和等于12,并且这三个数分别加上1,4,11后成为等比数列{}n b 中的234,,b b b ,则数列{}n b 的通项公式为( )A . 2n n b =B . 3n n b =C . 12n n b -=D . 13n n b -=【答案】A【解析】设成等差数列的三个正数为,,a d a a d -+,即有312a =,计算得出4a =,根据题意可得41,44,411d d -++++成等比数列,即为5,8,15d d -+成等比数列,即有()()51564d d -+=,计算得出1(11d =-舍去),即有4,8,16成等比数列,可得公比为2,则数列{}n b 的通项公式为2222422n n n n b b --==⨯=.所以A 选项是正确的.7.已知随机变量ξ服从正态分布2N(0,)σ,若P(>2)=0.023ξ,则P(-22)=ξ≤≤( )A . 0.977B . 0.954C . 0.628D . 0.477【答案】B【解析】由题意可得正态分布的图象关于直线0x =对称,则: (2)(2)0.023P P ξξ<-=>=,故:(22)120.0230.954P ξ-<<=-⨯=.本题选择B 选项.8.若执行如右图所示的程序框图,输出S 的值为4,则判断框中应填入的条件是( )A . 18k <B . 17k <C . 16k <D . 15k <【答案】C9.当x>1时不等式a x x ≥-+11恒成立,则实数a 的取值范围是( ) A .(]3,∞- B .13,+)∞ C .(]2,∞- D .12,+)∞【答案】A【解析】试题分析:()1111112113111x x x x x x x >∴+=-++≥-+=---,当且仅当111x x -=-即2x =时等号成立,所以最小值为3 3a ∴≤,实数a 的取值范围是(]3,∞- 考点:不等式性质求最值10.某单位共有36名员工,按年龄分为老年、中年、青年三组,其人数之比为3:2:1,现用分层抽样的方法从总体中抽取一个容量为12的样本,则青年组中甲、乙至少有一人被抽到的概率为( )A .25B .35C .2536D .1136【答案】B【解析】试题分析:按分层抽样应该从青年职工组中抽取2123112=++⨯人,其中青年组共有6123136=++⨯人,这六人中抽取两人的基本事件共有1526=C 种,甲乙至少有一人抽到的对立事件为甲乙均没被抽到,基本事件为624=C 种,因此青年组中甲、乙至少有一人被抽到的概率为53156112624=-=-C C ,故选B . 考点:1.分层抽样;2.古典概型.11.若202n xdx =⎰,则1()2n x x-的展开式中常数项为( ) A .12 B .12- C . 32D .32- 【答案】C【解析】试题分析:因为404202=-==x n ,而r r r r x r r x C x x C T 244441)21()21(--+-=-=,令024=-r ,故2=r ,故,常数项为23)21(242=-C ,应选C . 考点:定积分的计算及二项式定理的运用.12.已知函数2,0,()4,0x a x f x x x x ⎧+≤⎪=⎨+>⎪⎩有最小值,则实数a 的取值范围是( ) A .(4,)+∞ B .[4,)+∞ C .(,4]-∞D .(,4)-∞【答案】B【解析】考点:1.分段函数的应用;2.指数函数的单调性;3.基本不等式.。
高考数学复习压轴题型专题讲解与练习01 集合(解析版)
高考数学复习压轴题型专题讲解与练习专题01 集合一、单选题1.(2021·上海杨浦·高三期中)非空集合A ⊆R ,且满足如下性质:性质一:若a ,b A ∈,则a b A +∈;性质二:若a A ∈,则a A -∈.则称集合A 为一个“群”以下叙述正确的个数为( )①若A 为一个“群”,则A 必为无限集;②若A 为一个“群”,且a ,b A ∈,则a b A -∈;③若A ,B 都是“群”,则A B 必定是“群”;④若A ,B 都是“群”,且A B A ≠,A B B ≠,则A B 必定不是“群”;A .1B .2C .3D .4【答案】C【分析】根据性质,运用特例法逐一判断即可.【详解】①:设集合{}1,0,1A =-,显然110,101,101-+=-+=-+=,符合性质一,同时也符合性质二,因此集合{}1,0,1A =-是一个群,但是它是有限集,故本叙述不正确; ②:根据群的性质,由b A ∈可得:b A -∈,因此可得a b A -∈,故本叙述是正确; ③:设A B C =,若c C ∈,一定有,c A c B ∈∈,因为A ,B 都是“群”,所以,c A c B -∈-∈,因此c C -∈,若d C ∈,所以,d A d B ∈∈,c d C +∈,故本叙述正确;④:因为A B A ≠,A B B ≠,一定存在a A ∈且a B ∉,b A ∉且b B ∈,因此a b A +∉且a b B +∉,所以()a b A B +∉,因此本叙述正确,故选:C【点睛】关键点睛:正确理解群的性质是解题的关键.2.(2021·贵州贵阳·高三开学考试(文))“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G *∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元;④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( )A .G Q =,则(),+G 为一个群B .G R =,则(),G ⨯为一个群C .{}1,1G =-,则(),G ⨯为一个群D .G ={平面向量},则(),+G 为一个群【答案】B【分析】对于选项A,C,D 分别说明它们满足群的定义,对于选项B, 不满足④,则(),G ⨯不为一个群,所以该选项错误.【详解】A. G Q =,两个有理数的和是有理数,有理数加法运算满足结合律,0为G 的单位元,逆元为它的相反数,满足群的定义,则(),+G 为一个群,所以该选项正确;B. G R =,1为G 的单位元,但是1a b b a ⨯=⨯=,当0a =时,不存在唯一确定的b ,所以不满足④,则(),G ⨯不为一个群,所以该选项错误;C. {}1,1G =-,满足①②,1为G 的单位元满足③,1-是-1的逆元,1是1的逆元,满足④,则(),G ⨯为一个群,所以该选项正确;D. G ={平面向量},满足①②,0→为G 的单位元,逆元为其相反向量,则(),+G 为一个群,所以该选项正确.故选:B3.(2022·上海·高三专题练习)设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中,R a b ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集,对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集【答案】B【分析】运用集合的子集的概念,令1m P ∈,推得2m P ∈,可得对任意a ,1P 是2P 的子集;再由1b =,5b =,求得1Q ,2Q ,即可判断B 正确,A ,C ,D 错误.【详解】解:对于集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,可得当1m P ∈,即210m am ++>,可得220m am ++>,即有2m P ∈,可得对任意a ,1P 是2P 的子集;故C 、D 错误当5b =时,21{|50}Q x x x R =++>=,22{|250}Q x x x R =++>=,可得1Q 是2Q 的子集;当1b =时,21{|10}Q x x x R =++>=,22{|210}{|1Q x x x x x =++>=≠-且}x R ∈,可得1Q 不是2Q 的子集,故A 错误.综上可得,对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集.故选:B.4.(2022·浙江·高三专题练习)设3124a M a a a =+,其中1a ,2a ,3a ,4a 是1,2,3,4的一个组合,若下列四个关系:①11a =;②21a ≠;③33a =;④44a ≠有且只有一个是错误的,则满足条件的M 的最大值与最小值的差为( )A .233B .323C .334D .454【答案】C【分析】因为只有一个错误,故分类讨论,若①错,有两种情况,若②错则互相矛盾,若③错,有三种情况,若④错,有一种情况,分别求解M 即可得结果.【详解】若①错,则11a ≠,21a ≠,33a =,44a ≠有两种情况:12a =,24a =,33a =,41a =,3124324111a M a a a =+=⨯+= 或14a =,22a =,33a =,41a =,3124342111a M a a a =+=⨯+=; 若②错,则11a =,21a =,互相矛盾,故②对;若③错,则11a =,21a ≠,33a ≠,44a ≠有三种情况:11a =,22a =,34a =,43a =,31244101233a M a a a =+=⨯+=;11a =,23a =,34a =,42a =,312441352a M a a a =+=⨯+=; 11a =,24a =,32a =,43a =,31242141433a M a a a =+=⨯+=; 若④错,则11a =,21a ≠,33a =,44a =只有一种情况:11a =,22a =,33a =,44a =,31243111244a M a a a =+=⨯+= 所以max min 11331144M M -=-= 故选:C 5.(2021·福建·福州四中高三月考)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( )A .0B .1C .2D .3【答案】D【分析】根据条件可得集合B 要么是单元素集,要么是三元素集,再分这两种情况分别讨论计算求解.【详解】由{}2|0A x x x =+=,可得{}1,0A =-因为22()(1)0x ax x ax +++=等价于20x ax 或210x ax ++=,且{}1,0,1A A B =-*=,所以集合B 要么是单元素集,要么是三元素集.(1)若B 是单元素集,则方程20x ax 有两个相等实数根,方程210x ax ++=无实数根,故0a =;(2)若B 是三元素集,则方程20x ax 有两个不相等实数根,方程210x ax ++=有两个相等且异于方程20x ax 的实数根,即2402a a -=⇒=±且0a ≠.综上所求0a =或2a =±,即{}0,22S =-,,故()3C S =, 故选:D .【点睛】关键点睛:本题以A B *这一新定义为背景,考查集合中元素个数问题,考查分类讨论思想的运用,解答本题的关键是由新定义分析得出集合B 要么是单元素集,要么是三元素集,即方程方程20x ax 与方程210x ax ++=的实根的个数情况,属于中档题.6.(2020·陕西·长安一中高三月考(文))在整数集Z 中,被4除所得余数k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0,1,2,3k =.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”.其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误,而242-=+,故[]22-∈,故②正确.若整数a ,b 属于同一“类”,设此类为[]{}()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故,a b 除以4的余数相同,故a ,b 属于同一“类”, 故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确.由“类”的定义可得[][][][]0123Z ⊆,任意c Z ∈,设c 除以4的余数为{}()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确.故选:C.【点睛】方法点睛:对于集合中的新定义问题,注意根据理解定义并根据定义进行相关的计算,判断两个集合相等,可以通过它们彼此包含来证明.7.(2021·全国·高三专题练习(理))在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345Z =;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】 根据“类”的定义逐一进行判断可得答案.【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确; ②[][][][][][]012345{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确; ④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.8.(2021·浙江·路桥中学模拟预测)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈ ,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是( )A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【分析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【详解】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-, 由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈, 当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =-,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.9.(2021·广东番禺中学高一期中)设{}1,2,3,4I =,A 与B 是I 的子集,若{}1,2A B =,则称(),A B 为一个“理想配集”.规定(),A B 与(),B A 是两个不同的“理想配集”,那么符合此条件的“理想配集”的个数是( )A .4B .6C .8D .9【答案】D【分析】对子集A 分{}1,2A =,{}1,2,3A =,{}1,2,4A =,{}1,2,3,4A =四种情况讨论,列出所有符合题意的集合B 即可求解.【详解】{}1,2,3,4I =,A 与B 是I 的子集,{}1,2A B =, 对子集A 分情况讨论:当{}1,2A =时,{}1,2B =,{}1,2,3B =,{}1,2,4B =,{}1,2,3,4B =,有4种情况;当{}1,2,3A =时,{}1,2B =,{}1,2,4B =,有2种情况; 当{}1,2,4A =时,{}1,2B =,{}1,2,3B =,有2种情况; 当 {}1,2,3,4A =时,{}1,2B =,有1种情况; 所以共有42219+++=种, 故选:D.10.(2020·上海奉贤·高一期中)对于区间(1,10000)内任意两个正整数m ,n ,定义某种运算“*”如下:当m ,n 都是正偶数时,n m n m *=;当m ,n 都为正奇数时,log m m n n *=,则在此定义下,集合(){},4M a b a b =*=中元素个数是( ) A .3个 B .4个 C .5个 D .6个【答案】C 【分析】分别讨论a ,b 都是正偶数时,4b a b a *==,a ,b 都是正奇数时,log 4a a b b *==,所以4a b =,再由,(1,10000)a b ∈即可求出集合M ,进而可得集合M 中的元素的个数. 【详解】因为当m ,n 都是正偶数时,n m n m *=; 当m ,n 都为正奇数时,log m m n n *=,所以当a ,b 都是正偶数时,4b a b a *==,可得2a b ==; 当a ,b 都是正奇数时,log 4a a b b *==,所以4a b =, 因为,(1,10000)a b ∈, 所以3a =,81b =;5a =,625b =; 7a =,2401b =;9a =,6561b =;所以()()()()(){}2,2,3,81,5,625,7,2401,9,6561M =, 所以集合M 中的元素有5个, 故选:C.11.(2021·全国·高三专题练习)设X 是直角坐标平面上的任意点集,定义*{(1X y =-,1)|(x x -,)}y X ∈.若*X X =,则称点集X“关于运算*对称”.给定点集{}22(,)|1A x y x y +==,{}(,)|1==-B x y y x ,(){},|1|||1=-+=C x y x y ,其中“关于运算 * 对称”的点集个数为( )A .0B .1C .2D .3【答案】B 【分析】令1y X -=,1x Y -=,则1y X =-,1x Y =+,从而由A ,B ,C 分别求出*A ,*B ,*C ,再根据点集X “关于运算*对称”的定义依次分析判断即可得出答案. 【详解】解:令1y X -=,1x Y -=, 则1y X =-,1x Y =+,22{(,)|1}A x y x y =+=,*{(A X∴=,22)|(1)(1)1}Y Y X ++-=,故*A A ≠;{(,)|1}B x y y x ==-,*{(,)|111B X Y X Y ∴=-=+-,即1}Y X =-,故*B B ≠;{(,)||1|||1}C x y x y =-+=,*{(,)||11||1|1C X Y Y X ∴=+-+-=,即|||1|1}Y X +-=,故*C C =;所以“关于运算 * 对称”的点集个数为1个. 故选:B.12.(2021·黑龙江·哈师大附中高一月考)设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,那么称0x 为集合X 的聚点.则在下列集合中,以0为聚点的集合是( ) A .{|0}1nn Z n n ∈≥+, B .{|0}x x x ∈≠R ,C .221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣D .整数集Z【答案】B 【分析】根据给出的聚点定义逐项进行判断即可得出答案. 【详解】 A 中,集合{|0}1n n Z n n ∈≥+,中的元素除了第一项0之外,其余的都至少比0大12, 所以在102a <<的时候,不存在满足0x a <<的x ,0∴不是集合{|0}1nn Z n n ∈≥+,的聚点;故A 不正确;B 中,集合{|0}x x x ∈≠R ,,对任意的a ,都存在(2a x =实际上任意比a 小的数都可以),使得02a x a <=<,所以0是集合{|0}x x x ∈≠R ,的聚点;故B 正确;C 中,因为2211n n+>,所以当01a <<时,不存在满足0x a <<的x ,0∴不是集合221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣的聚点,故C 不正确;D ,对于某个1a <,比如0.5a =,此时对任意的x ∈Z ,都有00x -=或者01x -≥,也就是说不可能满足000.5x <-<,从而0不是整数集Z 的聚点.故D 不正确. 综上得以0为聚点的集合是选项B 中的集合. 故选:B .二、多选题13.(2020·广东广雅中学高三月考)设整数4n ≥,集合{}1,2,3,,X n =.令集合{(,,),,S x y z x y z X =∈,且三条件,x y z <<,y z x <<z x y <<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项不正确的是( ) A .(),,y z w S ∈,(),,x y w S ∉ B .(),,y z w S ∈,(),,x y w S ∈ C .(),,y z w S ∉,(),,x y w S ∈ D .(),,y z w S ∉,(),,x y w S ∉【答案】ACD 【分析】根据集合S 的定义可以得到,,x y z 和,,z w x 的大小关系都有3种情况,然后交叉结合,利用不等式的传递性和无矛盾性原则得到正确的选项. 【详解】因为(,,)x y z S ∈,则,,x y z 的大小关系有3种情况,同理,(,,)z w x S ∈,则,,z w x 的大小关系有3种情况,由图可知,,,,x y w z 的大小关系有4种可能,均符合(,,)y z w S ∈,(,,)x y w S ∈,所以ACD 错, 故选:ACD. 【点睛】本题考查新定义型集合,涉及不等式的基本性质,首先要理解集合S 中元素的性质,利用列举画图,根据无矛盾性原则和不等式的传递性分析是关键.14.(2021·河北·石家庄二中高三月考)若集合A 具有以下性质:(1)0A ∈,1A ∈;(2)若x 、y A ,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“完美集”.下列说法正确的是( )A .集合{}1,0,1B =-是“完美集” B .有理数集Q 是“完美集”C .设集合A 是“完美集”,x 、y A ,则x y A +∈D .设集合A 是“完美集”,若x 、y A 且0x ≠,则yA x∈ 【答案】BCD 【分析】利用第(2)条性质结合1x =,1y =-可判断A 选项的正误;利用题中性质(1)(2)可判断B 选项的正误;当y A 时,推到出y A -∈,结合性质(2)可判断C 选项的正误;推导出xy A ∈,结合性质(2)可判断D 选项的正误.【详解】对于A 选项,取1x =,1y =-,则2x y A -=∉,集合{}1,0,1B =-不是“完美集”,A 选项错误;对于B 选项,有理数集Q 满足性质(1)、(2),则有理数集Q 为“完美集”,B 选项正确; 对于C 选项,若y A ,则0y y A -=-∈,()x y x y A ∴+=--∈,C 选项正确; 对于D 选项,任取x 、y A ,若x 、y 中有0或1时,显然xy A ∈; 当x 、y 均不为0、1且当x A ∈,y A 时,1x A -∈,则()11111A x x x x -=∈--,所以()1x x A -∈,()21x x x x A ∴=-+∈,()()2222221111122A xy xy xy x y x y x y x y ∴=+=+∈+--+--,xy A ∴∈, 所以,若x 、y A 且0x ≠,则1A x∈,从而1yy A x x=⋅∈,D 选项正确. 故选:BCD. 【点睛】本题考查集合的新定义,正确理解定义“完美集”是解题的关键,考查推理能力,属于中等题.15.(2022·全国·高三专题练习)(多选)若非空数集M 满足任意,x y M ∈,都有x y M +∈,x y M-∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( )A .AB 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集【答案】ACD 【分析】结合集合的运算,紧扣集合的新定义,逐项推理或举出反例,即可求解. 【详解】对于A 中,任取,x A B y A B ∈∈,因为集合,A B 是优集,则,x y A x y B +∈+∈,则 x y A B +∈,,x y A x y B -∈-∈,则x y A B -∈,所以A 正确;对于B 中,取{|2,},{|3,}A x x k k Z B x x m m Z ==∈==∈, 则{|2A B x x k ⋃==或3,}x k k Z =∈,令3,2x y ==,则5x y A B +=∉,所以B 不正确; 对于C 中,任取,x A y B ∈∈,可得,x y A B ∈, 因为A B 是优集,则,x y A B x y A B +∈-∈, 若x y B +∈,则()x x y y B =+-∈,此时 A B ⊆; 若x y A +∈,则()x x y y A =+-∈,此时 B A ⊆, 所以C 正确;对于D 中,A B 是优集,可得A B ⊆,则A B A =为优集; 或B A ⊆,则A B B =为优集,所以A B 是优集,所以D 正确. 故选:ACD. 【点睛】解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.16.(2020·山东·高三专题练习)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( ) A .1M B .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断. 【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y = 所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在x y e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.第II 卷(非选择题)三、填空题17.(2021·上海市进才中学高三期中)进才中学1996年建校至今,有一同学选取其中8个年份组成集合{}1996,1997,2000,2002,2008,2010,2011,2014A =,设i j x x A ∈、,i j ≠,若方程i j x x k -=至少有六组不同的解,则实数k 的所有可能取值是_________.【答案】{}3,6,14 【分析】根据i j x x k -=,用列举法列举出集合A 中,从小到大8个数中(设两数的差为正),相邻两数,间隔一个数,间隔二个数,间隔三个数,间隔四个数,间隔五个数,间隔六个数的两数差,从中找出差数出现次数不低于3的差数即可. 【详解】集合A 中,从小到大8个数中,设两数的差为正: 则相邻两数的差:1,3,2,6,2,1,3; 间隔一个数的两数差:4,5,8,8,3,4; 间隔二个数的两数差:6,11,10,9,6; 间隔三个数的两数差:12,13,11,12; 间隔四个数的两数差:14,14,14; 间隔五个数的两数差:15,17; 间隔六个数的两数差:18;这28个差数中,3出现3次,6出现3次,14出现3次,其余都不超过2次, 故k 取值为:3,6,14时,方程i j x x k -=至少有六组不同的解, 所以k 的可能取值为:{}3,6,14, 故答案为:{}3,6,1418.(2021·北京·高三开学考试)记正方体1111ABCD A B C D -的八个顶点组成的集合为S .若集合M S ⊆,满足i X ∀,j X M ∈,k X ∃,l X M ∈使得直线i j k l X X X X ⊥,则称M 是S 的“保垂直”子集. 给出下列三个结论:①集合{}1,,,A B C C 是S 的“保垂直”子集;②集合S 的含有6个元素的子集一定是“保垂直”子集;③若M 是S 的“保垂直”子集,且M 中含有5个元素,则M 中一定有4个点共面. 其中所有正确结论的序号是______. 【答案】② 【分析】首先弄清楚可取其中的5,6,7,8个点时,符合M 是S 的“保垂直”子集,且正方体的两条体对角线不垂直,然后根据定义逐项判断可得答案. 【详解】对于①,当取体对角线1AC 时,找不到与之垂直的直线,①错误; 对于②,当8个点任取6个点时,如图当M 集合中的6个点是由上底面四个点和下底面两个点;或者由上底面两个点和下底面四个点构成时,必有四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 当M 集合中的6个点是由上底面三个点和下底面三个点构成时,如{}111,,,,,M B C A C A B =,则存在11,,,B A A B 四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 如{}111,,,,,M B C A C A D =,取,B A 存在11BC A D ⊥,取,B C 存在11BC C D ⊥,取,C A 存在1AC BD ⊥,符合M 是S 的“保垂直”子集,所以②正确;对于③,举反例即可,如{}11,,,,M B C D C A =,③错误.故答案为:②.19.(2021·江苏扬州·模拟预测)对于有限数列{}n a ,定义集合()1212,110k i i i k a a a S k s s i i i k ⎧⎫+++⎪⎪==≤<<<≤⎨⎬⎪⎪⎩⎭,,其中k ∈Z 且110k ≤≤,若n a n =,则()3S 的所有元素之和为___________.【答案】660【分析】可得()3S 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭,得出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,求出每个数字被选中的次数即可求解.【详解】()1231233,1103i i i a a a S s s i i i ⎧⎫++⎪⎪==≤<<≤⎨⎬⎪⎪⎩⎭ 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭, 则()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,1,2,,10每个被选出的次数是相同的,若()110i i ≤≤被选中,则共有29C 种选法,即1,2,,10每个被选出的次数为29C ,则()3S 的所有元素之和为()()29101109812102266033C ⨯+⨯⨯⋅+++==. 故答案为:660.【点睛】关键点睛:解决本题的关键是判断出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,再求出每个数字被选中的次数.20.(2021·北京东城·一模)设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ≠∅,则12A A 具有性质P ; ③若12,A A 具有性质P ,则12A A 具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②④【分析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈,所以12A A 具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A ∈,23A ∈,但1223A A +∉,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④正确;故答案为:①②④【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
高考数学专题知识点系列复习训练题及答案解析(珍藏版):01数列真题汇编与预赛典型例题
专题01数列真题汇编与预赛典型例题1.【2018年全国联赛】设整数数列满足,且,则这样的数列的个数为.2.【2017年全国联赛】设两个严格递增的正整数数列满足,对任意正整数n,有。
则的所有可能值为___________。
3.【2016年全国联赛】设为1,2,…,100中的四个互不相同的数,满足.则这样的有序数组的个数为________. 4.【2014年全国联赛】已知数列满足.则___________. 5.【2013年全国联赛】已知数列共有九项,其中,,且对每个,均有.则这样的数列的个数为______.6.【2011年全国联赛】已知.则数列中整数项的个数为______. 7.【2010年全国联赛】已知是公差不为0的等差数列,是等比数列,其中,,且存在常数使得对每一个正整数都有.则________.8.【2019年全国联赛】设整数满足.记.求f的最小值.并确定使f=f0成立的数组的个数.9.【2018年全国联赛】已知实数列满足:对任意正整数n,有,其中S n表示数列的前n项和,证明:(1)对任意正整数n,有;(2)对任意正整数n,有.10.【2018年全国联赛】数列定义如下:a1是任意正整数,对整数n≥1,a n+1是与互素,且不等于的最小正整数.证明:每个正整数均在数列中出现.11.【2017年全国联赛】设数列定义为求满足的正整数r的个数。
12.【2016年全国联赛】设p与p + 2均为素数,p > 3.定义数列,其中,表示不小于实数x的最小整数.证明对,均有.13.【2014年全国联赛】已知数列满足.求正整数m使得.14.【2013年全国联赛】给定正数数列满足,,其中,.证明:存在常数,使得.15.【2013年全国联赛】给定正整数.数列定义如下:,对整数,.记.证明:数列中有无穷多项是完全平方数.16.【2012年全国联赛】已知数列的各项均为非零实数,且对于任意的正整数都有.(1)当时,求所有满足条件的三项组成的数列.(2)是否存在满足条件的无穷数列,使得若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由.17.【2011年全国联赛】 已知数列满足:,.(1)求数列的通项公式; (2)若,试比较与的大小. 18.【2011年全国联赛】证明:对任意整数,存在一个次多项式具体如下性质: (1)均为正整数;(2)对任意的正整数及任意个互不相同的正整数,均有.19.【2011年全国联赛】设是给定的正实数,.对任意正实数,满足的三元数组的个数记为.证明:.20.【2010年全国联赛】证明:方程恰有一个实数根,且存在唯一的严格递增正整数数列,使得.21.【2010年全国联赛】给定整数,设正实数满足,记.求证:.22.【2009年全国联赛】已知是实数,方程有两个实根,数列满足).(1)求数列的通项公式(用表示);(2)若,求的前项和.{}n a ()123,1a t t R t =-∈≠±()()()112321121n n n n n n t a t t a n N a t +++-+--=∈+-{}n a 0t >1n a +n a23.【2009年全国联赛】在非负数构成的数表中,每行的数互不相同,前六列中每列的三数之和为1,均大于1.如果的前三列构成的数表满足下面的性质:对于数表中的任意一列)均存在某个使得.①求证:(1)最小值)一定去自数表的不同列;(2)存在数表中唯一的一列)使得数表仍然具有性质().1.【2018年湖南预赛】如图,将一个边长为1的正三角形分成四个全等的正三角形,第一次挖去中间的一个小三角形,将剩下的三个小正三角形,再分别从中间挖去一个小三角形,保留它们的边,重复操作以上做法,得到的集合为谢尔宾斯基缕垫.设是第n次挖去的小三角形面积之和(如是第1次挖去的中间小三角形面积,是第2次挖去的三个小三角形面积之和),则前n次挖去的所有小三角形面积之和的值为____________________.2.【2016年吉林预赛】在公差不为0的等差数列中,,且成等比数列.则数列的通项公式为________.3.【2016年上海预赛】数列定义如下:,则____ _______。
2018届高考数学小题精练+B卷及解析:综合题(三)及解析 含答案
2018高考数学小题精练+B 卷及解析:综合题(三)及解析综合(三)1.已知集合2{|280}M x x x =--≥, {|33}N x x =-≤<,则M N ⋂=( ) A . [)3,3- B . []3,2-- C . []2,2- D . [)2,3 【答案】B【解析】集合{}{}2|280|24,?{|33}M x x x x x x N x x =--≥=≤-≥=-≤<或, 所以{}[]|323,2M N x x ⋂=-≤≤-=--,故选B .2.已知复数11z i =+,则( ) A .z 的实部为12- B .z 的虚部为12i - C .12z = D .z 的共轭复数为1122i + 【答案】D考点:复数运算及其相关概念3.已知向量()()1,2,,3a m b m =-=-r r,若a b ⊥r r ,则实数m =( )A . 2或3-B . 2-或3C . 35D . 3 【答案】B【解析】由a b ⊥ 得, ()160m m --=- ,解得2m =- 或3m = .故选B . 4.若α、β∈R ,则“αβ≠”是“tan tan αβ≠”成立的( ) A . 充分非必要条件 B . 必要非充分条件 C . 充要条件 D . 既非充分也非必要条件 【答案】D 【解析】因为π5πtantan44=,所以“αβ≠”不是“tan tan αβ≠”成立的充分条件,若π2αβ==,则 tan ,tan αβ不存在,所以“若α, ,βαβ∈=R ,则tan tan αβ=”为真命题,即 “αβ≠”不是“tan tan αβ≠”成立的必要条件,所以“αβ≠”是“tan tan αβ≠”成立的既非充分也非必要条件;故选D .5.一名工人维护3台独立的游戏机,一天内3台游戏机需要维护的概率分别为0.9、0.8和0.75,则一天内至少有一台游戏机不需要维护的概率为( ) A . 0.995 B . 0.54 C . 0.46 D . 0.005 【答案】C6.将函数y=f(x)的图象上各点的横坐标缩短到原来的一半(纵坐标不变),再将其纵坐标伸长到原来的3倍(横坐标不变)得到的图象对应的函数解析式为( ) A . ()123y f x =B . y=3f(2x)C . 132x y f ⎛⎫= ⎪⎝⎭ D . 32x y f ⎛⎫= ⎪⎝⎭【答案】B【解析】将函数y=f(x)的图象上各点的横坐标缩短到原来的一半(纵坐标不变),所得函数的解析式为:()2y f x =,再将其纵坐标伸长到原来的3倍(横坐标不变)得到的图象对应的函数解析式为()32y f x =.本题选择B 选项.7.若1sin 63x π⎛⎫+= ⎪⎝⎭,则tan 23x π⎛⎫+ ⎪⎝⎭等于( ) A .79 B .79± C 42 D .42【答案】D 【解析】试题分析:由1sin 63x π⎛⎫+= ⎪⎝⎭,易得:3226x cos ±=+)(π,所以426x tan ±=+)(π; tan 23x π⎛⎫+ ⎪⎝⎭=+-+=+=)6(tan 1)6tan(2)]6(2[tan 2πππx x x 427±,故选D . 考点:三角恒等变换. 8.在锐角中,角所对的边长分别为.向量,且.若面积为,则的周长为( )A . 10B . 20C . 26D . 40 【答案】B 【解析】.故选B . 9.已知函数=,若存在使得,则实数的取值范围是( )A .B . (C .D .【答案】C10.已知函数⎩⎨⎧≤-->-+=0,10),1(log 3)(22x x x x x x f 若5)(=a f ,则a 的取值集合为( ) A .}5,3,2{- B .}3,2{-C .}5,2{-D .}5,3{【答案】C 【解析】试题分析:()()()()()22422215,33log 24,53log 25f f f -=---+==+==+=Q ,排除A .B 、D ,()5f a ∴=的集合为{}2,5-,故选C . 考点:1、分段函数的解析式;2、特殊值法解选择题.【方法点睛】本题主要考查抛分段函数的解析式、特殊值法解选择题,属于难题.特殊值法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)求方程、求通项、求前n 项和公式问题等等.11.如图, 在正方体1111ABCD A B C D -中,2AB =, 平面α经过11B D ,直线1AC αP ,则平面α截该正方体所得截面的面积为( )A . 23B 32C .34D 6【答案】D考点:1、正方体的性质及三角形中位线定理;2、三角形面积公式及线面平行的判定定理. 【方法点晴】本题主要考查正方体的性质及三角形中位线定理、三角形面积公式及线面平行的判定定理.属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可根据几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行;②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题就是利用方法①先证明1AC P 平面11EB D 而后求解的.12.已知函数()3221f x ax x =+-有且只有两个零点,则实数a 的取值集合为( )A .{}1,0,1-B .460,9⎧⎫⎪⎪⎨⎬⎪⎩C .230,3⎧⎫⎪⎪⎨⎬⎪⎩D .4646,0,99⎧⎫⎪⎪-⎨⎬⎪⎩【答案】B考点:函数零点的判定定理.综合(三)1.已知集合2{|40}A x x =-<, {|15}B x x =-<≤,则()R A C B ⋂=( )A . ()2,0-B . ()2,1--C . (]2,1--D . ()2,2- 【答案】C2.已知复数21iz i+=-,其中为虚数单位,则z 的虚部是( ) A . 12 B . 32 C . 32i D . 32i -【答案】B【解析】()()()()212111i i i z i i i +++==--+= 1313222i i +=+∴z 的虚部是32,故选:B 3.已知向量()1,2a =r ,(),2b x =-r ,若a b +r r 与a b -rr 垂直,则实数x 的值是( )A . 1±B . 1C . -1D . -4 【答案】A【解析】由题设可知()1,0a b x +=+r r , ()1,4a b x -=-r r ,则()()210a b a b x +⋅-=-=r r r r ,即1x =±,应选答案A .4.五张卡片上分别写有数字1,2,3,4,5,从这五张卡片中随机抽取2张,则取出的两张卡片上的数字之和为奇数的概率等于( ) A .13 B . 12 C . 25 D . 35【答案】D【解析】取出的两个数一个奇数一个偶数,则两数之和为奇数,结合古典概型公式可得:取出的两张卡片上的数字之和为奇数的概率等于253235p C ⨯==. 本题选择C 选项.5.数列}{n a 满足111,21n n a a a +==+(N n +∈), 那么4a 的值为( ) A . 4 B . 8 C . 15 D . 31 【答案】C考点:数列的递推公式6.已知a 、b 都是实数,那么“a b >”是“ln ln a b >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分又不必要条件 【答案】B【解析】a b >, b 有可能为0,故不能推出ln ln a b >,反过来, ln ln a b >则a b >成立,故为必要不充分条件. 7.已知,,,则的大小关系( )A .B .C .D .【答案】A【解析】由对数函数的性质可得,由指数函数的性质可得,所以,,故选A .8.椭圆的左右顶点分别是A,B ,左右焦点分别是若成等比数列,则此椭圆的离心率为( ) A .B .C .D .【答案】D【解析】设该椭圆的半焦距为c ,由题意可得,|AF 1|=a-c ,|F 1F 2|=2c ,|F 1B|=a+c , ∵成等比数列,∴(2c )2=(a-c )(a+c ),∴,则此椭圆的离心率为本题选择D 选项.点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).9.若M N 、分别是ABC ∆边AB AC 、的中点, MN 与过直线BC 的平面β的位置关系是( )A . //MN βB . MN 与β相交或MN β≠⊂C . //MN β或MN β≠⊂ D . //MN β或MN 与β相交或MN β≠⊂【答案】C10.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2c =, 23b =,30C =o ,则角B 等于( )A .30oB .60oC .30o 或60oD .60o 或120o 【答案】D 【解析】试题分析:因为2c =,23b =,30C =o ,所以由正弦定理可得:2322132cbsinCsinB =⨯==,因为c b >,可得:B )180,30(︒︒∈,所以︒︒=12060或B .考点:1、正弦定理;2、特殊角的三角函数值. 11.(1tan18)(1tan 27)++oo的值是( )A .2B .3C .2D .5 【答案】C 【解析】试题分析:(1tan18)(1tan 27)++oo︒•︒+︒+︒+=27tan 18tan 27tan 18tan 1227tan 18tan )27tan 18tan 1(45tan 1=︒︒+︒•︒-•︒+=.考点:两角和的正切公式的应用. 12.数列{}n a 满足13a =与11[]{}n n n a a a +=+([]n a 与{}n a 分别表示n a 的整数部分与分数部分),则2014a =( )A .30203+B .3130202-+C .33018+D .3130182-+ 【答案】B 【解析】考点:数列项的求解.。
2018届高考数学一轮复习8.5
所以点A的坐标为 ������, ±
2 ������
,
������ 1+������2 ������ 2
故AF1所在的直线方程为x-acy+c=0, 所以坐标原点O到直线AF1的距离为 =
������ ������2 −1
.
又|OF1|=c,
所以
������ ������2 −1
知识清单 基础自测
第五节
椭
圆
主干知识回顾 名师考点精讲
-5-
3.直线与椭圆的位置关系 直线与椭圆的位置关系有三种:相离、相切、相交. (1)直线与椭圆相离的充要条件是直线与椭圆所组成的方程组无解,即转化所 得的一元二次方程的判别式小于0; (2)直线与椭圆相切的充要条件是直线与椭圆所组成的方程组有唯一解,即转 化所得的一元二次方程的判别式等于0; (3)直线与椭圆相交的充要条件是直线与椭圆所组成的方程组有两组不同的 解,即转化所得的一元二次方程的判别式大于0.
第五节 椭 圆
第八章
第五节
椭
圆
主干知识回顾 名师考点精讲
-2-
考纲概述 (1)了解椭圆的实际背景,了解椭圆 在刻画现实世界和解决实际问题 中的作用; (2)掌握椭圆的定义、几何图形、 标准方程及简单几何性质(范围、 对称性、顶点、离心率); (3)了解椭圆的简单应用; (4)理解数形结合的思想
考查热点 椭圆的定义、标准方程与几何性
第五节
椭
圆
主干知识回顾 名师考点精讲
-8-
������ 2 5.设椭圆C: 2 ������
点,������������2 ·
������ 2 + =1(a>0)的左、右焦点分别为F1,F2,A是椭圆C上的一 2 1 ������1 ������2 =0,坐标原点O到直线AF1的距离为 |OF1|. 3
2018年高考数学小题精练系列第02期专题01集合文
专题01 集合1.已知集合{}0,1,2,3A =, {}1,2,4B =,那么集合A B ⋃=( )A . {}0,1,2,3,4B . {}1,2,3,4C . {}1,2D . {}0【答案】A【解析】∵集合{}0,1,2,3A =,{}1,2,4B =,由并集的概念可得: {}0,1,2,3,4A B ⋃=,此题选择A 选项.2.设全集{}I 0,1,2,3=,集合{}0,1,2M =,{}0,2,3N =,那么I M C N ⋂=( )A .{}1B .{}2,3C .{}0,1,2D .∅【答案】A 【解析】全集{}{}{}0,1,2,3,0,2,3,1I I N N ==∴=,又{}0,1,2M =,那么{}1I M N ⋂=,应选A .3.已知集合{|1A x x =≤-或1}x ≥,集合{|01}B x x =<<,那么( )A .{}1AB ⋂= B .A B R ⋃=C .()(]0,1R C A B ⋂= D .()R A C B A ⋂=【答案】D 4.已知集合{}2230A x x x =-->,集合{}2Z 4B x x x =∈≤,那么()R A B ⋂=( )A . {}03x x ≤≤B . {}1,0,1,2,3-C . {}0,1,2,3D . {}1,2【答案】C【解析】集合{}2230A x x x =-->{}=31x x x <-或, {}{}2Z 44,3,2,1,0B x x x =∈≤=,{}|13R A x x =-≤≤ 故(){}0,1,2,3R A B ⋂=故答案为C .5.已知集合{|14}A x Z x =∈-≤≤, {}2,1,4,8,9B =--,设C A B =⋂,那么集合C 的非空子集的个数为( )A . 8B . 7C . 4D . 3【答案】D【解析】集合{|14}A x Z x =∈-≤≤ {}=-101234,,,,,,{}=-1-24A B ⋂,, ,故C = {}=-1-24A B ⋂,,,有3个元素.故答案为D .6.设函数29y x =-的概念域为A ,函数()ln 3y x =-的概念域为B ,那么R A C B ⋂=( ) A . (),3-∞ B . (),3-∞- C . {}3 D . [)3,3-【答案】C【解析】由290x -≥解得33x -≤≤,可得[]3,3A =-;由30x ->解得3x <,可得(),3B =-∞,因此[)3,R B =+∞. ∴()][){}3,33,3R A B ⎡⋂=-⋂+∞=⎣.选C . 7.已知全集{}{}{0,1,2,3,4,5}2,4,0,1,2U A B ===,,那么如图阴影部份表示的集合为( )A . {}0,2B . {}0,13C . {}0,1,4D . {}0,2,4【答案】C8.设全集U ={x |x ∈N *,x<6},集合A ={1,3},B ={3,5},那么C U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}【答案】D【解析】{}*|6U x x N x =∈<,,{}1,2,3,4,5U ∴=, {}1,3A =,{}3,5B =,{}135A B ∴=,,(){}2,4C A B ∴=,故答案选D9.集合2{|,}A y y x x R ==∈,{}2,1,1,2B =--,那么以下结论正确的选项是( )A .()0,AB ⋃=+∞ B .()(],0RC A B ⋃=-∞ C .[)0,R A C B ⋂=+∞ D .(){}2,1R C A B ⋂=--【答案】D【解析】因为[)2{|,}0,A y y x x R ==∈=+∞,{}2,1,1,2B =--,因此(){}2,1R C A B ⋂=--,应选D . 10.已知全集{|22}U x x =-<<, {|20}A x x =-<<,那么u C A = ( )A .{|22}x x -<<B .{|02}x x <<C .{|12}x x <<D .{|02}x x ≤<【答案】D11.已知集合{}1,0,1M =-, {}|,,,N x x ab a b M a b ==∈≠,那么集合N 的真子集个数为( )A .8B . 7C . 4D . 3【答案】D【解析】集合{}1,0,1,{| ,,M N x x ab a b M =-==∈,且}a b ≠,{}1,0,N N ∴=-的真子集个数为221=3-,应选D .12.设全集U R =,集合{}2|2A y y x x ==-,{}|2x B y y ==,那么集合()U C A B ⋂=( )A .{}0y yB .{}|01y y <≤C .{}1y yD .{}|1y y ≥【答案】C【解析】全集U R =,集合{}2|2A y y x x ==- {}|01y y =≤≤,{| 0R A y y ∴=<或}1y >,{}{}|2,0x B y y x R y y ==∈= (){}1R A B y y ∴⋂=,应选C .。
2018届高考数学小题精练+B卷及解析:综合题(二)及解析 含答案
2018高考数学小题精练+B 卷及解析:综合题(二)及解析1.{}2{|},1A x x x B x =<=≥,则A B ⋃=( )A . RB . ()0,+∞C . {}1D . [)1,+∞ 【答案】B【解析】{}{}2||01A x x x x x =<=<<,{}()1,0,B x A B =≥⋃=+∞ 2.已知复数11Z i=- ,则Z = ( )A . 1i -+B . 1i --C . 1i +D . 1i - 【答案】D【解析】11z i z i =+⇒=- ,故选D .3.已知函数2,0(),0x x f x x x ⎧≥=⎨-<⎩,则((2))f f -=( )A .4B .3C .2D .1 【答案】A考点:分段函数求值4.某长方体被一平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为A . 4B . 22C . 42D . 8【解析】解:三视图复原的几何体是长方体,长方体长、宽、高分别是:2,2,3, 所以这个几何体的体积是2×2×3=12,长方体被一个平面所截,得到的几何体的是长方体的三分之二, 如图所示,则这个几何体的体积为21283⨯= . 本题选择D 选项.5.已知六棱锥P ABCDEF -的底面是正六边形, PA ⊥平面ABC .则下列结论不正确...的是 ( )A . //CD 平面PAFB . DF ⊥平面PAFC . //CF 平面PABD . CF ⊥平面PAD 【答案】D6.已知()()sin 2cos 30πθπθ-++-=,则cos sin cos sin θθθθ+=-( )A . 3B . 3-C .13 D . 13-【解析】因为()()sin 2cos 30πθπθ-++-=,所以2cos 0sin θθ--=,可得cos tan 1211tan 2,cos tan 1213sin sin θθθθθθθ++-+=-===---- ,故选C .7.已知()3,4a =-r , ()cos ,sin b αα=r ,则2a b +r r的取值范围是( )A . []1,4B . []2,6C . []3,7D . 22,42⎡⎤⎣⎦【答案】C点睛:本题的求解的关键与难点在于如何将问题进行转化,依据题设条件与向量模的几何意义,则问题转化为求以()0,0O 为圆心,半径为2的圆上一个动点()2cos ,2sin P αα到定点()3,4M -的距离最大值与最小值问题.由于5OP =,所以结合图形可知5252PM -≤≤+,即37PM ≤≤,从而使得问题获解.8.若[]x 表示不超过x 的最大整数,则图中的程序框图运行之后输出的结果为( )A . 48920B . 49660C . 49800D . 51867 【答案】C【解析】根据题意: []x 表示不超过x 的最大整数,且][201650.450,40⎡⎤==⎢⎥⎣⎦所以该程序运行后输出的结果中是:39个0与40个1,40个2,40 个3,……,40个49, 0.4416⨯=个50的和,所以输出的结果为14940490.44050498002S +=⨯⨯+⨯⨯=. 9.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A . B . C . D . 【答案】B【解析】此题为几何概型.小明在7:50至8:30之间到达发车站,时长为40,在7:50至8:00或8:20至8:30时,等车时间不超过10分钟,时长为20.故概率为201402P ==.故选B . 10.一个样本,3,4,5,6a 的平均数是b ,且不等式260x x c -+<的解集为(),a b ,则这个样本的标准差是 ( )A .B .2C .3D .2【答案】B考点:平均数和方差的计算. 11.定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A . 22⎡⎢⎣B .[]1,1-C .2⎤⎥⎦D .2⎡-⎢⎣ 【答案】D考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.12.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值是( ) A .122+B .122-C .1D 2【答案】B 【解析】试题分析:令t x x =+cos sin ,则21cos sin 2-=t x x ,∴()11212122+--=--=t t t y .∵x 是三角形的最小内角,∴⎥⎦⎤⎢⎣⎡∈3,0πx ,∵⎪⎭⎫ ⎝⎛+=+=4sin 2cos sin πx x x t ,∴(]2,1∈t ,∴当2=t 时,y 取得最小值122-+.故选:B .考点:(1)三角函数的化简求值;(2)三角函数的最值.综合(二)1.已知U ={y|y =log 2x ,x>1},P =1,2y y x x ⎧⎫=>⎨⎬⎩⎭,则∁U P =( ) A .1,2⎡⎫+∞⎪⎢⎣⎭ B .10,2⎛⎫ ⎪⎝⎭ C .(0,+∞) D.(-∞,0]∪1,2⎡⎫+∞⎪⎢⎣⎭【答案】A2.已知复数12z i =+,21z i =-,则12z z z =⋅在复平面上对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】由题()()213z i i i =+-=-g ,故复数z 对应的点位()3,1-,在第四象限.3.已知向量(,),(1,2)a x y b ==-r r ,且(1,3)a b +=r r ,则|2|a b -r r等于( )A .1B .3C .4D .5 【答案】D 【解析】试题分析:因(1,3)a b +=r r ,(1,2)b =-r ,故(2,1)a =r ,所以2(4,3)a b -=-r r,故22|2|435a b -=+=r r,故应选D .考点:向量的坐标形式及运算.4.一个几何体的三视图如上图所示,则这个几何体的体积为( )A .)38π+B .)392π+C .)382π+D .)36π+ 【答案】A【解析】试题分析:分析三视图可知,该几何体为半个圆锥与四棱锥的组合,故其体积)22111313238323V ππ=⋅⋅+⋅=+,故选A .考点:1.三视图;2.空间几何体的体积.5.若函数1)(2+-=x x x f ]1,1[-∈x ,不等式m x x f +>2)(恒成立,则m 的取值范围是( ) A .)1,(--∞ B .)3,(-∞ C .)3,1(- D .),3(+∞ 【答案】A考点:二次函数的最值【方法点睛】此题涉及到函数中的恒成立问题,是比较基础的题型,对于基本方法一般有两点,第一个就是将不等式转化为()0>x F 或()0<x F 恒成立的问题,即函数的最大值大于0或函数的最小值小于0,或者是反解参数m ,写出132+-<x x m 恒成立,即()min 213+-<x x m ,问题转化为不含参数的函数的最值问题,一般能反解时,第二种方法比较简单.6.已知等差数列{}n a 中,20132,a a 是方程0222=--x x 的两根,则2014s ( ) A .2014- B .1007- C .1007 D .2014 【答案】D 【解析】试题分析:因为20132,a a 是方程0222=--x x 的两根,所以220132=+a a ,数列{}n a 是等差数列,所以20142)(20142)(201420132201412014=+=+=a a a a s ,答案为D .考点:等差数列的性质及求和公式.7.若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(22=++-y xB .1)1()2(22=-+-y xC .1)2()1(22=++-y xD .1)2()1(22=-++y x 【答案】A考点:关于点、直线对称的圆的方程. 8.在的展开式中的常数项是( )A .B .C .D .【答案】A【解析】试题分析:由二项式定理可知展开式的通项公式为,令,常数项为考点:二项式定理9.抛物线x y 82=的焦点为F ,点),(y x P 为该抛物线上的动点,又已知点)0,2(-A ,则||||PF PA 的取值范围是( )A .),3[+∞B .]2,1(C .]4,1[D .]2,1[ 【答案】D 【解析】试题分析:由抛物线定义得||2PF x =+,又222||(2)(2)8PA x y x x =++=++,22(2)8||81||44x x PA xPF x x ++==+++∴.当0x =时,||1||PA PF =;当0x ≠时, 2||88114||444PA x PF x x x x =+=+++++,当且仅当2x =时取等号.4424x x x x +=g ∵≥,||8124||4PA PF x x=+++∴≤,综上所述,||||PA PF 的取值范围是[12],,故选D .考点:1、抛物线及其性质;2、基本不等式的应用.【思路点睛】本题考查了抛物线的定义及其性质和基本不等式的应用,渗透着分类讨论的数学思想,属中档题.其解题的一般思路为:首先由抛物线的定义和两点的距离公式可得出,PA PF 的表达式,然后运用分类讨论的思想对其进行讨论,即0x =和0x ≠,并分别求出其对应的最值,尤其注意基本不等式的应用过程中要检验其等号是否成立,最后得出其答案即可.10.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的i a 为茎叶图中的学生成绩,则输出的m n ,分别是( )A .3812m n ==,B .2612m n ==,C .1212m n ==,D .2410m n ==,【答案】B 【解析】考点:程序框图、茎叶图.11.已知双曲线x 2a 2 − y2b 2=1(a>0,b>0),过其右焦点且垂直于实轴的直线与双曲线交于N M ,两点,O 是坐标原点,若ON OM ⊥,则双曲线的离心率为( )A .132+ B .132-+ C .251+ D .152-+ 【答案】C 【解析】考点:双曲线的图象与性质.12.已知奇函数()f x 定义域为()()(),00,,'f x -∞+∞U 为其导函数, 且满足以下条件①0x >时, ()()3'f x f x x <;②()112f =;③()()22f x f x =,则不等式()224f x x x <的解集为( ) A .11,44⎛⎫-⎪⎝⎭ B .11,,44⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭UC .11,00,44⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭U D .φ 【答案】B 【解析】试题分析:不妨设()()102f x x x =≠,满足题目给的三个条件,故221122,416xx x x <>解得11,44x x <->.考点:函数导数与不等式.。
2018高考数学小题精练+B卷及解析:综合题(一)及解析 含答案
2018高考数学小题精练+B 卷及解析:综合题(一)及解析综合(一)1.已知集合{}{|18},4M x x N x x =-≤<=,则M N ⋃=( ) A . ()4,+∞ B . [)1,4- C . ()4,8 D . [)1,-+∞ 【答案】D【解析】因为集合{}{|18},4M x x N x x =-≤<=,则M N ⋃= {|1}x x ≥-,故选D . 2.已知复数z 满足()2112i z i -⋅=+,则在复平面内复数z 对应的点为( ) A . 11,2⎛⎫-- ⎪⎝⎭ B . 11,2⎛⎫- ⎪⎝⎭ C .1,12⎛⎫- ⎪⎝⎭ D . 1,12⎛⎫-- ⎪⎝⎭【答案】A3.已知x 与y 之间的一组数据:若y 关于x 的线性回归方程为ˆ 2.1 1.25y x =-,则m 的值为( ).A .1B .0.85C .0.7D .0.5 【答案】D 【解析】试题分析:回归直线必过点()y x ,,2544321=+++=x ,45.1545.78.42.3+=+++=m m y ,代入回归直线方程可得25.15.21.245.15-⨯=+m ,解得:5.0=m ,故选D . 考点:回归直线方程4.西北某地根据历年的气象资料显示,春季中一天发生沙尘暴的概率为0.45,连续两天发生沙尘暴的概率为0.3,已知某天发生了沙尘暴,则随后一天发生沙尘暴的概率为( ) A .13 B . 12 C . 23 D . 34【答案】C【解析】由条件概率得随后一天发生沙尘暴的概率为0.320.453= ,选C .5.直线1y kx =+与圆()()22214x y -+-=相交于P 、Q 两点.若PQ ≥k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦ B .⎡⎢⎣ C . []1,1- D .⎡⎣【答案】C考点:直线与圆的位置关系.6.(文科)已知{}n a 是等差数列,若1598a a a π++=,则()37cos a a +的值为( )A .B .C . 12D . 12- 【答案】D 【解析】{}n a 是等差数列,159583a a a a π++==,得5375816233a a a a ππ=+==, ()37161cos cos32a a π+==-,故选D . 7.函数()()2log 6f x x =+-的定义域是( ) A . (6,+∞) B . [-3,6) C . (-3,+∞) D . (-3,6) 【答案】D【解析】要使函数有意义需满足: 30{ 60x x +>->解得36x -<<,即函数的定义域为()3,6-,故选D .8.若正数,,x y a 满足6ax y xy ++=,且xy 的最小值为18,则a 的值为( ) A . 1 B . 2 C . 4 D . 9 【答案】B点睛:(1)应用基本不等式构造关于xy 的不等式. (2)换元法将不等式转化为一元二次不等式.(3)结合二次函数图像知t =260t t --=的根.9.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为( )A .83 B . 163 C . 323D . 16 【答案】B 【解析】由三视图可知,该几何体是如图所示的三棱锥A BCD - (正方体的棱长为4 , ,A C 是棱的中点),其体积为1116244323⨯⨯⨯⨯= ,故选C . 【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响. 10.过点)1,1(-且与曲线x x y 23-=相切的直线方程为( )A .20x y --=或5410x y +-=B .02=--y xC .20x y --=或4510x y ++=D .02=+-y x 【答案】A 【解析】考点:利用导数研究曲线上某点的切线.【思路点晴】此题考查学生会利用导数求曲线上过某点切线方程的斜率,会根据一点坐标和斜率写出直线的方程,是一道综合题.设切点为()00,y x ,则03002x x y -=由于直线经过点()1,1-,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,利用切点即在切线上又在曲线上,便可建立关于0x 的方程,从而可求方程.11.已知两个不同的平面α、β和两个不重合的直线m 、n ,有下列四个命题: ①若m n ∥,m α⊥,则n α⊥;②若m m αβ⊥⊥,,则αβ∥;③若m m n α⊥,∥,n β⊂,则αβ⊥; ④若m n ααβ= ∥,,则m n ∥,其中正确命题的个数是( )A .0B .1C .2D .3 【答案】D试题分析:易知①②正确,对于③若m m n α⊥,∥,则n α⊥,又n β⊂,故αβ⊥,正确,由线面平行的性质可知当β⊂m 时,④才正确,故正确个数有3个. 考点:空间位置关系.12.设点11(,())M x f x 和点22(,())N x g x 分别是函数21()2x f x e x =-和()1g x x =-图象上的点,且10x ≥,20x >,若直线//MN x 轴,则M N ,两点间的距离的最小值为___________. 【答案】2考点:导数的有关知识及综合运用.【易错点晴】本题以直线//MN x 轴为前提条件,精心设置了一道考查函数与方程思想的综合性问题.求解时充分借助题设条件可得)()(21x g x f =,从而求得2122111x e x x -=-,再构造函数121121121+--=-x x ex x x ,然后借助导数这一工具,求得1)(11/1--=x e x F x ,进而再求二阶导数1)(11//-=x ex F ,然后通过考察其正负,判断出函数的单调性,最后借助函数的单调性将问题转化为求函数121)(12111+--=x x ex F x 的最小值问题.综合(一)1.满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A . 1 B . 2 C . 3 D . 42.()sin 150-︒的值为( )A .B .C .D .【答案】A【解析】()1sin 150sin1502-︒=-︒=- ,故选A . 3.已知命题p : 26x k ππ≠+, k Z ∈;命题q : 1sin 2x ≠,则p 是q 的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件 【答案】B【解析】原命题的的逆否命题是: 若1:2q sinx ⌝=,则:26p x k ππ⌝=+,显然不成立,是假命题, 反之,若¬p 则¬q 成立,故¬q 是¬p 的必要不充分条件,则p 是q 的必要不充分条件, 本题选择B 选项.点睛:(1)在判断四种命题的关系时,首先要分清命题的条件与结论,当确定了原命题时,要能根据四种命题的关系写出其他三种命题.(2)当一个命题有大前提时,若要写出其他三种命题,大前提需保持不变.(3)判断一个命题为真命题,要给出推理证明;说明一个命题是假命题,只需举出反例. (4)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.4.已知向量()()1,2,,1,a b x ==-),若a b ⊥ ,则实数x 的值为( )A . -2B . 2C . -1D . 1 【答案】B【解析】()•121202a b a b x x x ⊥⇒=⨯+⨯-=-=⇒=,故选B .5.若不等式2322x ax a -≤-+≤-有唯一解,则a 的值是( )A . 2或-1B .C .D . 2考点:一元二次不等式.6.成等差数列的三个正数的和等于12,并且这三个数分别加上1,4,11后成为等比数列{}n b 中的234,,b b b ,则数列{}n b 的通项公式为( )A . 2n n b =B . 3n n b =C . 12n n b -=D . 13n n b -= 【答案】A【解析】设成等差数列的三个正数为,,a d a a d -+,即有312a =,计算得出4a =, 根据题意可得41,44,411d d -++++成等比数列,即为5,8,15d d -+成等比数列, 即有()()51564d d -+=,计算得出1(11d =-舍去),即有4,8,16成等比数列,可得公比为2,则数列{}n b 的通项公式为2222422n n n n b b --==⨯=. 所以A 选项是正确的.7.已知随机变量ξ服从正态分布2N(0,)σ,若P(>2)=0.023ξ,则P(-22)=ξ≤≤( ) A . 0.977 B . 0.954 C . 0.628 D . 0.477 【答案】B【解析】由题意可得正态分布的图象关于直线0x =对称,则:(2)(2)0.023P P ξξ<-=>=,故:(22)120.0230.954P ξ-<<=-⨯=. 本题选择B 选项.8.若执行如右图所示的程序框图,输出S 的值为4,则判断框中应填入的条件是( )A . 18k <B . 17k <C . 16k <D . 15k <9.当x>1时不等式a x x ≥-+11恒成立,则实数a 的取值范围是( ) A .(]3,∞- B .13,+)∞ C .(]2,∞- D .12,+)∞ 【答案】A 【解析】试题分析:111111311x x x x x >∴+=-++≥+=-- ,当且仅当111x x -=-即2x =时等号成立,所以最小值为3 3a ∴≤,实数a 的取值范围是(]3,∞- 考点:不等式性质求最值10.某单位共有36名员工,按年龄分为老年、中年、青年三组,其人数之比为3:2:1,现用分层抽样的方法从总体中抽取一个容量为12的样本,则青年组中甲、乙至少有一人被抽到的概率为( ) A .25 B .35 C .2536 D .1136【答案】B 【解析】试题分析:按分层抽样应该从青年职工组中抽取2123112=++⨯人,其中青年组共有6123136=++⨯人,这六人中抽取两人的基本事件共有1526=C 种,甲乙至少有一人抽到的对立事件为甲乙均没被抽到,基本事件为624=C 种,因此青年组中甲、乙至少有一人被抽到的概率为53156112624=-=-C C ,故选B .考点:1.分层抽样;2.古典概型.11.若22n xdx =⎰,则1()2nx x-的展开式中常数项为( ) A .12 B .12- C . 32D .32-【答案】C 【解析】试题分析:因为404202=-==x n ,而rr r r xr r xC x x C T 244441)21()21(--+-=-=,令024=-r ,故2=r ,故,常数项为23)21(242=-C ,应选C .考点:定积分的计算及二项式定理的运用.12.已知函数2,0,()4,0x a x f x x x x ⎧+≤⎪=⎨+>⎪⎩有最小值,则实数a 的取值范围是( ) A .(4,)+∞ B .[4,)+∞ C .(,4]-∞ D .(,4)-∞ 【答案】B 【解析】考点:1.分段函数的应用;2.指数函数的单调性;3.基本不等式.。
十年真题(2010_2019)高考数学真题分类汇编专题01集合理(含解析)
专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1理科01】已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.2.【2018年新课标1理科02】已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2} C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2} 【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.3.【2017年新课标1理科01】已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.4.【2016年新课标1理科01】设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.5.【2014年新课标1理科01】已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1] C.[﹣1,2)D.[﹣2,﹣1]【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.6.【2013年新课标1理科01】已知集合A={x|x2﹣2x>0},B={x|x},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x或x<0},A∪B=R,故选:B.7.【2012年新课标1理科01】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x =3时,y =1,2,x =2时,y =1综上知,B 中的元素个数为10个故选:D .8.【2010年新课标1理科01】已知集合A ={x ∈R ||x |≤2}},,则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2} D .{0,1,2}【解答】解:A ={x ∈R ||x |≤2,}={x ∈R |﹣2≤x ≤2},故A ∩B ={0,1,2}.应选D .考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则AB =( ) A .{}|32x x -<<B .{}|52x x -<<C .{}|33x x -<<D .{}|53x x -<< 【答案】A【解析】 解:{}{}333||B x x x x =<=-<<,则{}|32A B x x ⋂=-<<,。
2018年高考数学小题精练系列(第02期)专题01集合理
专题01 集合1.如果S ={1,2,3,4,5},A ={1,3,4},B ={2,4,5},那么(C S A)∩(C S B)等于( ) A . ∅ B . {1,3} C . {4} D . {2,5} 【答案】A【解析】∵S={1,2,3,4,5},A={1,3,4},B={2,4,5},∴C S A={2,5},C S B={1,3},则(C S A)∩(C S B)=∅.故选A2.设全集U ={2,3,5},A ={2,|a -5|},C U A ={5},则a 的值为( ) A .2 B .8 C .2或8 D .-2或8 【答案】C3.已知全集{}2,1,3,4U =--,集合{}1,3B =-,则U B =ð( ) A . {}1,3- B . {}2,3- C . {}2,4- D . ∅ 【答案】C【解析】全集{}2,1,3,4U =--,集合{}1,3B =-,则{}2,4U B =-ð. 故选C .4.设全集U R =,集合{}{}| 3 ,|0 5 A x x B x x =≥=≤<则集合()U C A B ⋂=( ) A .{}|0 3 x x << B .{}|0 3 x x ≤≤ C .{}|0 3 x x <≤ D .{}|0 3 x x ≤< 【答案】D【解析】{3}U A x x =<ð,(){03}U A B x x ⋂=≤<ð,选D .5.若集合2{|2,1}{|log ,1}x M y y x P y y x x ==<-==≥,则M P ⋂=( ) A . 1{|0}2y y << B .{|01}y y << C .1{|1}2y y << D .1{|0}2y y ≤< 【答案】A 【解析】由题集合1{|2,1}{|0}2x M y y x y y ==<-=<<,2{|log ,1}{|0}P y y x x y y ==≥=≥ ,故1{|0}2M P y y ⋂=<< ,选A6.若集合{|20}A x x =-<,{}1xB x e =,则A B ⋂=( ) A . R B . (),2-∞C . ()0,2D . ()2,+∞ 【答案】C【解析】因为集合{|20}{|2}A x x x x =-<=<,{}{}1x 0xB x e x ==,所以{}()|02?0,2A B x x ⋂=<<=,故选C .7.已知集合(){}2log 5A x y x ==-, {}12x B y y -==,则A B ⋃=( ) A . [)0,5 B . ()0,5 C . R D . ()0,+∞ 【答案】C8.集合A ={x |y ,B ={y |y =x 2+2},则如图阴影部分表示的集合为( )A . {x |x ≥1} B. {x |x ≥2} C . {x |1≤x ≤2} D. {x |1≤x <2} 【答案】D【解析】由题意可知A {}|1x x =≥,由20x ≥得{}222,|2y x B y y =+≥∴=≥由题中图形可知:阴影部分表示的集合为A C B ,{}|12A C B x x ∴=≤<,故答案选D 9.已知集合{}2513,201x A xB x x x x +⎧⎫=<=-≥⎨⎬+⎩⎭,则A B ⋂=( )A .()0,1B .[]0,1C .[)0,1D .(]0,1 【答案】C 【解析】()()51223001101111x x x x x x x +--<⇒<⇒-+<⇒-<<++,22002x x x -≥⇒≤≤,则{01}A B x x ⋂=≤<,选C .10.已知集合{}()1,2,{,|,,}A B x y x A y A x y A ==∈∈-∈,则B 的子集共有 ( ) A . 2个 B . 4个 C . 5个 D . 8个【答案】A 【解析】(){}2,1B =,则子集为(){},2,1∅,共2个.故选A .11.已知集合,,则集合等于( ) A . B . C . D .【答案】B【解析】由条件得,∴.选B .12.已知集合{|331}A x a x a =≤≤+, 112111{|}2733x B x +⎛⎫ ⎪=<< ⎪⎝⎭,若A B ⊆,则a 的取值范围是( )A . ()2,0-B . ()0,1C . []0,1D . ()1,+∞ 【答案】B。
高考数学一轮复习专题01 二项分布(解析版)
概率与统计 专题一:二项分布一、知识储备一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (01p <<),用X 表示事件A 发生的次数,则X 的分布列为()(1)k k n kn P X k C p p -==-(0,1,2,k n =)如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布(binomial distribution ),记作(,)XB n p 。
二、例题讲解1.(2022·全国高三其他模拟)羽毛球是一项隔着球网,使用长柄网状球拍击打用羽毛和软木刷制作而成的一种小型球类的室内运动项目.羽毛球比赛的计分规则:采用21分制,即双方分数先达21分者胜,3局2胜.每回合中,取胜的一方加1分.每局中一方先得21分且领先至少2分即算该局获胜,否则继续比赛;若双方打成29平后,一方领先1分,即算该局取胜.某次羽毛球比赛中,甲选手在每回合中得分的概率为34,乙选手在每回合中得分的概率为14.(1)在一局比赛中,若甲、乙两名选手的得分均为18,求在经过4回合比赛甲获胜的概率; (2)在一局比赛中,记前4回合比赛甲选手得分为X ,求X 的分布列及数学期望()E X . 【答案】(1)81256;(2)分布列见解析;期望为3. 【分析】(1)可知甲在第4回合胜,前3回合胜2场,进而根据独立重复试验的概率公式即可求出结果; (2)求出X 的取值,进而求出对应的概率,列出分布列,利用二项分布的期望即可求出结果. 【详解】(1)记在经过4回合比赛,甲获胜为事件A ,可知甲在第4回合胜,前3回合胜2场,所以22333181()C 444256P A ⎛⎫⎛⎫=⨯⨯=⎪ ⎪⎝⎭⎝⎭; (2)易知X 的取值为0,1,2,3,4,且3~4,4X B ⎛⎫⎪⎝⎭,40411(0)C 4256P X ⎛⎫=== ⎪⎝⎭,314133(1)C 4464P X ⎛⎫==⨯= ⎪⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,3341327(3)C 4464P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭, 444381(4)C 4256P X ⎛⎫===⎪⎝⎭, 所以X 的分布列为:数学期望3()434E X np ==⨯=. 2.(2022·青铜峡市高级中学高三开学考试(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的每周五天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)记“上学期间的某周的五天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多3天”为事件M ,求事件M 发生的概率. 【答案】(1)分布列答案见解析,数学期望:103;(2)802187.【分析】 (1)由题意可得2(5,)3XB ,然后利用二项分布的概率公式求对应的概率,从而可列出分布列,(2)设乙同学上学期间的五天中7:30之前到校的天数为Y ,由题意可知2(5,)3YB ,且{}{}{}3,04,15,2M X Y X Y X Y =======,再利用相互独立事件的概率公式求解即可【详解】解:(1)因为甲同学上学期间的五天中到校情况相互独立,且每天7:30之前到校的概率为23,所以2(5,)3XB ,从而5521()()()33k k kP X k C -==,0,1,2,3k =,所以,随机变量X 的分布列为:所以210()533E X =⨯=; (2)设乙同学上学期间的五天中7:30之前到校的天数为Y ,则2(5,)3Y B ,且事件{}{}{}3,04,15,2M X Y X Y X Y =======,由题意知,事件{}{}{}3,0,4,1,5,2X Y X Y X Y ======之间互斥, 且X 与Y 相互独立, 由(1)可得8018010324080()2432432432432432432187P M =⨯+⨯+⨯=. (,)B n p 表示发生的概率为p ;3.(2021·全国高三专题练习(理))一名学生每天骑车上学,从他家到学校的途中有5个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列、期望、方差; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.【答案】(1)分布列见解析,5()3E X =,1(0)9D X =;(2)分布列见解析;(3)211243.【分析】(1)由题意这名学生在途中遇到红灯的次数服从二项分布,进而求得分布列,期望及方差; (2)Yk =(0,1,2,3,4k =),表示前k 个是绿灯,第1k +个是红灯,5Y =表示5个均为绿灯,则21()()33k P Y k ==⨯,0,1,2,3,4k =,由此可求这名学生在首次停车前经过的路口数的分布列;(3)利用对立事件概率计算公式可求这名学生在途中至少遇到一次红灯的概率. 【详解】(1)由题意可知,X 可取0、1、2、3、4、5,服从二项分布1~(5)3X B ,, 则0551232(0)()()33243P X C ==⋅⋅=,11451280(1)()()33243P X C ==⋅⋅=, 22351280(2)()()33243P X C ==⋅⋅=,33251240(3)()()33243P X C ==⋅⋅=,44151210(4)()()33243P X C ==⋅⋅=,5505121(5)()()33243P X C ==⋅⋅=,∴X 的分布列为:∴()533E X =⨯=,()5339D X =⨯⨯=; (2)由题意可知,Y 可取0、1、2、3、4,5 则0211(0)()333P Y ==⨯=,1212(1)()339P Y ==⨯=,2214(2)()3327P Y ==⨯=, 3218(3)()3381P Y ==⨯=,42116(4)()33243P Y ==⨯=,5232(5)()3243P Y ===,∴Y 的分布列为:(3)设这名学生在途中至少遇到一次红灯为事件A , 所求概率32211()1(0)1243243P A P X =-==-=.(,)B n p (,)B n p 表示次实验都完成了,每次实验发生的概率为p ,至于这n 次实验成功了几次,后一次实验做完才知道;而此题首次成功,续的实验。
【课标通用】2018届高考数学(理)一轮课件:1-集合(含答案)
考点1
考点2
试做真题
高手必备 萃取高招 对点精练
4.空集的概念与应用 (1)空集是一个特殊且重要的集合,它不含任何元素,是任何集合 的子集,是任何非空集合的真子集. (2)与空集有关的结论: ������ = 0, ①A={x|ax+b=0}=⌀⇒ ������ ≠ 0; ②A={x|ax2+bx+c=0,a≠0}=⌀⇒b2-4ac<0; ③A={x|m<x<n}=⌀⇒m≥n; ������ = 0, ④A={x|ax+b>0}=⌀⇒ ������ ≤ 0; ������ < 0, 2 ⑤A={x|ax +bx+c>0,a≠0}=⌀⇒ 2 ������ -4������������ ≤ 0. 5.有限集合的子集的个数 若有限集合A有n个元素,则A的子集个数是2n,真子集个数是2n-1, 非空子集个数是2n-1,非空真子集个数是2n-2.考点1考Fra bibliotek2试做真题
高手必备 萃取高招 对点精练
【解析】 (1)因为 A∪B=A,所以 B⊆A,所以 m=3 或 m= ������. 若 m=3,则 A={1,3, 3},B={1,3},满足 A∪B=A. 若 m= ������,解得 m=0 或 m=1. 若m=0,则A={1,3,0},B={1,0},满足A∪B=A. 若m=1,则A={1,3,1},B={1,1},显然不成立. 综上,m=0或m=3,故选B. (2)由集合A,得a-1<x<a+1,显然集合A≠⌀.若A∩B=⌀,由图可知 a+1≤1或a-1≥5,故a≤0或a≥6.故选C.
考点1
考点2
试做真题
高手必备 萃取高招 对点精练
2018年高考数学一轮复习 小题精练系列 专题01 集合(含解析)理
专题01 集合1.已知集合(){}{}|lg 1,2,1,0,1A x y x B ==+=--,则()R C A B ⋂=( ) A . {}2,1-- B . []2- C . []1,0,1- D . []0,1 【答案】A2.设集合2{|42},{|4}M x x N x x =∈-=<<<Z ,则M N ⋂等于( ) A . ()1,1- B . ()1,2- C . {}1,1,2- D . {}1,0,1- 【答案】D 【解析】{}{}{}{}{}2|42M x x =∈-=<<<Z .故选D .3.设是全集,集合都是其子集,则下图中的阴影部分表示的集合为( )A .B .C .D .【答案】B【解析】观察图形得:图中的阴影部分表示的集合为,故选:B . 4.已知全集,,,则=( )A .B .C .D .【答案】A【解析】由题意得,,所以,故选A . 5.已知,,则的真子集个数为( )A . 2B . 3C . 7D . 8 【答案】B【解析】∵A={x|x 2-3x-4≤0,x∈Z}={x|-1≤x≤4,x∈Z}={-1,0,1,2,3,4},B={x|2x 2-x-6>0,x∈Z}={x|x<,或x>2,x∈Z},∴A∩B={3,4},则A∩B 的真子集个数为22-1=3,故选:B .点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.6.已知集合,则( )A .B .C .D .【答案】A点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.7.已知集合,,则集合中元素的个数为( )A . 1B . 2C . 3D . 4 【答案】C【解析】由题得,集合,所以.集合中元素的个数为3.故选C .8.已知2{|230},{|A x x x B y y =--≤==,则A B ⋂=( )A . ⎡⎣B .C . ⎤⎦D . ⎡⎣【答案】C【解析】2230x x --≤,解得13x -≤≤ {}|13A x x ∴=-≤≤,≥{|B y y ∴=≥ A B ⎤⋂=⎦,故选C9.设集合{|32}M x Z x =∈-<<,{|13}N x Z x =∈-≤≤,则MN 等于( )A .{0,1}B .{-1,0,1,2}C .{0,1,2}D .{-1,0,1} 【答案】D【解析】考点:1、集合的表示;2、集合的交集.10.已知集合2{|16}A x x =<,{|}B x x m =<,若A B A =,则实数m 的取值范围是( ) A .[4,)-+∞ B .[4,)+∞ C .(,4]-∞- D .(,4]-∞ 【答案】B【解析】考点:1、集合的表示;2、集合的基本运算.11.设集合{}0)2)(1(>-+=x x x A ,集合{}31≤≤=x x B ,则=B A ( ) A .]3,1(- B .]1,1(- C .)2,1( D .)3,1(- 【答案】A【解析】试题分析:因为{}{}(1)(2)0|12A x x x x x =+->=-<<, {}13B x x =<≤,所以,=B A {}13x x -<≤=(]1,3-,故选A .考点:1、集合的表示方法;2、集合的并集.12.已知集合2{|50},{|6},M x x x N x p x =-≤=<<且{|2},M N x x q ⋂=<≤ 则p q += ( )A . 6B . 7C . 8D . 9 【答案】B 【解析】集合{}{}2|50|05M x x x x x =-≤=≤≤, {}|6N x p x =<<,且{}|2M N x x q ⋂=<≤, 2,5,257p q p q ∴==∴+=+=,故选B .。
专题01集合(原卷版)
2023高考一轮复习讲与练01 集合练高考 明方向1、【2022年新高考I 卷】若集合{4}M x x =<,{31}N x x =≥,则MN =A. {|02}x x ≤<B. 1{|2}3x x ≤<C. {|316}x x ≤<D. 1{|16}3x x ≤<2、【2022年新高考II 卷】3、【2022年全国甲卷理科】4、【2022年全国甲卷文科】设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( )A. {}0,1,2B. {2,1,0}--C. {0,1}D. {1,2}5、【2022年全国乙卷文科】6. 集合{}{}2,4,6,8,10,16M N x x ==-<<,则MN =( )A. {2,4}B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}7.(2021年高考全国乙卷理科)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则ST( )A .∅B .SC .TD .Z8.(2021年高考全国甲卷理科)设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤< D .{}05x x <≤9.(2020年高考数学课标Ⅰ卷理科)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a( )A .–4B .–2C .2D .410.(2020年高考数学课标Ⅱ卷理科)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}11.(2020年高考数学课标Ⅲ卷理科)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则AB中元素的个数为 ( )A .2B .3C .4D .6讲典例 备高考类型一、集合的含义(1)元素的特性: 确定性、互异性、无序性(2)注意集合元素的互异性,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.(3)解决集合含义问题的关键点:确定构成集合的元素;确定元素的限制条件. 1.现有以下说法,其中正确的是( )①接近于0的数的全体构成一个集合; ②正方体的全体构成一个集合; ③未来世界的高科技产品构成一个集合; ④不大于3的所有自然数构成一个集合. A .①②B .②③C .③④D .②④2.以方程x 2﹣5x +6=0和方程x 2﹣x ﹣2=0的解为元素的集合为( ) A .{2,3,1}B .{2,3,﹣1}C .{2,3,﹣2,1}D .{﹣2,﹣3,1}3.(多选题)已知集合{}22133A a aa =+++,,,且1A ∈,则实数a 的可能值为( )集合集合含义集合之间的关系集合的运算集合的新定义问题由集合关系求参数范围件集合中的分类讨论集合中的数形结合集合与充要条件交汇集合的表示A .0B .1-C .1D .2-4.已知a ,b ,c 均为非零实数,集合a b ab A x x a b ab ⎧⎫⎪⎪==++⎨⎬⎪⎪⎩⎭,则集合A 的元素的个数有_______个.类型二、集合的表示(1)集合的三种表示方法:列举法、描述法、图示法.(2)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(3)五个特定的集合:1①{}3,1M =-,(){}3,1P =-; ②(){}3,1M =,(){}1,3P =;③{}21M y y x ==-,{}21P t t x ==-;④{}21M y y x ==-,(){}2,1P x y y x ==-.A .①B .②C .③D .④2.用列举法可以将集合{A a a =使方程221=0ax x ++有唯一实数解}表示为( )A .{}1A =B .{}0A =C .{}0,1A =D .{}0A =或{}13.由大于﹣3且小于11的偶数所组成的集合是( )A .{x|﹣3<x <11,x ∈Q}B .{x|﹣3<x <11}C .{x|﹣3<x <11,x=2k ,k ∈N}D .{x|﹣3<x <11,x=2k ,k ∈Z} 4.(多选题)下列说法中不正确的是( )A .0与{}0表示同一个集合B .集合M ={}3,4与N =(){}3,4表示同一个集合C .方程()2(1)2x x --=0的所有解的集合可表示为{}1,1,2 D .集合{|45}x x <<不能用列举法表示5.集合6{|3P x x =∈-Z 且}x ∈Z ,用列举法表示集合P =________ 类型三、集合之间的关系 (1)集合之间的基本关系A B 或B A穷举法:将集合的子集一一列举出来,从而得到子集的个数,适用于集合中元素个数较少的情况. 公式法:含有n 个元素的集合的子集个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2.(3)判断集合间关系的常用方法1.已知集合{M m m x y z xyz==+++∣,x 、y 、z 为非零实数},则M 的子集个数是( ) A .2B .3C .4D .82.(多选题)下面给出的几个关系中正确的是( )A .{}{},a b ∅⊆B .(){}{},,a b a b ⊆C .{}{},,b a a b ⊆D .{}0∅⊆3.(多选题)已知集合{}23180A x x x =∈--<R ,{}22270B x x ax a =∈++-<R ,则下列命题中正确的是( )A .若AB =,则3a =- B .若A B ⊆,则3a =-C .若B =∅,则6a ≤-或6a ≥D .若BA 时,则63a -<≤-或6a ≥4.满足{1,2}{1,2,3,4,5}M ≠⊂⊆的集合M 有______个. 5.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20212020a b +=_______.类型四、集合的运算 (1)集合的运算(2)集合的基本运算问题的解题策略①看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决运算问题的前提. ②对集合化简.有些集合是可以化简的,如果先化简再研究其关系并进行运算,可使问题变得简单明了,易于解决.③数形结合思想的应用.集合运算常用的数形结合形式有:数轴、坐标系和Venn 图.1.已知集合(){}2log 21A x x =-<,{}223B x x x =-<,则A B =( )A .{}14x x -<<B .{}13x x -<<C .{}24x x <<D .{}23x x <<2.若集合{(,)30}M x y x y =-=∣,()22,}0{|N x y x y =+=,则( ) A .M N M ⋂= B .M N M ⋃=C .M N N ⋃=D .M N ⋂=∅3.(多选题)已知集合2{|log 0}A x x =≤,集合1{|0}1y B y y +=≥-,集合1{|3}9z D z =≥,则( ) A .A D R ⋃= B .A B =∅ C .()R A B ⋃ DD .R D B4.(多选题)已知U =R ,集合2{|20},{|10},A x x x B x mx =--==+=B ∩(∁U A)=∅,则m 的值可以是( )A .12B .12-C .0D .15.(多选题)已知全集U 的两个非空真子集A ,B 满足(∁U A )∪B =B ,则下列关系一定正确的是( )A .AB =∅ B .A B B =C .A B U ⋃=D .(∁U B )∪A =A6.已知全集U =Z ,集合{}210,A x x x =+≥∈Z ,{}1,0,1,2B =-,则下列说法正确的是____.(填序号)①{}0,1,2AB =②{}0A B x x ⋃=≥ ④(∁U A )∩B ={−1} ④AB 的真子集个数是7类型五、集合的新定义问题1.已知全集U =R ,集合{}0,1,2,3A =,{B x y ==,则如图中阴影部分所表示的集合为( )A .{}0,1B .{}1,2C .{}0D .{}0,1,22.(多选题)若集合A 具有以下性质:(1)0A ∈,1A ∈;(2)若x 、y ∈A ,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“完美集”.下列说法正确的是( ) A .集合{}1,0,1B =-是“完美集” B .有理数集Q 是“完美集”C .设集合A 是“完美集”,x 、y ∈A ,则x y A +∈D .设集合A 是“完美集”,若x 、y ∈A 且0x ≠,则yA x∈ 3.(多选题)给定数集M ,若对于任意a ,b M ∈,有a bM ,且a b M -∈,则称集合M 为闭集合,则下列说法中不正确的是( )A .集合{}4,2,0,2,4M =--为闭集合B .正整数集是闭集合C .集合{|3,}M n n k k Z ==∈为闭集合D .若集合12,A A 为闭集合,则12A A ⋃为闭集合4.规定⊕与⊗是两个运算符号,其运算法则如下,对任意实数a b 、有: a b ab ⊗=,22()1a b b a b ⊕=++.若22a b -<<<且,,a b Z ∈)22|(A x x a b b a b ⊕⎧⎫+=⊗⎨⎩=⎬⎭,则用列举法表示集合A =__________. 类型六、由集合关系求参数范围根据集合的运算结果求参数的值或取值范围的的四个注意点: (1)注意两个转化:A∩B=A ⇔A ⊆B ;A ∪B =A ⇔B ⊆A. (2)注意空集的特殊性①若B ⊆A ,则分B =∅和B≠∅两类进行讨论. ②若A∩B=∅,则集合A ,B 可能的情况有:A ,B 均为空集;A 与B 中只有一个空集;A ,B 虽然均为非空集合但无公共元素.(3)注意结合数轴分析端点值的大小.(4)注意对结果进行检验,以避免集合中元素重复.1.(多选题)已知集合{}23180A x R x x =∈--<,{}22270B x R x ax a =∈++-<,则下列命题中正确的是( )A .若AB =,则3a =- B .若A B ⊆,则3a =-C .若B =∅,则6a ≤-或6a ≥D .若3a =,则{}36A B x x ⋂=-<<2.已知集合{}2{123},280A x a x a B x x x =-<<+=--≤,若()R A B A ⋂=,求实数a 的取值范围是_______.3.已知全集U =R ,集合{}2|450A x x x =--≤,{}|24B x x =≤≤.(1)求()U A C B ⋂;(2)若集合{}|4,0C x a x a a =≤≤>,满足CA A =,CB B =,求实数a 的取值范围.4.已知全集U R =,集合{}01A x x =<<,{}3927xB x =≤≤,{}224C x a x a =-<<-. (1)求(∁U A )∩B ;(2)若A C C =,求a 的取值范围.类型七、集合的中的分类讨论在涉及集合之间的关系时,若未指明集合非空,则要考虑空集的可能性,如若A ⊆B ,则要考虑A =∅和A ≠∅两种可能.1.已知集合{A =,集合{}1,B a =,若{}AB a =,则a =( )A .0B .0或3C .1D .1或32.(多选题)设{}2|8150A x x x =-+=,{}|10B x ax =+=,若AB B =,则实数a 的值可以为( )A .15-B .0C .3D .13-3.已知全集U =R ,集合{}2|11180A x x x =-+->,B ={x |−5≤−x ≤2}, (1)求AB ,B ∪(∁U A );(2)已知集合{|2}M x a x a =≤≤-,若B ∪(∁U M )=R ,求实数a 的取值范围. 4.已知集合{}2430A x x x =-+=,{}230B x x ax =-+=. (1)若A B B ⋃=,求实数a 的值; (2)若AB B =,求实数a 的取值范围.5.设集合A ={x ∣2x −3x +2=0},B ={x ∣2x +2(a +1)x +2a −5=0} (1)若A ∩B ={2},求实数a 的值;(2)若U =R ,A ∩(∁U B )=A .求实数a 的取值范围. 类型八、集合的中的数形结合1.下图中矩形表示集合U ,A ,B 是U 的两个子集,则不能表示阴影部分的是( )A .(∁U A )∩B B .∁B (A ∩B )C .()()UUA B ⋂D .A BA ⋃2.已知集合{}2{47},60M xx N x x x =-≤≤=-->∣∣,则M N =( )A .{|42x x -≤<-或37}x <≤B .{|42x x -<≤-或37}x ≤<C .{|2x x ≤-或3}x >,D .{|2x x <-或3}x >,3.(多选题)已知集合A ,B ,全集为U ,下列结论正确的有( )A .若AB ⊆,则A B A =,且A B B ⋃=; B .若A B A B ⋃=⋂,则A B =;C .()()AB A B ⊆ D .集合{},,A a b c =的真子集有6个.4.集合U =R ,{}2|20A x x x =--<,B x y ⎧⎫==⎨⎩,则图中阴影部分所表示的集合是_________.5.已知集合{2A xx =<-∣或}6x >,{}12B x m x m =+≤≤∣ (1)若3m =,求A B ,(∁R A )∩(∁R B );(2)若AB B =,求m 值范围.类型九、集合与充要条件交汇1.(多选题)已知集合{|13}A x x =-<<,集合{|1}B x x m =<+,则A B =∅的一个充分不必要条件是( )A .2m ≤-B .2m <-C .2m <D .43m -<<-2.(多选题)已知P ={x |−2≤x ≤10},集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要条件,则实数m 的取值可以是( )A .1-B .1C .3D .53.已知集合4{|0}3x A x x -=>+,集合{|221}B x a x a =-≤≤+. (1)当3a =时,求A 和()R A B ;(2)若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.4.已知命题“关于x 的方程2250x mx m +++=有两个不相等的实数根”是假命题. (1)求实数m 的取值集合A ;(2)设集合{|121}B x a x a =-≤≤-,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.新预测 破高考1.(多选题)已知全集U =R ,集合1|02x A x x -⎧⎫=<⎨⎬-⎩⎭,则关于UA 的表达方式正确的有( )A .][(),12,-∞⋃+∞B .()(){}210xx x --≥∣ C .102x xx -⎧⎫≥⎨⎬-⎩⎭∣ D .()(),12,-∞+∞2.设集合{}1,2,3,4,5,6U =,{}1,2,3M =,{}3,4,5N =,则()()UU M N ⋂=( )A .{}2,3,4,5B .{}1,2,4,5,6C .{}1,2,6D .{}63.集合{|3}U x Z x =∈≤ {}1,0,1,2A =-,{}3,0,2,3B =-,则()UAB =( )A .{}3,3-B .{}0,2C .{}1,1-D .{}3,2,1,1,3---4.下列说法正确的是( )A 20y +=的解集为{}2,2-B .集合(){},1x y y x =-与{}1|x y x =-是相等的C .若{}11A x Z x =∈-≤≤,则 1.1A -∈ D .在直角坐标平面内,第一、三象限的点的集合为(){},0x y xy >5.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( )A .-2B .2C .4D .2或46.已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是( )A .-1≤a ≤5B .-1<a ≤5C .-2≤a ≤3D .-2≤a <37.已知集合1122A x x ⎧⎫=-<⎨⎬⎩⎭,{}0B x x a =<<,若A B ⊆,则实数a 的范围是( )A.0,1B .(]0,1C .1,D .[)1,+∞8.(设集合{{},1,2,4a b =,则a b +=( )A .2B .3C .5D .69.若集合3|01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭ B .1,13⎛-⎤ ⎥⎝⎦C .(,1)[0,)-∞-+∞D .1[,0)(0,1)3-⋃10.集合{}2*70,A x x x x N =-<∈,则集合*6,B y N y A y ⎧⎫=∈∈⎨⎬⎩⎭的子集个数为( )A .4个B .8个C .15个D .16个11.已知全集U R =,集合{|08,}A x x x R =<<∈和{|35,}B x x x Z =-<<∈关系的韦恩图如图所示,则阴影部分所表示集合中的元素共有A .3个B .4个C .5个D .无数个12.设集合2,1,0,1,2U,若{}1A B ⋂=-,{}()1U B A ⋂=,(∁U A )∩(∁U B )={−2,2},则下列结论正确( )A .1A -∉且2B ∈ B .0A ∉且0B ∈C .0A ∈且0B ∉D .2A ∉且1B ∉13.集合2{|40}A x x x =+=,22{|2(1)10}B x x a x a =+++-=,{|4,}M x x k k N ==-∈.如果A B A ⋃=,则实数a 的取值范围为( )A .1≤aB .11或<-=a aC .1≤-aD .11或≤-=a a14.已知集合1{|,Z}24k M x x k ==+∈,*1{|,N }42k N x x k ==+∈,若0x M ∈,则0x 与N 的关系是( ) A .0x N ∈或0x N ∉ B .0x N ∈C .0x N ∉D .不能确定15.如图所示,A ,B 是非空集合,定义集合A #B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y ,B ={y |y =3x ,x >0},则A #B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |x =0或x >2}16. 已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有________个。
2018年高考数学(理)一轮复习第一章第1讲分层演练直击高考
20.(2017·徐州模拟)已知集合 A={x|1<x<3},集合 B= {x|2m<x<1-m}. (1)当 m=-1 时,求 A∪B; (2)若 A⊆B,求实数 m 的取值范围; (3)若 A∩B=∅,求实数 m 的取值范围.
[解] (1)当 m=-1 时,B={x|-2<x<2}, 则 A∪B={x|-2<x<3}. (2)由 A⊆B 知12-m≤m>1,2m,
本部分内容讲解结束
按ESC键退出全屏播放
A.{0,1}
B.{0,1,2}
C.{0,2}
D.{0,1,2,3}
B [解析] 因为 P∩Q={0},所以 0∈P,只能 log2a=0,所 以 a=1,a2=1,又 0∈Q,因为 2a=21=2≠0,所以 b=0,
所以,P={0,1},Q={2,0},所以 P∪Q={0,1,2}.
4.(2017·河南省八市重点高中质量检测)若 U={1,4,6,8,
1.(2016·高考天津卷)已知集合 A={1,2,3,4},B={y|y
=3x-
C.{1,3}
D.{1,4}
D [解析] 由题意得,B={1,4,7,10},所以 A∩B={1,
4}.
2.设集合 M={x|x2-2x-3<0,x∈Z},则集合 M 的真子集
1,2},所以 M∩N={-1,0,1},故选 C.
6.(2017·石家庄教学质量检测(二))设集合 M={-1,1},N
=x1x<2,则下列结论正确的是(
)
A.N⊆M
B.M⊆N
C.M∩N=∅
D.M∪N=R
B [解析] 因为1x-2<0,即2x- x 1>0,解得 x<0 或 x>12,因为
2018届高考数学理科全国通用一轮总复习 规范答题-大题突破课一 精品
又因为F′(x0)=0,所以当x∈(0,x0)时,F′(x)>0, 当x∈(x0,+∞)时,F′(x)<0,所以F(x)在(0,x0)上单 调递增,在(x0,+∞)上单调递减,所以对于任意的正 实数x,都有F(x)≤F(x0)=0,即对于任意的正实数x, 都有f(x)≤g(x).……………………2分 得分点⑤
规范答题·必考大题突破课(一) 导数
【热点标签】 1.题型:解答题 2.分值:12分 3.难度:较难
【热点题型】 题型一:极值、导数几何意义及单调性的综合问题:以 函数为载体,以导数为解题工具,主要考查函数的单调 性、极值、最值问题的求法,以及参数的取值范围问题.
题型二:利用导数研究不等式的综合问题:不等式的证 明问题是高考考查的热点内容,常与绝对值不等式、二 次函数等相联系.问题的解决通常采用构造新函数的方 法.
由此可得x2-x1< x′2-x′1 =
a 1
n
x0.
因为n≥2,所以2n-1=(1+1)n-1≥1
C1 n1
1
n
1
n,
故2≥
1
n n1
x0.
所以,| x2
x1
|
a……2…. …………2分
1 n
得分点⑦
【得分细则·答题规则】 第(1)问踩点说明(针对得分点①②): ①正确求出函数的导数可得1分. ②得分点有三处:一是将n分为奇数、偶数,每一个可得 1分;二是如果采用列表法分析函数的单调性可得1分; 三是正确写出函数的单调性得1分.
(3)不妨设x1≤x2.由(2)知g(x)=(n-n2)(x-x0).
设方程g(x)=a的根为x′2,可得
x2
a n n2
试题君之好题2018年高考理数第01期 含解析
专题一 集合与常用逻辑用语 微测试1 集合的概念与运算(测试时间:45分钟 满分:100分)一、选择题:本大题共15小题,每小题5分,共75分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组集合中表示同一集合的是 A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={2,3},N ={(2,3)}2.若集合{|33}A x x =-<<,{|(4)(2)0}B x x x =+->,则A B =A .{|32}x x -<<B .{|23}x x <<C .{|32}x x -<<-D .{|4x x <-或3}x >-3.已知集合A ={x |x =3n +2,n N },B ={6,8,10,12,14},则集合A B 中元素的个数为A .5B .4C .3D .24.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N = A .0,1] B .(0,1] C .0,1)D .(-∞,1]5.设P ={y |y =-x 2+1,x R },Q ={y |y =2x ,x R },则 A .P ⊆Q B .Q ⊆P C .P R ð⊆QD .Q ⊆P R ð6.已知集合A ={1,2,m },B ={3,4}错误!未找到引用源。
.若{3}A B =,则实数m =A .1B .2C .3D .47.已知集合M ={x |(x -1)2<4,x R },N ={-1,0,1,2,3},则M N =A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}8.已知集合A ={x |x -2≥0},B ={x |0<log 2x <2},则()A B =R ðA .{x |2<x <4}B .{x |x ≥2}C .{x|x ≤2或x ≥4}D .{x |x <2或x ≥4}9.若集合M ={0,1,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x ,yM },则N 中元素的个数为 A .9 B .6 C .4D .210.已知集合A ={1,3,z i}(其中i 为虚数单位),B ={4},A ∪B =A ,则复数z 的共轭复数为 A .-2i B .2i C .-4iD .4i11.设集合M ={y |y =2sin x ,x -5,5]},N ={x |y =log 2(x -1)},则M N =A .{x |1<x ≤5}B .{x |-1<x ≤0}C .{x |-2≤x ≤0}D .{x |1<x ≤2}12.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为A .-1,0]B .(-1,0)C .(-∞,-1)∪0,1)D .(-∞,-1]∪(0,1)13.已知集合A ={-1,0},B ={0,1},则集合()ABA B ð=A .∅B .{0}C .{-1,1}D .{-1,0,1}14.已知P ={x |4x -x 2≥0},则集合P N 中的元素个数是A .3B .4C .5D .615.已知集合A ={x |log 2x <1},B ={x |0<x <c } (c >0).若A ∪B =B ,则c 的取值范围是 A .(0,1] B .1,+∞) C .(0,2]D .2,+∞)二、填空题:本大题共5小题,每小题5分,共25分.将正确的答案填在题中的横线上. 16.集合U =R ,A ={x |x 2-2ax +a >0},如果1U A ∈ð,则a 的取值范围是__________. 17.设全集U =A ∪B ={x N *|lg x <1},若U AB ð={m |m =2n +1,n =0,1,2,3,4},则集合B =__________. 18.设全集为U ,在下列条件中,是B ⊆A 的充要条件的有__________. ①A ∪B =A ;②U BA =∅ð;③U UA B ⊆痧;④U A B U =ð.19.A ,B 是非空集合,若aA ,bB ,且满足|a -b |A ∪B ,则称a ,b 是集合A ,B 的一对“基因元”.若A ={2,3,5,9},B ={1,3,6,8},则集合A ,B 的“基因元”的对数是__________.20.若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是__________.参考答案1.B 【解析】由集合的概念及集合的特性可知B 正确.2.B 【解析】因为{|33}A x x =-<<,{|4B x x =<-或2}x >,所以AB ={|23}x x <<,故选B .3.D 【解析】由已知得A ={2,5,8,11,14,17,…},所以A ∩B ={8,14}.故选D . 4.A 【解析】由已知得M ={0,1},N ={x |0<x ≤1},则M ∪N =0,1].5.C 【解析】依题意得集合P ={y |y ≤1},Q ={y |y >0},∴P R ð={y|y >1},∴P R ð⊆Q ,选C . 6.C 【解析】由集合A ={1,2,m },B ={3,4},A ∩B ={3},得m =3,故选C .7.A 【解析】解不等式(x -1)2<4,得-1<x <3,故M ={x |-1<x <3},则M ∩N ={0,1,2},故选A . 8.D 【解析】∵A ={x |x ≥2},B ={x |1<x <4},∴A ∩B ={x |2≤x <4},R ð(A ∩B )={x|x <2或x ≥4}.选D . 9.C 【解析】N ={(x ,y )|-1≤x -2y ≤1,x ,yM },则N 中元素有:(0,0),(1,0),(1,1),(2,1). 10.D 【解析】由A ∪B =A ,可知B ⊆A ,所以z i =4,则z =4i=-4i ,所以z 的共轭复数为4i ,故选D . 11.D 【解析】∵M ={y |-2≤y ≤2},N ={x |x >1},∴M ∩N ={y |-2≤y ≤2}∩{x |x >1}={x |1<x ≤2}.选D . 12.D 【解析】因为A ={x |1-x 2>0}={x |-1<x <1},则1-x 2 (0,1],所以B ={y |y =f (x )}={y |y ≤0},所以A ∪B =(-∞,1),A ∩B =(-1,0].故图中阴影部分表示的集合为(-∞,-1]∪(0,1),故选D . 13.C 【解析】∵A ∩B ={0},A ∪B ={-1,0,1},∴()ABA B ð={-1,1}.14.C 【解析】因为P ={x |0≤x ≤4},且N 是自然数集,所以集合P ∩N 中的元素个数是5,故选C . 15.D 【解析】A ={x |0<x <2},由数轴分析可得c ≥2,故选D .16.1,+∞) 【解析】由1U A ð,且U A ð={x |x 2-2ax +a ≤0},则12-2a ×1+a ≤0,得a ≥1.17.{2,4,6,8} 【解析】U ={1,2,3,4,5,6,7,8,9},A ∩U B ð={1,3,5,7,9},∴B ={2,4,6,8}.18.①②③④【解析】由Venn 图知①②③④均正确.19.13 【解析】由题意知,2,1;2,3;2,8;3,1;3,6;3,8;5,3;5,6;5,8;9,1;9,3;9,6;9,8都是A ,B 的“基因元”,共13对.20.6 【解析】根据题意可分四种情况:若①正确,则a =1,b =1,c ≠2,d =4,符合条件的有序数组有0个;若②正确,则a ≠1,b ≠1,c ≠2,d =4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);若③正确,则a ≠1,b =1,c =2,d =4,符合条件的有序数组为(3,1,2,4);若④正确,则a ≠1,b =1,c ≠2,d ≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.微测试2常用逻辑用语(测试时间:45分钟满分:100分)一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“所有能被2整除的整数都是偶数”的否定是A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数2.设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊆α,b⊥β,α∥βD.a⊆α,b∥β,α⊥β3.设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设a,b是实数,则“a+b>0”是“ab>0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知命题p:∃x R,x-2>lg x,命题q:∀x R,x2>0,则A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题6.已知集合A={-1,0,1,2},B={x|x2-x-2≤0},则xA是xB的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.下列关于命题的说法正确的是A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .“x =-1错误!未找到引用源。
高考数学一轮复习课时作业1集合理
课时作业1 集合5.[2019·济南模拟]已知集合A={x|x2+2x-3=0},B={-1,1},则A∪B=( ) A.{1} B.{-1,1,3}C.{-3,-1,1} D.{-3,-1,1,3}解析:由已知得A={1,-3},B={-1,1},所以A∪B={-3,-1,1},选C.答案:C6.[2019·桂林市,百色市,崇左市联合模拟考试]已知集合M={x|-1<x<3},N={-1,1},则下列关系正确的是( )A.M∪N={-1,1,3}B.M∪N={x|-1≤x<3}C.M∩N={-1}D.M∩N={x|-1<x<1}解析:因为M={x|-1<x<3},N={-1,1},所以M∪N={x|-1≤x<3},M∩N={1},所以选项B正确,故选B.答案:B7.[2017·全国卷Ⅲ]已知集合A={(x,y)│x2+y2=1},B={(x,y)│y=x},则A∩B中元素的个数为( )A.3 B.2C.1 D.0解析:集合A表示以原点O为圆心,半径为1的圆上的所有点的集合,集合B表示直线y=x上的所有点的集合.结合图形可知,直线与圆有两个交点,所以A∩B中元素的个数为2.故选B.12.已知A={x|x2-3x+2<0},B={x|1<x<a},若A⊆B,则实数a的取值范围是________.解析:因为A={x|x2-3x+2<0}={x|1<x<2}⊆B,所以a≥2.答案:[2,+∞)13.[2018·江苏卷]已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B=________.解析:本题考查集合的运算.∵A={0,1,2,8},B={-1,1,6,8},∴A∩B={1,8}.答案:{1,8}14.[2019·安徽质量检测]已知集合A={1,2,3,4},B={2,3,6,7},C={3,4,5,6},则图中阴影部分表示的集合是________.解析:由题可知,A∩B∩C={3},B∩C={3,6},故阴影部分表示的集合是{6}.答案:{6}[能力挑战]15.[2019·湖北省七市(州)协作体联考]已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为( )A.147 B.140C.130 D.117解析:由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,不与y=3,y=5有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.答案:B16.[2019·豫北名校联考]设集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,。
2018年高考数学小题精练系列第02期专题01集合理
专题01 集合1.若是S ={1,2,3,4,5},A ={1,3,4},B ={2,4,5},那么(C S A)∩(C S B)等于( )A . ∅B . {1,3}C . {4}D . {2,5}【答案】A【解析】∵S={1,2,3,4,5},A={1,3,4},B={2,4,5},∴C S A={2,5},C S B={1,3},那么(C S A)∩(C S B)=∅.应选A2.设全集U ={2,3,5},A ={2,|a -5|},C U A ={5},那么a 的值为( )A .2B .8C .2或8D .-2或8【答案】C3.已知全集{}2,1,3,4U =--,集合{}1,3B =-,那么U B =( )A . {}1,3-B . {}2,3-C . {}2,4-D . ∅【答案】C【解析】全集{}2,1,3,4U =--,集合{}1,3B =-,那么{}2,4U B =-.应选C .4.设全集U R =,集合{}{}| 3 ,|0 5 A x x B x x =≥=≤<那么集合()U C A B ⋂=( )A .{}|0 3 x x <<B .{}|0 3 x x ≤≤C .{}|0 3 x x <≤D .{}|0 3 x x ≤<【答案】D 【解析】{3}U A x x =<,(){03}U A B x x ⋂=≤<,选D .5.假设集合2{|2,1}{|log ,1}x M y y x P y y x x ==<-==≥,则M P ⋂=( )A . 1{|0}2y y <<B .{|01}y y <<C .1{|1}2y y << D .1{|0}2y y ≤<【答案】A 【解析】由题集合1{|2,1}{|0}2x M y y x y y ==<-=<<,2{|log ,1}{|0}P y y x x y y ==≥=≥ ,故1{|0}2M P y y ⋂=<< ,选A6.假设集合{|20}A x x =-<,{}1x B x e =,那么A B ⋂=( )A . RB . (),2-∞C . ()0,2D . ()2,+∞【答案】C【解析】因为集合{|20}{|2}A x x x x =-<=<,{}{}1x 0x B x e x ==,因此{}()|02?0,2A B x x ⋂=<<=,应选C .7.已知集合(){}2log 5A x y x ==-, {}12x B y y -==,那么A B ⋃=( ) A . [)0,5 B . ()0,5 C . R D . ()0,+∞【答案】C8.集合A ={x |y =1x -},B ={y |y =x 2+2},那么如图阴影部份表示的集合为( )A . {x |x ≥1} B. {x |x ≥2} C . {x |1≤x ≤2} D. {x |1≤x <2}【答案】D【解析】由题意可知A {}|1x x =≥,由20x ≥得{}222,|2y x B y y =+≥∴=≥ 由题中图形可知:阴影部份表示的集合为A C B ,{}|12A C B x x ∴=≤<,故答案选D9.已知集合{}2513,201x A x B x x x x +⎧⎫=<=-≥⎨⎬+⎩⎭,那么A B ⋂=( ) A .()0,1 B .[]0,1 C .[)0,1 D .(]0,1【答案】C【解析】()()51223001101111x x x x x x x +--<⇒<⇒-+<⇒-<<++, 22002x x x -≥⇒≤≤,那么{01}A B x x ⋂=≤<,选C .10.已知集合{}()1,2,{,|,,}A B x y x A y A x y A ==∈∈-∈,那么B 的子集共有 ( )A . 2个B . 4个C . 5个D . 8个【答案】A【解析】(){}2,1B =,那么子集为(){},2,1∅,共2个.应选A .11.已知集合,,那么集合等于( ) A . B . C .D . 【答案】B 【解析】由条件得,∴.选B .12.已知集合{|331}A x a x a =≤≤+, 112111{|}2733x B x +⎛⎫ ⎪=<< ⎪⎝⎭,假设A B ⊆,那么a 的取值范围是( )A . ()2,0-B . ()0,1C . []0,1D . ()1,+∞【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题01 集合
1.已知集合(){}{}|lg 1,2,1,0,1A x y x B ==+=--,则()R C A B ⋂=( ) A . {}2,1-- B . []2- C . []1,0,1- D . []0,1 【答案】A
2.设集合2
{|42},{|4}M x x N x x =∈-=<<<Z ,则M N ⋂等于( ) A . ()1,1- B . ()1,2- C . {}1,1,2- D . {}1,0,1- 【答案】D 【
解析
】
{
}{}{
}{
}{}2
|4
2M x x
=
∈
-
=
<<
<
Z .
故选D .
3.设是全集,集合
都是其子集,则下图中的阴影部分表示的集合为( )
A .
B .
C .
D .
【答案】B
【解析】观察图形得:图中的阴影部分表示的集合为,故选:B . 4.已知全集,,
,则
=( )
A .
B .
C .
D .
【答案】A
【解析】由题意得,
,所以,故选A . 5.已知
,
,则
的真子集个数为( )
A . 2
B . 3
C . 7
D . 8 【答案】B
【解析】∵A={x|x 2-3x-4≤0,x∈Z}={x|-1≤x≤4,x∈Z}={-1,0,1,2,3,4},B={x|2x 2-x-6>0,x∈Z}={x|x<
,或x>2,x∈Z},∴A∩B={3,4},则A∩B 的真子集个数为22-1=3,故选:B .
点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.
6.已知集合
,则
( )
A .
B .
C .
D .
【答案】A
点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.
7.已知集合
,
,则集合
中元素的个数为( )
A . 1
B . 2
C . 3
D . 4 【答案】C
【解析】由题得,集合,所以.集合中
元素的个数为3.故选C .
8.已知2{|230},{|A x x x B y y =--≤==
,则A B ⋂=( )
A . 1,⎡⎣
B .
C . 3⎤⎦
D . 2⎡⎣
【答案】C
【解析】2230x x --≤,解得13x -≤≤ {}|13A x x ∴=-≤≤,
≥
{|B y y ∴=
≥
3A B ⎤⋂=⎦
,故选C
9.设集合{|32}M x Z x =∈-<<,{|13}N x Z x =∈-≤≤,则M N 等于( )
A .{0,1}
B .{-1,0,1,2}
C .{0,1,2}
D .{-1,0,1} 【答案】D
【解析】
考点:1、集合的表示;2、集合的交集.
10.已知集合2
{|16}A x x =<,{|}B x x m =<,若A B A
=,则实数m 的取值范围是( )
A .[4,)-+∞
B .[4,)+∞
C .(,4]-∞-
D .(,4]-∞ 【答案】B
【解析】
考点:1、集合的表示;2、集合的基本运算.
11.设集合{}0)2)(1(>-+=x x x A ,集合{}31≤≤=x x B ,则=B A ( ) A .]3,1(- B .]1,1(- C .)2,1( D .)3,1(- 【答案】A
【解析】
试题分析:因为{}{}(1)(2)0|12A x x x x x =+->=-<<, {}13B x x =<≤,所以,
=
B A {}13x x -<≤=
(]1,3-,故选A .
考点:1、集合的表示方法;2、集合的并集.
12.已知集合2
{|50},{|6},M x x x N x p x =-≤=<<且{|2},M N x x q ⋂=<≤ 则
p q += ( )
A . 6
B . 7
C . 8
D . 9 【答案】B 【解析】
集合{
}{}2
|
50
|05M x x x x x =
-≤=
≤≤, {}|6N x p x =<<,且
{}|2M N x x q ⋂=
<≤, 2,5,257p q p q ∴==∴+=+=,故选B .。