酸再生设备工艺说明

酸再生设备工艺说明
酸再生设备工艺说明

廢酸再生工廠設備的情況說明

1、焙燒爐(Spray Roaster )-圖號 32250

工作原理:焙燒爐由燃氣加熱到600~700℃之間。被濃縮的廢酸經爐頂的噴嘴霧化噴灑

成微小液滴,濃縮酸中的氯化鐵顆粒在燃燒的氣體中被焙燒成游離氯化氣和氧化鐵。

物理結構:焙燒爐為立式圓柱形焊接結構。

2、旋風除塵分離機(Dust Cyclone)-圖號32170

工作原理:雙旋風除塵分離機用於分離焙燒爐烟氣中帶出的氧化鐵粉顆粒。被分離出的氧化鐵粉顆粒通過旋轉閥及插入焙燒爐中的斜管再進入焙燒爐下部。

物理結構:分離器由兩個錐形体構成,用耐磨鋼製成。

3、氧化鐵粉裝置(Oxide Air Blaster )- 圖號 33340

在氧化鐵粉儲槽的出口處安裝有此裝置,係利用瞬間噴出爆炸的壓縮空氣直接吹進下方錐形部位,避免大量鐵粉造成阻塞。

鐵粉排放口

氣爆槍

混凝土基礎

鐵粉過濾器

4、酸再生儲槽過濾裝置(Storage Tanks Filter for ARP)-圖號22210;22211 本過濾裝置是用于分離廢酸中的固體物質,過濾器內襯膠並裝有濾芯。

預濃縮酸過濾器廢酸液過濾器

5、除氯裝置(Chloride Reduction)-圖號33110

为了减少氧化铁粉中的氯化物含量在螺旋輸送機上裝有小型燃燒器,將含有HCl 的气体通过热螺旋输送机经过除尘分离器输回反应炉中。

6、洗滌塔液滴分離設備(Scrubber Drop Separator)-圖號32561

洗滌塔是用沖洗水直接射入含有粉塵顆粒的烟氣中。然後沖洗水和烟氣在文丘里管端加速霧化,藉以分離出水和鐵粉顆粒。

連續不斷流出的烟氣和水由分離機分離,向下流的水由下方的噴嘴排放,烟氣則分離後由上方排出。

7、酸再生儲槽泵(Storage Tanks Pump for ARP)-圖號

<1>酸洗酸泵:用於將廢酸罐中的廢酸送入純化工廠的除硅裝置

設計:離心泵由AC馬達驅動、2900轉/分

<2>沖洗水泵:用於提供吸收塔、預濃縮器、再生酸罐沖洗水以便配置酸溶液

設計:離心泵由AC馬達驅動、2900轉/分

<3>再生酸泵:用於向酸洗生產線輸送再生酸

設計:離心泵由AC馬達驅動、2950轉/分

<4>新酸泵:用於將新酸從槽車卸至新酸罐

設計:離心泵由AC馬達驅動、2900轉/分

<5>廢酸泵:用於向預濃縮器輸送廢酸

設計:離心泵由AC馬達驅動、2900轉/分

工作原理:來自焙燒爐的熱氣從預濃縮器上部進入之後,與預濃縮器蓋上的4個噴嘴噴灑的廢酸直接進行熱交換,將廢酸濃縮至70~80%。預濃縮器為文丘里管型。

工作原理:含有氯化氫氣體的焙燒氣體與吸收塔上部噴灑下來的吸收水逆流接觸,在塔內氯化氫氣體被吸收,轉換為濃度約18%的鹽酸。吸收塔由製造,

10、廢氣風機(Exhaust Fan)-附圖44080

廢氣排放風機用於將焙燒爐氣體或廢氣通過預濃縮器、吸收塔抽出,送至廢氣烟囪排出廢气风机设计采用离心风机,驱动电机采用变频控制的AC马达。廢氣風機為鋼殼,內襯耐酸橡膠。叶片用钛合金制做,整套设备还包括叶片喷水装置、底座及联轴器。

11、氧化鐵粉輸送裝置(Oxide Conveying Filter)-附圖

氧化鐵粉輸送風扇混合空氣與氧化鐵粉經由管道送入裝於氧化鐵粉儲槽上的過濾器。過濾器的設計為管狀;如下附圖。濾管內為聚酯布。

12、燃燒器(Burner)-附圖32260

工作原理:由助燃風機提供助燃空氣,燃燒燃氣達到焙烧炉反应的所需值。

燃氣空氣

13、廢氣淨化噴射裝置(Gas Jet Spray System)-圖號32562

14、雙螺旋輸送機(Screw Conveyor)-圖號33110

雙螺旋輸送機是用來輸送氧化鐵粉的動力來源。係藉由預熱的壓縮空氣逆流造成上升渦流來輸送。

15、廢酸純化儲槽泵(Storage Tanks Pump for WAPUR)-附圖

<1>已處理過廢酸泵:將已處理過的廢酸打入廢酸儲存槽。

設計:離心泵由AC馬達驅動、2900轉/分

<2>氨泵:用於將槽車中的氨液送至氨儲槽。

設計:離心泵由AC馬達驅動、2900轉/分

16、溶解塔(Leaching Column)-圖號44160

溶解塔用於裝入碎鐵屑與來自酸洗生產線的廢酸浸溶以降低酸度。設計:鋼制圓柱體下部為錐形

規格:容量75m3

耐溫85℃

17、絮凝劑計量泵(Flocculant Metering Pump)-附圖

氨水計量泵是用來從絮凝劑儲槽精確的計量送至沉澱槽的絮凝劑,計量泵為隔膜泵

18、熱交換器(Heat Exchanger)-附圖

溶解塔前的熱交換器用來將流至溶解塔內的酸液使用蒸氣加溫,為了加快溶解的速度。溶解塔后的熱交換器用來將溶解塔內流出的酸液使用冷卻水降溫。此熱交換器是使用非滲透性的塊狀石墨作為媒介。

19、氨水計量泵(Ammonia Metering Pump)-附圖

氨水計量泵是用來從氨液儲槽精確的計量送至反應槽的氨液,計量泵為隔膜泵

20、反應槽(Process Bin)-圖號44163

對槽內吹入空氣並利用攪拌器使氯化鐵溶液發生氧化作用,混入氨溶液使溶液的PH值達到4.5~5。此槽為GFK制

21、壓濾機(Filter Press)-附圖

壓濾機用於過濾從沉澱罐底部用泵打出含FeCl2酸液中的固體物質(Fe(OH)3和SiO2),如泥漿;含有固體物質的濾液,在帶有工作壓力的情況下進入過濾室,經過加壓過濾,濾液進入收集罐,固體物質被濾布過濾存於兩層濾布之間而形成濾餅。濾板和濾布設計為聚丙烯制。

硫磺制酸工艺流程说明

硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫 泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用0.5?0.6MPa蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段 空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收 掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾 器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约

97.8%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70C后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172 C后一部分进入第一吸收塔塔底,塔顶用来温度75C、浓度为98.0%的硫酸喷淋,吸收气体中S03后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依 次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用104.5%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为104.5%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产 品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的 炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降 温后进入第二吸收塔塔底。该塔用温度为75 C,浓度为98%的 硫酸喷淋,吸收SO3后的硫酸自塔底流入吸收塔循环槽。而后经二吸塔酸循环泵加压,并经二吸塔酸冷却器冷却后进入第二吸收塔喷淋。 98%成品硫酸由干燥酸循环泵出口引出,再经成品酸冷却器冷却至40 C后进入成品酸贮罐。

酸再生改造方案

攀钢集团 攀枝花钢钒有限公司冷轧厂酸再生机组废气处理工艺改进技术方案 四川和翔环保科技有限公司二○一二年六月

目录 1.项目简介3 2.污染物特点 4 3.现有工艺存在的问题 4 4.系统工艺设计5 5.改造后效果及工艺说明9

1.项目简介 酸洗带钢产生的废盐酸,因富含氯化亚铁而采用喷雾焙烧法进行再生处理,废酸焙烧产生的含酸气体经吸收塔吸收后再生,残留废气经洗涤塔洗涤后排入大气。主要工艺如下: 由于废气中HCL气体、Fe2O3颗粒物状态及物理性质存在不稳定性,导致吸收和洗涤的过程变得更为复杂,现有工艺参数控制环节与废气特征不能完全匹配,当工艺条件或设备工况改变时,废气排放指标就不能达到环保要求,造成环境污染。因废气排放不达标导致机组停机或无法正常生产的时间累计达437.5小时/年,约460m3左右的废酸无法再生而排放,导致生产成本增加。 目前攀钢冷轧厂废气排放中的HCL含量和氧化铁粉无法满足≤120mg/m3的要求,粉尘排放含量也不稳定,经常出现因尾气中Fe2O3颗粒物超标而冒红烟现严重污染周围环境且对人的呼吸系统也产生伤害,废气中的酸雾危害大气且氯离子对臭氧层有很大的破坏性。因此必须对废气排放不达标的原因进行研究并通过技术改进来解决排放超标问题。 2.污染物特点 2.1 组份的多相性 废气中包含了固相、液相、气相多成分物理状态污染物,极大限制了污染物的处理方式,属复杂废气治理范畴。 2.2 强酸易挥发性 HCL气体虽易溶于水,但其溶液又具有挥发性,形成双向解压特征,介质吸收率和吸收速度受温度和压力影响较大。 2.3高沉积粘滞性 吸收液中组份复杂,含有FeCL3、Fe2O3、HCL及其它固体微粒混合物,容易产生絮凝、粘附、结晶等现象。 3.现有工艺存在的问题 3.1系统风量控制 废气抽吸为离心风机,通过变频调速控制炉内负压,但基于离心风机运行的曲线特征,直接改变风机转速会导致系统工作极不稳定。 3.2 预浓缩器 当文丘里预浓缩器循环废酸喷淋不均匀、密度不够,或烟气浓度和流速发生变化,以及喷嘴发生阻塞时,会出现焙烧气体温度过高,氧化铁分离效率降低等问题。 3.3吸收塔 由于对再生酸有浓度要求,因此吸收塔不能完全吸收掉废气中的HCl 气体和氧化铁粉,从吸收塔出来的气体含过量HCL而作为废气进入净化塔。再生酸浓度受以下因素影响: 焙烧炉中气体的HCL含量; 焙烧气体温度; 吸收水的喷流量。 3.4 洗涤塔 目前工艺采用清水作为吸收洗涤剂,选用250Y型孔板波纹填料,单级循环喷淋,由于循环水成份质量不受控制,只能依靠进水量补充来实现更新,当前端工艺不稳定时,循环水被污染程度在一段时间内可能会很严重,将显著影响了循环水的清洗效果。由于循环水中不可避免的颗粒物容易造成填料阻塞,在选择孔板波纹填料时过滤精度较粗,同时但对F2O3微粉及HCL最后吸收和拦截效率也较低。 4.系统工艺设计 4.1方案选择原则 在酸再生工艺流程中,即使采用更多控制手段,系统仍无法避免不稳定因素,因此改进方案

酸再生设备工艺说明

廢酸再生工廠設備的情況說明 1、焙燒爐(Spray Roaster )-圖號 32250 工作原理:焙燒爐由燃氣加熱到600~700℃之間。被濃縮的廢酸經爐頂的噴嘴霧化噴灑 成微小液滴,濃縮酸中的氯化鐵顆粒在燃燒的氣體中被焙燒成游離氯化氣和氧化鐵。 物理結構:焙燒爐為立式圓柱形焊接結構。

2、旋風除塵分離機(Dust Cyclone)-圖號32170 工作原理:雙旋風除塵分離機用於分離焙燒爐烟氣中帶出的氧化鐵粉顆粒。被分離出的氧化鐵粉顆粒通過旋轉閥及插入焙燒爐中的斜管再進入焙燒爐下部。 物理結構:分離器由兩個錐形体構成,用耐磨鋼製成。

3、氧化鐵粉裝置(Oxide Air Blaster )- 圖號 33340 在氧化鐵粉儲槽的出口處安裝有此裝置,係利用瞬間噴出爆炸的壓縮空氣直接吹進下方錐形部位,避免大量鐵粉造成阻塞。 鐵粉排放口 氣爆槍 混凝土基礎 鐵粉過濾器

4、酸再生儲槽過濾裝置(Storage Tanks Filter for ARP)-圖號22210;22211 本過濾裝置是用于分離廢酸中的固體物質,過濾器內襯膠並裝有濾芯。 預濃縮酸過濾器廢酸液過濾器

5、除氯裝置(Chloride Reduction)-圖號33110 为了减少氧化铁粉中的氯化物含量在螺旋輸送機上裝有小型燃燒器,將含有HCl 的气体通过热螺旋输送机经过除尘分离器输回反应炉中。

6、洗滌塔液滴分離設備(Scrubber Drop Separator)-圖號32561 洗滌塔是用沖洗水直接射入含有粉塵顆粒的烟氣中。然後沖洗水和烟氣在文丘里管端加速霧化,藉以分離出水和鐵粉顆粒。 連續不斷流出的烟氣和水由分離機分離,向下流的水由下方的噴嘴排放,烟氣則分離後由上方排出。

酸再生机组工艺流程图

再生机组工艺流程、参数及产品描 再生机组工艺流程图 废酸罐1级废酸过滤器予浓缩器吸收塔 大气 塑烧板除尘器 装袋机门型阀铁粉料仓破碎机焙烧炉 外运大气洗涤塔液滴分离器排烟风机 1、酸 a 新盐酸:无色或浅黄色透明液体 各项指标: 酸 (HCL) ≥ 31% 铁≤ 0.01% 砷≤ 0.001% 灼烧残渣≤ 0.15% 氯化物≤ 0.01% 含铁、硫酸盐、灼烧残渣、氯化物等各项指标低的盐酸为一级品或优质品,用于酸洗的盐酸,严格限制含氟(含氟严格限定为:F≤5ppm)。 b 废酸:来自酸洗线 总铁量≥120 g/l 总HCL ≤ 200 g/l 其中:游离HCL 3-5% Fe 120g/L 温度≤90℃ c 再生酸 HCL 浓度 190-210g/l 铁含量≤5 g/l 产量约3000L/h d 氧化铁粉 可分离出来的铁浓度为115g/l时,约产生492Kg/h氧化铁粉 氧化铁粉各项指标: Fe 2O 3 % 98.7--99 FeO % ≤0.4 H 2 O % ≤0.09 比表面积 m2/g 3-3.9 粒度μm ≤1.0 Cl-含量 % ≤0.2(重量) SiO2 % ≤0.02 2、能力与热耗 a 酸溶解铁能力 酸洗热轧板总量 40万吨/年

酸洗铁损 0.5% 废酸液浓度~200g/L HCL(游离与化合) 废酸液温度≤90℃ 废酸中Fe含量~120 g/L废酸 b 再生能力 年再生运行时间: 6500h/年 40万t/年的酸洗热轧钢板将产生: 40万t/年×0.5%=2000吨的Fe,溶解在酸洗液中。即在酸洗废酸液中溶有120g/L Fe。 在再生过程中,从废酸中分离Fe的效率并非100%,约有5g/L的Fe仍然残留在再生酸中。按从废酸液可分离出115g/L废酸的Fe求得:2000×1000×1000g =17391304.3 115g/L 每小时要求再生能力为: 17391304.3 =2676L/h 6500h 经园整后,取再生能力为3m3/h。 3m3/h再生机组将产生492kg/h氧化铁粉。 3m3/h再生装置,废酸99%转化成再生酸。 c 酸再生的能耗 在设备正常运行焙烧炉热平衡时:耗750Kcal/升废酸。 设天然气热值:8350Kcal/Nm3 需天然气量:200 N m3/h 压力:8000-10000Pa 助燃空气:2970Nm3/h 压力:8000-12000Pa 压缩空气:120Nm3/h(仪表用气)压力:0.5-0.7MPa 年耗电量:165.75×104kW·h 工业水量:Max5 m3/h,正常耗量2 m3/h 脱盐水量:2 m3/h(二级除盐水) 3、环保指标 a 噪音:噪音不超过80Db。高噪音的设备,将安装在隔离室中隔离。 b 排废烟气 自洗涤塔出口排放的烟气中含: HCL <30mg/Nm3 Fe2O3(湿态)<50mg/Nm3 氧化铁粉料仓顶部排放废气,Fe2O3含量≤20mg/ Nm3。 c 排液 机组正常运行无废水液排放,只有开车、停车时,或清洗喷枪、设备时,机组才有废液排出。且是间断排液。 废水排放:4 m3/次,温度:40℃,比重:1.01 kg/L, 含Fe 5g/L,含HCL 0~200g/L d 车间空气 HCL含量≤5mg/Nm3(湿态) Fe2O3含量≤10mg/Nm3(湿态) 4、现场 新盐酸再生机组,占地面积为21×27=567m2 5 公用工程 a 电 电压等级:380V AC,3相220V AC,单相 频率:50Hz

离子交换带控制点的工艺流程图

(一)带控制点的工艺流程 工艺流程及原理 反洗水 废液 正洗水 工作原理: 离子交换是指水溶液通过树脂时,发生在固体颗粒和液体之间的界面上,固液间离子相互交换的过程。离子交换反应是可逆反应,离子交换对不同组分显示出不同的平衡特性。在水处理中常见的离子交换反应是水的软化,除盐及去除或回收污水种重金属离子等。水中在阳离子交换剂上的Na+离子进行交换反应。其反应如下: 2RNa+M2+=R2M+2Na2+ 式中:R-----离子交换剂的骨架N+-----交换剂上可交换离子 M2+----水溶液中二价阳离子 (三)自动控制,在线检测及参数调节 自动控制:水泵 1、调节池,盐池,软水池均设下水位开关及水位下限自动报警装置。水位达下限 时报警并停泵。 在线检测: 1、流量:泵(A-J,L-N)出口流量在线检测,其中泵(A-C)流量的瞬时值和累 计值通过计算机显示,记录和打印。 2、测硬度:A7-A8检测 3、Ph值:调节池中污水,混合反应池中污水,泵(G)出水的Ph值在线检测, 既可现场检读,也可通过计算机显示,记录并打印。 运行参数调节及控制策略 1、流量: 泵(I-K)皆为交流电源离心泵,泵(I-K)连接电磁流量计(F1 -10 )可通过 计算机,根据流量设定值指定变频器工作,改变泵的转速以调节其流量。(四)额定运行参数及预期效果 1、盐池容积:12.3L 2、离子交换柱:进水流量0.1m3h-1,进水空塔流速=正洗强度=12.7m/h,正洗流量100Lh-1,反洗强度10.2m/h,反洗流量80Lh-1,正反洗时间各15分钟。 3、软水池:流量0.10m3h-1,容积1.37m,停留时间13.7小时。 4、调节池:流量0.10m3h-1。 (五)非标设备的工艺设计及计算

酸再生操作规程

酸再生操作规程 1.主要技术参数 1.1机组能力:处理废酸量6m3/h 1.2废酸:来自酸洗机组 总铁量:120g/L 总HCL:200g/L(游离和化合) 1.3再生酸:HCL浓度190~200g/L 铁含量≤5g/L 产量约5880L/h 1.4氧化铁粉:Fe2O3≥98.5% FeO ≤0.4% SiO2≤0.02% CL-≤0.01% H2O ≤0.1% 原生粒度≤1.0 m 产量约985kg/h(废酸含铁120g/L) 1.5炉顶负压:-250Pa 1.6炉顶温度:395℃ 1.7预浓缩器后炉气温度:≤95℃ 1.8新盐酸性能及盐酸酸洗原液的配制 1.8.1新盐酸性能 新盐酸(工业合成盐酸GB320-93)无色或浅黄色透明液体,用于配制酸洗机组用盐酸酸洗原液,其性能指标如下表:

用于盐酸酸洗的新盐酸,严格限制氟含量,氢氟酸最大允许量为5PPm 。 1.8.2盐酸酸洗原液的配制 当新盐酸浓度N=31%,即每吨新酸含HCL 310公斤,H 2O 690公斤。 每吨新盐酸浓度31%,可稀释20%酸洗原液重量: Kg 155020 311000=? 每吨新盐酸配制20%酸洗原液稀释耗水量: 1550-310=1240Kg 式中:31为新盐酸浓度31% 20为酸洗原液浓度20% 举例:按上述公式计算,配制15500公斤浓度20%的酸洗原液,需要10吨浓度31%新盐酸,耗水12400公斤。 2.工艺过程叙述 来自酸洗机组的废酸,收集在废酸罐中,用废酸泵经废酸过滤器送入预浓缩器(流量用气动调节阀自动控制)。废酸通过预浓缩器循环泵经浓缩酸过滤器送至预浓缩器顶部进行喷洒,与来自焙烧炉的炉气(395℃)进行直接热交换,将废酸中的部分水份(约25~30%)蒸发掉,废酸得到浓缩。浓缩后的废酸由焙烧炉给料泵经废酸过滤站送至焙烧炉顶部,再经喷杆、过滤网、喷嘴进入焙烧炉进行喷洒。焙烧炉设有3杆喷枪,每杆喷枪上各装有5个喷嘴,喷枪可自动插入焙烧炉内部。 焙烧炉本体是个钢壳,内衬有耐火耐酸砖,在本体上呈切线均布3个烧嘴加热(600~650℃),使喷洒到炉内浓缩酸蒸发、干燥、结晶分解,其在焙烧炉内反应如下: 2FeCl 2+2H 2O+1/2O 2=Fe 2O 3+4HCL 2FeCl 3+3H 2O=Fe 2O 3+6HCL 分解后的Fe 2O 3固体颗粒,以粉末形式落在焙烧炉下部锥体中,经破碎机、

酸再生技术总结

硅钢酸再生工程施工技术总结

一、工程概况 酸再生站位于冷轧硅钢厂主厂外,站内共5层平台,最高平台为▽+30m,酸再生站内主要设备有外方引进、国内合作制造配套设备。主要设备有焙烧炉、文丘里除尘器、文丘里浓缩器、吸收塔、预脱硅沉淀池、脱硅沉淀池、浸溶塔、罐体、泵、风机、阀门等。本工程为节能环保项目,将生产线上的废酸处理后,生成再生酸,防止酸外排,节约成本。酸再生站的主要作用: 1、将新酸在酸罐内稀释,痛过再生酸泵送到酸轧线; 2、酸轧线的废酸经过预脱硅、脱硅、焙烧炉、文丘里浓缩器等一系列设备,生成再生酸,再送到酸轧线使用; 主要工艺流程:

二、相关专业的施工难点及应对措施 (一)机械专业 1、机械基本情况 酸再生站位于冷轧硅钢厂主厂外,站内共5层平台,最高平台为▽+30m,酸再生站内主要设备有外方引进、国内合作制造配套设备。主要设备就是罐体,最大直径为焙烧炉φ8200 x14948mm,每个罐体安装必须与土建结构穿插配合进行施工。酸再生安装的内容主要有大型、小型储罐、泵、风机、烟道、旋转阀、起重葫芦、管道等,酸储罐防腐衬胶、防腐衬砖,焙烧炉炉窑砌筑,高温储罐保温。 2、工程难点 (1)槽、罐、塔类衬胶设备的安装; (2)焙烧炉的安装; (3)其它小型储罐、泵类设备的安装 (4)风机安装 3、施工方法 (1)设备的平面定位 一般设备如罐类、塔类,应在设备吊装前在基础上依据车间轴线放出墨线,吊装后参照设备罐体上制造时做出的基准标记调整。 重要设备为了保证设备在基础上准确就位,设备吊装就位后应根据已设置的中心标板,挂设基准线。基准线的挂设应根据设备安装精度要求和挂设跨距选用直径为0.3~0.75mm的整根钢线,其拉紧力一

混床操作流程

混床 混床是通过离子交换的方法制取去离子水。当阴阳树脂吸附饱和后,分别用一定浓度的NaOH和HCl再生。本系统双柱混床再生方式采用酸碱分步再生方式。 1工艺参数 a.运行:运行流速15-30米/小时,出水水质达不到设计指标即为运行终点。 b.分层:反洗流速10米/小时,反洗时间15分钟。 c.进碱:碱用量120-160克/升树脂,再生液浓度3~5%,再生液流速3~5米/小时,时间约为30分钟。 d.置换:流速同再生流速,时间为30分钟,至出水pH与进水pH相同为止。 e.进酸:盐酸用量120-160克/升树脂,再生液浓度4~6%,再生液流速3~5米/小时,时间约为30分钟。 f.快冲洗:流速为20米/小时,至排水与进水pH接近为止。 g.混合:压缩空气压力0.1~0.15MPa,气量2.5~3.0米3/米2〃分,混合时间为1~5分钟。 h.正洗:正洗流速为15~30米/小时,以排水符合出水水质指标为终点,正洗结束后转入运行。 2混床操作步骤 ①运行:

a.混床运行前先进行排气,排气时开启上进阀、排气阀,当排气 管路出水时,排气完毕。 b.排气完毕后,打开下排阀,同时关闭排气阀,当柱子下排出水 符合指标,开启出水阀,同时关闭下排阀,混床投入运行。 ②反洗分层 当混床出水水质达不到指标时,树脂就要再生。再生之前,先要进行反洗分层,反洗分层根据阴、阳树脂的比重不同,通过树脂沉降来实现的。 a.开启上排阀,逐渐调节下进阀,以缓慢增大下进流量,直至下 进流速10米/小时左右。使树脂得到充分展开,树脂碎粒、悬 浮物从塔顶部排掉。 b.约15分钟后,逐渐降低下进流量。使树脂颗粒逐步沉降。 分层效果可根据树脂沉降后界面是否清晰来判断,如果一次操作未达到要求,可重复操作直至分层清晰,都仍未达到要求,则须采取强迫失效方法。 ③失效 树脂分层不清是由于阳、阴树脂失效程度不同造的,遇到这种情况可用进碱的方法强制树脂失效。 a.打开下排阀、排气阀,将水排至树脂层上150mm左右。 b.关闭下排阀,打开进碱阀,碱喷水阀,吸碱阀,压力水阀,下 排阀,开启中间增压泵,调节下排阀,使混床进出碱量平衡, 此时碱液自上而下流经整个树脂层,使阳树脂失效。

废硫酸水的处理方法简介

废硫酸水的处理方法简介 硫酸在化工、钢铁等行业广泛应用。在许多生产过程中,硫酸的利用率很低,大量的硫酸随同含酸废水排放出去。这些废水如不经过处理而排放到环境中,不仅会使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。近年来许多国家已经制定了严格的排放标准,与此同时,先进的治理技术也在世界各地迅速发展起来。 废硫酸和硫酸废水除具有酸性外,还含有大量的杂质。根据废酸、废水组成和治理目标的差异,目前国内外采用的治理方法大致可分为3大类:回收再用、综合利用和中和处理。 一、废硫酸的回收再用 废硫酸中硫酸浓度较高,可经处理后回收再用。处理主要是去除废硫酸中的杂质,同时对硫酸增浓。处理方法有浓缩法、氧化法、萃取法和结晶法等。 (一)浓缩法 该法是在加热浓缩废稀硫酸的过程中,使其中的有机物发生氧化、聚合等反应,转变为深色胶状物或悬浮物后过滤除去,从而达到去除杂质、浓缩稀硫酸的双重目的。这类方法应用较广泛,技术较成熟。在普遍应用高温浓缩法的基础上又发展了较为先进的低温浓缩法,下面分别加以介绍。 1、高温浓缩法

淄博化工厂三氯乙醛生产过程中有废硫酸产生,其中H2SO4质量分数为65%~75%、三氯乙醛质量分数为1%~3%、其它有机杂质的质量分数为1%。该厂将其沉淀过滤后,用煤直接加热蒸馏,回收的浓硫酸无色透明,H2SO4质量分数大于95%,无三氯乙醛检出,而沉淀物经碱解、蒸馏和过滤后可回收氯仿。该厂废硫酸处理量为4000t/a,回收硫酸创利润55万元/a。 日本木村-大同化工机械公司的废硫酸浓缩法是用搪玻璃管升膜蒸发和分段真空蒸发相结合,将废硫酸中H2SO4的质量分数从10%~40%浓缩到95%,其工艺可分为3段,前两段采用不透性石墨管加热器蒸发浓缩,后一段采用搪玻璃管升膜蒸发器浓缩,在每一段中H2SO4质量分数渐次升高,分别达到60%、80%和95%。加热过程采用高温热载体,温度为150~220℃,可将有机物转变为不溶性物质,然后过滤除去,该工艺以2t/h的规模进行中试,5a运转良好。该工艺适应能力很强,可用于含多种有机杂质的废硫酸的处理。 2、低温浓缩法 高温浓缩法的缺点在于:硫酸的强腐蚀性和酸雾对设备和操作人员的危害很大,实际操作非常麻烦。因此,近年来开发出了一种改进的浓缩法,称为汽液分离型非挥发性溶液浓缩法(简称WCG法)。 WCG法的原理和工艺如下:将废稀硫酸由储槽用耐酸泵打入循环浓缩塔浓缩,然后经换热器加热后进入造雾器和扩散器强迫雾化并进一步强迫汽化,分离后的气体经高度除雾后进入气体净化器,净化后排放。分离后的酸液再度回到循环浓缩塔,经反复循环浓缩蒸馏,

超纯水工艺流程

超纯水工艺流程 预处理----反渗透----CEDI膜块----抛光树脂 膜法超纯水制取设备工艺流程:原水—超滤(多介质过滤器、活性炭过滤器)—反渗透—EDI—超纯水 渗透/电去离子(RO/EDI)集成膜技术是近年来迅速发展成熟,并得到大规模工业应用的最新一代超纯水制造技术,在国际上已逐渐成为纯水技术的主流。RO/EDI的集成膜技术在电子企业用水,实验室纯水系统,电厂用水等方面具有独特的优势。 自来水进入原水箱,通过原水泵增压,经砂滤器、炭滤器、阻垢剂加药、保安过滤器,到达反渗透单元,经两级反渗透过滤进入EDI单元,达到电阻率15MΩ.cm(25℃)进入纯水水箱。纯水供水设计为循环方式,经纯水供水泵增压,通过紫外线消毒器、抛光混床、0.22微米过滤器接入纯水供水管,到达使用点。 1.1预处理单元 采用石英砂过滤、活性炭过滤、保安过滤作为两级反渗透的预处理。 1.2膜系统单元 膜系统单元是本系统的核心,负责去除水中大部分的有害物质,保证终端产水达到标准要求。本设计中采用辅以pH值调节的两级反渗透作为初级脱盐工艺,EDI模块作为深度脱盐工艺。 1.2.1反渗透模块 反渗透膜是以压力差为驱动力的液相膜分离方法,可以看作是渗透的一种反向作用。在压力推动下,溶液中的水分子透过膜,而其它分子、离子、细菌、病毒等被截留,从而实现脱盐效果,达到纯化目的。 整个反渗透系统由高压泵、反渗透膜、压力容器以及相应的仪器、仪表、阀门、机架、管道及管件等组成;此外还有独立的化学清洗装置。

1.2.2EDI模块 EDI技术是将膜法和离子交换法结合起来的新工艺,基本原理主要包括离子交换、直流电场下离子的选择性迁移及树脂的电再生。水中的离子首先通过交换作用吸附于树脂颗粒上,再在电场作用下经由树脂颗粒构成的“离子传输通道”迁移到膜表面并透过离子交换膜进入浓室。由于离子的交换、迁移及离子交换树脂的电再生相伴发生,犹如边工作边再生的混床离子交换树脂柱,因此可以连续不断地制取高质量的纯水、高纯水。 EDI系统由增压泵、膜堆、电源以及相应的仪器、仪表、阀门、机架、管道等组成。 1.3供水单元 纯水供水循环采用254nm紫外线杀菌、抛光混床脱盐、0.22微米过滤,达到用户的纯水水质要求。 为保证纯水的品质以及生物学指标,在纯水制备的终端设置精度为0.22μm的微滤膜过滤器,用于截留去除脱盐设备出水中的微粒以及细菌尸体。由于0.22μm的微滤膜膜过滤器为整个脱盐工艺的最后一道处理设备,因此又称终端过滤器。过滤器内装折叠式微孔滤膜,过滤精度0.22μm,过滤器出口设置压力表。过滤器经过一段时间的运行后,滤膜表面截留了大量杂质,使滤膜堵塞,导致工作压力增加,当进出口压力差增大到某一设定值时,更换滤膜。 终端过滤器由罐体、0.22μm滤芯、压力表组成。 1.4主要设备 主要设备:原水箱、原水增压泵、砂滤器,炭滤器罐体、多路阀、阻垢剂计量泵、阻垢剂(氨基三甲叉膦酸ATMP)药罐、保安过滤器、保安过滤滤芯、一级RO高压泵、一级RO膜、二级RO高压泵、二级RO膜、膜壳、PH值调整计量泵、EDI增压泵、EDI模块、超纯水水箱、纯水增压泵、抛光混床罐、抛光树脂、0.22微米过滤器、0.22微米滤芯等。

废酸回收简介

金属在表面处理过程中使用大量的废酸。当酸液中的金属达到一定的浓度后,因处理效果达不到工艺要求,酸液需要重新配制和更换。在这个过程中,大量的废酸液被产生。这些废酸液中由于含有较高浓度的酸和金属,对环境造成一定的威胁,需要进行处理,废酸洗液回收再生方法主要有:加热蒸发法,特种树脂交换法和扩散渗析膜法三种。加热蒸发法随着能源价格涨高,已经不符和经济性价比,随着科技发展,树脂交换法和扩散渗析膜法技术发展成型。扩散渗析法在德国已经商品化,进几年国内有些厂家在少量试生产,该设备最大处理能力为5M3/d, 因处理量小,膜寿命短,易老化破损,性价比过高等原因,限制工业生产使用。 树脂交换法是将废酸洗液通过纯化回收设备,酸离子被填料阻滞吸附,金属离子随液体穿透填料层,酸与金属杂质分离,用穿透液等量的水冲洗填料上酸根,便得到与废酸洗液浓度大致相等的再生酸,可重新配置酸洗液使用。穿透液根据杂质性质回收。 产品特点 对盐酸,硫酸,硝酸,磷酸,氢氟酸以及混合酸都可以纯化回收。 纯化回收酸浓度高,循环使用降低生产成本。 酸,金属盐分离,有利于金属盐回收。 废酸洗液经纯化回收设备处理后,能够实现废水零排放。 清洗化生产,节能减排,绿色环保设备。 全程自动化,精作简单,节省人力成本。 技术参数 单体设备处理量5--30M3/d. 外形尺寸:1000×2000×1200mm 酸回收率85--90% 工作电压380V 50HZ 特别说明 填料是纯化回收设备技术核心,需要根据企业废酸洗液进行探索实验,小试,选择最佳分离纯化填料。 进行中试确定纯化回收工艺参数,根据中试数据确定产品参数,设计制造。 若企业拟实行废水零排放,需要增加其他处理设备。 废硫酸回收再利用 硫酸在化工、钢铁等行业广泛应用。在许多生产过程中,硫酸的利用率很低,大量的硫酸随同含酸废水排放出去。这些废水如不经过处理而排放到环境中,不仅会使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。近年来许多国家已经制定了严格的排放标准,与此同时,先进的治理技术也在世界各地迅速发展起来。 废硫酸和硫酸废水除具有酸性外,还含有大量的杂质。根据废酸、废水组成和治理目标的差异,目前国内外采用的治理方法大致可分为3大类:回收再用、综合利用和中和处理。 1 废硫酸的回收再用 废硫酸中硫酸浓度较高,可经处理后回收再用。处理主要是去除废硫酸中的杂质,同时对硫酸增浓。处理方法有浓缩法、氧化法、萃取法和结晶法等。 1.1 浓缩法

烟气制酸工艺流程

该烟气制酸根据冶炼系统提供的二氧化硫烟气,采用了技术先进、经验成熟的工艺。烟气净化采用稀酸洗涤、绝热蒸发稀酸冷却移热、动力波气体净化工艺流程。干燥和吸收采用一级干燥、两级吸收、循环酸泵后冷却工艺流程。转化采用“3+1”式四段双接触转化工艺,“ⅣⅡⅠa—ⅢⅠb”换热流程。废酸处理采用硫化法处理工艺。 烟气制酸系统按工序分为净化工段、干吸工段、转化工段、酸库工段、废酸处理工段。 (1)净化工段 烟气制酸净化系统采用动力波泡沫洗涤烟气净化技术,该技术已在国内成功应用并国产化,其基本流程为:将由收尘系统来的温度为300℃的冶炼铜时产生的烟气送入净化工段,该烟气首先在一级动力波洗涤器逆喷管中被绝热冷却和洗涤并除去杂质,然后通过一级动力波气液分离槽进行气液分离,分离后的气体进入气体冷却塔进一步冷却及除杂,由气体冷却塔出来的气体进入二级动力波洗涤器的逆喷段进一步除杂。从二级动力波洗涤器出来的烟气中绝大部分烟尘、砷及氟等杂质已被清除,同时烟气温度降至40℃左右,然后进入两级管式电除雾除下酸雾,使烟气中的酸雾含量降至≤5mg/Nm3。烟气中夹带的少量砷、尘等杂质也进一步被清除,净化后的烟气送往干吸工段。 净化工段中的一级动力波洗涤器、气体冷却塔、二级动力波洗涤器均有单独的稀酸循环系统。气体冷却塔的循环酸通过板式换热器进行换热,将热量移出系统。稀酸采取由稀向浓,由后向前的串酸方式。根据废酸中含砷、含氟、含尘量从一级动力波洗涤器中抽出一定的量送至沉降槽、过滤器沉降。底流送至现有的铅压滤系统进行液固分离,产生的副产品铅滤饼可外售,其

滤液与过滤器的上清液一起送至废酸处理工段进行进一步处理。 (2)干吸工段 干吸工段采用了常规的一级干燥、二次吸收、循环酸泵后冷却的流程与双接触转化工艺相对应。干吸工段基本流程为将来自净化工段经二级电除雾器的烟气在干燥塔入口加入空气,将烟气中氧硫比调到1.0后进入干燥塔,在塔内与塔顶喷淋下来的95%硫酸充分接触,经丝网捕沫器捕沫,使出口烟气含水份≤0.1g/Nm3后进入SO2主鼓风机。来自一次转化的SO3烟气进入第一吸收塔,在塔内与塔顶喷淋下来的约98%的浓硫酸充分接触,吸收烟气中的SO3生成硫酸,烟气经纤维除雾器后进入转化工段进行二次转化。经二次转化的SO3烟气进入第二吸收塔,在塔内与塔顶喷淋下来的98%浓硫酸充分接触,吸收烟气中的SO3生成硫酸,烟气经纤维除雾器除雾后将酸雾量降至≤42mg/Nm3,然后由100m尾气烟囱排空。 干燥塔、第一吸收塔以及第二吸收塔均设有单独的酸循环系统,循环方式均为塔→槽→泵→酸冷却器→塔。干燥塔循环酸吸收烟气中的水分后浓度有所降低,而第一吸收塔和第二吸收塔的循环酸吸收SO3后浓度有所提高,根据工艺操作要求各自需维持一定的酸浓度,为此采用干燥和吸收相互串酸和加水的方式进行自动调节。系统中多余的98%酸或者93%酸可作为成品酸产出。 (3)转化工段 从SO2鼓风机来的冷SO2气体,俗称一次气,利用第Ⅳ热交换器、第Ⅱ热交换器和第Ⅰa热交换器被第四、二段触媒层出来的热气体和第一段触媒层出来的部分热气体加热到420℃进入转化器一段触媒层。经第一、二、三段触媒层催化氧化后SO2转化率约为94.3%的SO3气体,经各自对应的换热器换

废酸再生技术

精心整理 废酸资源化技术摘要 钢铁热轧所产生的酸洗废液一般含有0.05~5g /L 的 H+和 60~250 g /L 的 Fe2+,由于严重的腐蚀性,已被列入《国家危险废物名录》。该类废液的直接排放不仅严重污染环境,而且造成极大的浪费。 Ca (OH 1 特性,在焙烧炉中直接将FeCl2 转化为盐酸和Fe2O3,其反应如下: 4FeCl2+4H2O+O2=SHCIt↑+2Fe2O3

反应生成的和从酸里蒸发出来的HCl气体被水吸收后得到再生酸。这是一种最彻底、最直接处理酸洗废液的方法。由于盐酸具有挥发性,所以该方法更适合于盐酸酸洗废液的处理。实践证明该方法可以处理任何含铁量的盐酸酸洗废液。 流化床焙烧法与喷雾焙烧法是直接焙烧法中两种应用最早、最成熟的工艺形式。虽然采用的具体设备和工作过程不完全相同,但工作原理相同,它们将废液的加热、 厂、 除了上述两种方法以外,还有日本的开米拉依托法、奥托(OTTO)法、PORI法及滑动床法等方法。开米拉依托法在直接焙烧法的基础之上,加入了氧化铁的提纯工艺,可以生产出高纯度氧化铁,是钢铁工业与电气磁性材料的结合。 直接焙烧法原理简单,而且一般自动化程度都较高,解决了钢铁企业不熟悉化工生产操作的难题,但是由于其要求系统内各个程序的控制相互协调,而且要求酸洗工

序与之密切配合,需要具有较高的设计、管理和控制水平,同时由于在高温下盐酸有强烈的腐蚀性,因此接触废液的设备均需要采用优质的耐腐蚀材料,造成设备成本、零部件消耗、维修费用及运行费用都很高,因此该法更适合于大型企业采用。 目前已经建立了许多无废液排放的带钢酸洗厂,即将直接焙烧处理工艺与钢材的酸洗工艺有效地结合起来。 1.2 1.2.l 晶体的 由于盐酸具有挥发性,容易再生,所以在对盐酸酸洗废液进行浓缩处理的同时,可以回收得到稀盐酸,与浓酸混合后可循环用于酸洗工艺。也可以用萃取法再生盐酸后进行铁盐的回收[1]。 1.2.2 膜法分离

酸再生操作规程

酸再生操作规程

酸再生操作规程 1.主要技术参数 1.1机组能力:处理废酸量6m3/h 1.2废酸:来自酸洗机组 总铁量:120g/L 总HCL:200g/L(游离和化合) 1.3再生酸:HCL浓度190~200g/L 铁含量≤5g/L 产量约5880L/h 1.4氧化铁粉:Fe2O3≥98.5% FeO ≤0.4% SiO2≤0.02% CL-≤0.01% H2O ≤0.1% 原生粒度≤1.0 m 产量约985kg/h(废酸含铁120g/L) 1.5炉顶负压:-250Pa 1.6炉顶温度:395℃ 1.7预浓缩器后炉气温度:≤95℃ 1.8新盐酸性能及盐酸酸洗原液的配制 1.8.1新盐酸性能 新盐酸(工业合成盐酸GB320-93)无色或浅黄色透明液体,用于配制酸洗机组用盐酸酸洗原液,其性能指标如下表:

用于盐酸酸洗的新盐酸,严格限制氟含量,氢氟酸最大允许量为5PPm 。 1.8.2盐酸酸洗原液的配制 当新盐酸浓度N=31%,即每吨新酸含HCL 310公斤,H 2O 690公斤。 每吨新盐酸浓度31%,可稀释20%酸洗原液重量: Kg 155020 31 1000=? 每吨新盐酸配制20%酸洗原液稀释耗水量: 1550-310=1240Kg 式中:31为新盐酸浓度31% 20为酸洗原液浓度20% 举例:按上述公式计算,配制15500公斤浓度20%的酸洗原液,需要10吨浓度31%新盐酸,耗水12400公斤。 2.工艺过程叙述 来自酸洗机组的废酸,收集在废酸罐中,用废酸泵经废酸过滤器送入预浓缩器(流量用气动调节阀自动控制)。废酸通过预浓缩器循环泵经浓缩酸过滤器送至预浓缩器顶部进行喷洒,与来自焙烧炉的炉气(395℃)进行直接热交换,将废酸中的部分水份(约25~30%)蒸发掉,废酸得到浓缩。浓缩后的废酸由焙烧炉给料泵经废酸过滤站送至焙烧炉顶部,再经喷杆、过滤网、喷嘴进入焙烧炉进行喷洒。焙烧炉设有3杆喷枪,每杆喷枪上各装有5个喷嘴,喷枪可自动插入焙烧炉内部。 焙烧炉本体是个钢壳,内衬有耐火耐酸砖,在本体上呈切线均布3个烧嘴加热(600~650℃),使喷洒到炉内浓缩酸蒸发、干燥、结晶分解,其在焙烧炉内反应如下: 2FeCl 2+2H 2O+1/2O 2=Fe 2O 3+4HCL 2FeCl 3+3H 2O=Fe 2O 3+6HCL 分解后的Fe 2O 3固体颗粒,以粉末形式落在焙烧炉下部锥体中,经破碎机、

酸再生工艺简介

酸再生工艺简介 来自酸洗机组的废酸,收集在废酸罐中,用废酸泵经废酸过滤器送入预浓缩器,由预浓缩器循环泵经浓缩酸过滤器送至预浓缩器顶部喷洒,与来自焙烧炉的炉气(395°)进行直接热交换,蒸发废酸中部分水份,废酸得到浓缩。浓缩后的废酸由焙烧炉给料泵经过滤站送至焙烧炉顶部,再经喷杆,过滤网,喷嘴进入焙烧炉喷洒。焙烧炉本体上呈切线分布两个烧嘴加热。使喷洒到炉内浓缩酸蒸发、干燥、结晶分解。其在炉内反应如下: 2FeCl2+2H2O+1/2O2=Fe2O3+4HCL 2FeCl3+3H2O=Fe2O3+6HCL 分解后的Fe2O3固体颗粒,以粉末形式落在焙烧炉下部椎体中,经破碎机、旋转阀排出,由一气动输送系统输送到铁粉料仓。在料仓上部安装有一台塑烧板式除尘器,以过滤输送氧化铁粉时用过的空气,然后将空气排放到大气中。料仓中的氧化铁粉,经门型阀进到装袋机装袋。 焙烧炉气(由燃烧废气,水蒸汽和氯化氢气体组成)自顶部出来经双旋风分离器将炉气中夹带的部分氧化铁粉分离出来,氧化铁粉经管道返回到焙烧炉底部。炉气进入预浓缩器,直接与循环酸接触,冷却和清洗炉气中残留的微量氧化物,并进入吸收塔,与经吸收塔给料泵送至顶部喷洒的冲洗水均匀接触。炉气中的氯化氢成分被水吸收形成再生酸。再生酸从塔底部自流至再生酸储罐中。 含有微量氯化氢气体的炉气从吸收塔顶部离开,经排烟风机进入洗涤塔(排烟风机控制系统处于负压状态,保证不会有氯化氢泄露出来),用冲洗水喷淋洗涤。在洗涤塔上部烟囱脱盐水再进行两段洗涤。洗涤水流至收集水罐,用于

吸收塔喷洒,使含酸清洗水全部回收。废气达标排放。 工艺流程简图: 酸洗车间冲洗水酸洗车间废酸 ↓↓ 冲洗水罐废酸罐 (100m3*1个)(100m3*2个) 经冲洗水过滤器经废酸过滤器 ↓ 浓缩酸铁粉 焙烧炉铁粉仓 高温含酸炉气装袋外卖 含酸炉气 再生酸 吸收塔再生酸罐酸洗车间 (50m3*4个) 炉气 洗涤塔 净化后炉气排放

混合离子交换器(混床)再生工艺

混合离子交换器(混床)再生工艺 3.混床的再生 3.1混床再生前的准备工作: 3.2.1检查运行及备用混床与失效混床所有联络阀都已关严,尤其是运行及备用混床本体进酸碱阀、反洗进水阀和进气阀必须关闭严密。 3.1.2逐个试验失效混床的所有阀门三次,要求达到开关灵活。 3.1.3各水箱高水位,混床所需酸、碱量足够。 3.1.4反渗透系统运行正常。 3.1.5压力表、流量表等已投入正常运行。 3.1.6喷射器、再生泵,空压机,罗茨风机完好备用。 3.1.7现场照明良好。 3.1.8若发现罗茨风机管道内积水较多,可将失效混床本体所有排水阀打开,将混床内的存水全部放净,然后打开失效混床进气阀将管道内的积水排出。 3.2混床的再生操作程序 3.2.1反洗分层 开混床反洗进水阀,反洗排放阀,顶部排气阀(待出水后可关闭),启动中间水泵,先小流量反洗,待树脂反洗到一定高度,再逐渐开大中间泵出口阀,使树脂到上视窗中心线,流量以不跑树脂为准,维持反洗流速10~15m/h,反洗30~40分钟,并且达到反洗出水清澈透明,然后关闭反洗进水阀,反洗排放阀。 注意事项: (1)严禁在液面低于树脂层面状态下反洗树脂,以免干树脂堆压挤坏中排装置或再生布碱装置。 (2)反洗水压力不宜超过0.1Mpa,如果压力过高建议降低反洗流量。 (3)刚开始反洗时流速不能过快,待树脂层松动后逐渐加大流速,否则很容易造成中间排水装置损坏。 3.2.2自然沉降 所有阀门处于关闭状态,保持10分钟,让树脂在静止沉降中分层。然后从下视窗观察阴阳树脂分层是否明显。如果分层不明显必须重新分层,直到阴阳树脂分层明显。 注意事项: (1)分层不明显时,也可进碱浸泡:先用反洗水松动树脂,再排部分水,然后进20厘米碱,进碱浓度为10%(至少6%)。浸泡30分钟(可混合1~2分钟增强碱液与树脂的接触效果)。最后冲洗至排水接近中性,然后重新反洗分层。 3.2.3排水 开中间排放阀和排气阀,放水至上视窗中下部。 3.2.4预喷射(稳压) 全开混床进酸阀、进碱阀(调节阀全开后应倒关半圈,以防阀门卡涩)、酸碱喷射器的进水阀,稍开中排手动阀。启动再生泵,并调整再生流速5~6m/h,全开酸碱喷射器的进水阀,然后调节中排手动阀,直到水位稳定在上监视窗中部。 3.2.5同时进酸碱 3.2.5.1适当开酸碱计量箱进酸阀、进碱阀使酸碱转子流量计指示为1000~1500L/h(1#、2#混床),500~1000L/h(3#混床),调整进酸浓度为2~4%,进碱浓度为1.5~3%。

新硫铁矿制酸工艺流程

*硫铁矿制酸工艺流程* *该 装 置以固体硫铁矿为原料,采用沸腾焙烧,中压余热锅炉回收高温热能发电,干法收尘,带电除尘的稀酸洗封闭净化和“3+2”五段转化两转两吸工艺流程。硫酸生产工艺流程图见图2-1所示。 破碎 干燥器 块矿 空气 煤 硫精矿 热风炉 除尘 尾气排放 沸腾炉 空气 SO 2炉气 废热锅炉 旋风除尘、电除尘 增湿器 炉渣 蒸汽发电 冷却、洗涤塔 净化、电除雾 循环酸 废酸送磷铵工段 酸泥送污水处理站 干燥塔 SO 2鼓风机 二转二吸 尾气吸收 成品硫酸 尾气放空

年产12万吨硫酸生产工艺主要由原料工段、焙烧工段、净化工段、干吸工段、转化工段、贮酸工段组成。 (1)原料工段 a、原料硫精矿运入装置内,先堆放于露天堆场,再用铲车运入矿库,用桥式抓斗起重机将原料抓入贮斗内,经皮带给料机均匀加入回转干燥机进行干燥,干燥后的原料含水6%,进入链式破碎机粉碎,并经筛分后送入库内堆放。 b、用桥式抓斗起重机将干燥破碎好的硫精砂抓入成品贮斗,由圆盘给料机均匀加入皮带机,再由皮带栈桥送到焙烧工段沸腾炉加料贮斗。 (2)焙烧工段 沸腾炉加料斗中的矿粉,由皮带加料机送入沸腾炉焙烧。焙烧产生的SO2炉气温度达900~930℃,该炉气经余热锅炉后温度降至400℃左右。在锅炉中产生的中压过热蒸汽,送往汽轮发电机发电。炉气从余热锅炉出来,进入旋风除尘器,经旋风降尘后进入电除尘器进一步除尘。电除尘器除尘效率可达99%。炉气经除尘后含尘0.2g/Nm3左右,温度300~350℃进入净化工段。沸腾炉排出的矿渣,余热锅炉,旋风除尘器排出的矿尘都经冷却滚筒冷却后,与电除尘器排出的矿尘,一并用埋刮板输送机输送到矿渣增湿器,喷入水使矿渣降温增湿,再由胶带输送机送往贮仓。 焙烧硫铁矿所需空气由沸腾炉鼓风机送入。

混床再生工艺步骤

混床D0506A/B/C/D的倍量再生 a) 反洗分层:开启反洗进水阀KV-0523、反洗排水阀KV-0524、排酸阀KV-0556、排碱阀KV-0558。启动P0503A/B/C/D(其中一台),反洗流量为150 m3/h,直到出水清澈透明为止,时间不少于20min。 b) 落床:开启排气阀KV-0530、排酸阀KV-0556、排碱阀KV-0558,关闭所有其他的阀门,让其自然落床,使阴阳树脂分开,时间约为15min。 c) 加药1:开启进酸液阀KV-0526、进酸隔断阀KV-0555;进碱阀KV-0527、进碱隔断阀KV-0557;中排阀KV-0528;打开混床酸喷射器E0502进水阀KV-0543,混床碱喷射器E0504进水阀KV-0547,启动P0507A/B(其中一台)流量为25 m3/h,时间为5min。 d) 加药2:加药1完成以后,打开KV-0542、KV-0546,同时进酸液和碱液,酸液流量为25 m3/h,时间为10min,浓度为2%;混床酸计量箱F0504进酸量为832.5kg/次,浓度为31%;碱液流量为25 m3/h,时间为10min,浓度为2%;混床碱计量箱F0506进碱量为1250kg/次,浓度为20% e) 置换:酸碱再生液进完以后,关闭KV-0542、KV-0546,其他阀门不变,置换时流量为25 m3/h,时间为5min。 f) 正洗:打开混床酸喷射器E0502旁通阀KV-0544,混床碱喷射器E0504旁通阀KV-0548,用稀释水冲洗树脂,正洗流量为35 m3/h,时间为7min。 g) 排放:正洗完后,停运P0507A/B,打开KV-0530,KV-0528,关闭其他的阀门,排放床内的水,时间约为5min。 h) 混脂:开启KV-0524、KV-0530、KV-0556、KV-0558;开启KV-0529进行混脂,空气流量为800N m3/h,时间为15min。 i) 冲水:打开KV-0530,KV-0559,启动P0503A/B/C/D(其中一台),流量为75 m3/h,时间为15min

相关文档
最新文档