专题十五 导数与函数的最值及在实际生活中的应用
导数在生活中的应用例子
导数在生活中的应用例子
一、在经济学中
1、供求曲线中的供求应变:当价格发生变化时,需求量会出现波动,
以及需求量对价格的变化也变化,供求曲线受到价格变化的影响。
这
就是导致供求应变的原因,而这个原因可以用微积分的偏导数来证明。
2、市场竞争:随着竞争者数量的增加,市场价格也会发生变化,价格
作为变量,市场最终决定价格时,就会出现供需冲突,从而引起价格
波动,这就用微积分中的导数来分析。
二、在金融学中
1、货币政策传导机制:货币政策的实施使得利率的变化对经济的影响,用微积分的意义来看,利率是一种曲线,当利率变化时,曲线的斜率
也会变化,这就是利率传导机制。
2、投资机会成本:投资机会成本指的是投资者在一定条件下所承担的
投资风险,当利率下降时,投资机会成本也会发生变化,而这一变化
可以用微积分中的导数来进行分析。
三、在制造业中
1、公差计算:在计算机装配工艺中,产品的尺寸关系到了其加工的质量,如果所用的部件的尺寸不符合公差要求,就会出现不良的加工结
果,这时处理的办法就是计算出来最大的容许偏差,而这个最大容许
偏差就是通过微积分的偏微分来计算出来的。
2、工艺优化:为了确保加工出来的产品的质量,就必须对付诸如温度、压力、用料等参数进行优化调整,这可以使用微积分来分析各参数对
最终结果的影响,以达到最优化调整的效果。
导数及其应用生活中的优化问题举例
模型参数设置
为预测模型设置合适的参数,以便进行模型训练和预测。
模型训练和优化
使用历史数据训练预测模型,并不断优化模型参数,以提高预测准 确性。
时间序列预测模型的检验与应用
模型检验
使用独立的验证数据集评估预测模型的性能,比较实际值与预测值的差异。
导数及其应用生活中的优化 问题举例
2023-11-08
contents
目录
• 导数的定义与计算 • 导数在生活中的应用 • 导数在优化问题中的应用举例 • 导数在最优问题中的应用 • 导数在时间序列预测中的应用 • 导数在其他领域的应用举例
01
导数的定义与计算
导数的定义
函数在某一点的导数
函数在某一点的导数描述了函数在该点的变化率。
通过运用导数,企业可以找到运营成本的最优解,以 降低企业的运营成本。
在最小成本问题中,企业需要通过对运营成本的分析 ,寻找降低成本的途径。导数方法可以通过对成本函 数进行求导,找到成本最低的运营方案。例如,在物 流行业中,通过优化运输路线和装载方式可以降低运 输成本。
04
导数在最优问题中的应用
最优路径问题
模型应用
将经过验证的预测模型应用于实际时间序列数据的预测,为决策提供支持。
06
导数在其他领域的应用举 例
工程领域:结构优化设计、强度分析等
结构优化设计
在航空航天、建筑等领域,结构优化设计是至关重要的。导数可以帮助我们更好地理解结构的形状、尺寸和材料 等参数对结构强度、刚度和稳定性的影响,从而优化设计。例如,通过有限元分析方法,利用导数求解结构中的 应力、应变分布,进一步优化结构设计。
导数在实际生活中的运用
导数在实际生活中的运用1. 引言1.1 导数的定义导数的定义是微积分学中的重要概念,它描述了函数在某一点处的变化率。
在几何意义上,导数可以理解为函数图像在某一点的切线斜率。
具体地说,如果函数f(x)在x=a处的导数存在,那么导数f'(a)表示了当自变量x在a处发生一个小的变化Δx时,函数值f(x)将相应地发生多大的变化Δf,这种变化率可以用导数来描述。
导数的概念不仅仅在数学中有重要的应用,它在实际生活中也有着广泛的应用价值。
导数的定义让我们能够更好地理解和描述各种现象中的变化规律,帮助我们预测未来的发展趋势。
掌握导数的概念可以帮助我们更好地解决各种实际问题,提高工作和生活的效率。
了解导数的定义及其在实际生活中的重要性对于我们每个人都是有益的。
在接下来的内容中,我们将探讨导数在不同领域的具体应用,展示导数在实际生活中的广泛应用。
1.2 导数在实际生活中的重要性导数在实际生活中的重要性可以说是不可忽视的。
导数是微积分中的一个重要概念,在实际生活中有着广泛的应用。
通过导数,我们可以描述物体在某一时刻的变化率,帮助我们更好地理解和分析现实世界中的各种现象。
在经济学中,导数被广泛运用于描述市场需求和供给的变化趋势,分析价格弹性和收益最大化等问题。
导数的概念也被应用于金融领域,帮助投资者和分析师预测股价的波动和变化趋势。
在物理学中,导数被用来描述物体的运动状态,例如速度和加速度的变化。
通过导数,我们可以计算出物体在不同时间点的位置和速度,帮助我们更好地理解自然界中的各种物理现象。
在生物学中,导数可以用来描述生物体的生长和变化过程,帮助研究人员更好地理解生物体的发育和演化规律。
导数也被用来分析生物体在不同环境条件下的适应性和响应能力。
在工程学和医学领域,导数被广泛应用于设计和优化各种系统和流程。
通过导数,工程师和医生可以分析和改进各种工艺和治疗方案,提高效率和准确性,保障工程项目和医疗保健的质量和安全性。
导数在实际生活中的运用
导数在实际生活中的运用【摘要】导数在实际生活中的应用广泛而深远。
在物体运动的描述中,导数可以帮助我们准确地预测物体的速度和加速度。
在经济学中,导数被用来分析市场趋势和制定最优的经济政策。
医学领域中,导数可以帮助医生更好地理解生命体征数据,提高诊断和治疗的准确性。
工程领域中,导数在设计和优化各种系统、结构和器件中扮演着重要角色。
环境保护方面,导数可以帮助我们预测污染物在环境中的传播和影响。
导数在各个领域中的普遍性表明了其对现代社会的重要性。
通过对导数的深入研究和应用,我们能够更好地理解世界的运行规律,促进科技进步和社会发展。
【关键词】导数、实际生活、物体运动、经济学、医学领域、工程领域、环境保护、普遍性、重要性1. 引言1.1 导数在实际生活中的运用导数在实际生活中的运用广泛而深远。
在日常生活中,我们可能并不经常意识到导数的存在,但实际上,导数在我们生活的方方面面都有着重要的应用。
导数可以帮助我们描述物体的运动,预测经济的发展趋势,提高医学诊断的准确性,优化工程设计的效率,以及保护环境资源的可持续性。
物体运动的描述是导数在实际生活中的最常见应用之一。
通过导数,我们可以精确地描述物体在空间中的位置、速度和加速度变化,从而帮助我们进行准确的运动分析和预测。
在交通规划中,导数可以帮助我们优化车辆的行驶路线,缓解交通拥堵问题;在体育比赛中,导数可以帮助我们分析选手的表现,并优化训练计划。
除了物体运动,导数在经济学、医学、工程和环保领域中也有着重要的应用。
在经济学中,导数可以帮助我们分析市场的供需关系,预测商品价格的波动趋势,优化投资组合的收益率。
在医学领域,导数可以帮助医生精确地分析患者的病情,提高诊断和治疗的效率。
在工程领域,导数可以帮助工程师优化产品设计,提高生产效率和质量。
在环境保护领域,导数可以帮助我们优化资源利用,减少能源消耗和环境污染,实现可持续发展。
导数在各个领域中都有着重要的应用,对现代社会的发展起着至关重要的作用。
导数在实际生活中的运用
导数在实际生活中的运用【摘要】导数在实际生活中的运用十分重要。
物体运动的描述与预测中,导数可以帮助我们计算速度、加速度等参数,从而更好地预测物体的运动轨迹。
在成本与收益优化中,导数可以帮助企业优化生产成本,最大化利润。
在信号处理与数据分析中,导数可以帮助我们提取信号中的有用信息,进行数据分析和预测。
医学和工程领域中,导数也有着广泛的应用,比如在医学影像分析和工程设计中起着至关重要的作用。
导数在实际生活中有着丰富的应用场景,帮助我们更好地理解和应用数学知识。
【关键词】导数、实际生活、物体运动、成本、收益、优化、信号处理、数据分析、医学、工程技术、应用、广泛应用1. 引言1.1 导数在实际生活中的运用的重要性导数在实际生活中的运用是非常重要的。
导数是微积分中的一个重要概念,表示函数在某一点上的变化率。
在实际生活中,导数可以帮助我们描述和预测物体的运动。
通过对物体位置或速度的导数进行计算,我们可以更准确地预测物体未来的位置或速度,这在航天飞行、交通运输等领域具有重要意义。
除了物体运动的描述与预测,导数还在成本与收益优化中扮演着重要角色。
在商业领域,通过对成本函数或收益函数的导数进行分析,我们可以找到使利润最大化或成本最小化的最优决策方案,从而提高企业的竞争力。
导数在信号处理与数据分析、医学、工程技术等领域也有着广泛的应用。
在信号处理中,导数可以帮助我们分析信号的频率、幅度等特性;在医学中,导数可以帮助医生分析患者的生理数据;在工程技术领域,导数可以帮助工程师设计更高效的系统和设备。
导数在实际生活中有着广泛的应用,对于提高生产效率、提升科技发展水平具有重要意义。
通过深入理解和应用导数,我们可以更好地解决现实生活中的问题,推动社会的发展和进步。
2. 正文2.1 物体运动的描述与预测物体运动的描述与预测是导数在实际生活中的一个重要应用领域。
在物理学和工程学中,导数被广泛用于描述和预测物体的运动状态。
通过对物体位置关于时间的导数,我们可以得到物体的速度和加速度,进而了解物体运动的特性。
导数在实际生活中的运用
导数在实际生活中的运用导数在实际生活中有许多重要的运用,尤其是在科学、工程、经济学和医学等领域。
下面将介绍一些常见的应用。
1. 物理学中的运动分析导数的最初应用是用于描述物体的运动。
通过对物体位置关于时间的导数,可以得到物体的速度。
通过再次对速度关于时间的导数,可以得到物体的加速度。
这些导数可以帮助我们更好地理解物体的运动规律,并用于设计飞机、汽车等交通工具。
2. 经济学中的市场分析导数在经济学中有广泛的应用,尤其是在市场分析方面。
通过对市场需求曲线和供应曲线取导数,可以得到需求和供应的弹性。
这些导数可以帮助我们预测价格和数量的变化对市场的影响,从而进行合理的市场调控和决策。
3. 工程学中的优化问题导数在工程学中的应用非常广泛,尤其是在优化问题中。
通过对函数取导数,可以找到函数的最大值和最小值,从而解决工程中的优化问题。
这些导数可以帮助我们设计高效的工程系统,提高工程的性能和效益。
4. 生物学中的生物系统建模导数在生物学中的运用非常重要,尤其是在生物系统建模方面。
通过对生物体的生长、衰老和变异等过程建立数学模型,并计算这些模型的导数,可以帮助我们预测生物体的生长和发展趋势,从而进行合理的生物系统管理和疾病治疗。
5. 医学中的药物剂量计算导数在医学中也有重要的应用,尤其是在药物剂量计算方面。
通过对药物在人体内的分布和代谢过程建立数学模型,并计算这些模型的导数,可以帮助医生根据患者的特点和需要,合理地调整药物的剂量,从而实现最佳的治疗效果和减少不良反应。
导数在实际生活中有许多重要的运用。
它们可以帮助我们更好地理解和描述物理、经济、工程、生物和医学等系统的运动和变化规律,从而提高我们的生活质量和工作效率。
学习导数的基本概念和运算法则对我们来说是非常有益的。
导数在实际生活中的应用
导数在实际生活中的应用导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。
导数知识是学习高等数学的基础,它是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不仅在天文、物理、工程领域有着广泛的应用。
而且在工农业生产及实际生活中,也经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。
这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决。
接下来就导数在实际生活中的应用略微讨论。
1.导数与函数的极值、最值解读函数的极值是在局部范围内讨论的问题,是一个局部概念,函数的极值可能不止一个,也可能没有极值。
函数()y f x =在点0x 处可导,则'0()0F x =是0x 是极值点的必要不充分条件,但导数不存在的点也有可能是极值点。
最大值、最小值是函数对整个定义域而言的,是整体范围内讨论的问题,是一个整体性的概念,函数的最大值、最小值最多各有一个。
函数最值在极值点处或区间的断点处取得。
2.导数在实际生活中的应用解读生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。
例1:在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少? 思路:设箱底边长为x cm ,则箱高602x h -=cm ,得箱子容积V 是箱底边长x 的函数:23260()(060)2x x r x x h x -==<<,从求得的结果发现,箱子的高恰好是原正方形边长的16,这个结论是否具有一般性?变式:从一块边长为a 的正方形铁皮的各角截去相等的方块,把各边折起来,做一个无盖的箱子,箱子的高是这个正方形边长的几分之几时,箱子容积最大?提示:()2()2(0)2a V x x a x x =-<< 答案:6a x =。
导数——生活中的优化问题应用举例
导数——生活中的优化问题应用举例导言:生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.本文主要阐述如何利用导数,解决一些生活中的优化问题.导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1.与几何学有关的最值问题 2.与物理学有关的最值问题3.与利润及其成本有关的最值问题4.效率最值问题注意点:在求实际问题中的最大值和最小值时,一般是先找出自变量、因变量,建立函数关系式,并确定其定义域.如果定义域是一个开区间,函数在定义域内可导(其实只要是初等函数,它在自己的定义域内必然可导),并且按常理分析,此函数在这一开区间内应该有最大(小)值(如果定义域是闭区间,那么只要函数在此闭区间上连续,它就一定有最大(小).记住这个定理很有好处),然后通过对函数求导,发现定义域内只有一个驻点,那么立即可以断定在这个驻点处的函数值就是最大(小)值.知道这一点是非常重要的,因为它在应用上较为简便,省去了讨论驻点是否为极值点,求函数在端点处的值,以及同函数在极值点处的值进行比较等步骤.典例剖析1.与几何学有关的最值问题例:(11江西文18)如图,在=2,2ABC B AB BC P AB π∆∠==中,,为边上一动点,PD//BC 交AC 于点D,现将'',PDA .PDA PD PDA PBCD ∆∆⊥沿翻折至使平面平面 (1)当棱锥'A PBCD -的体积最大时,求PA 的长;(2)若点P 为AB 的中点,E 为''.AC B DE ⊥的中点,求证:A 解:(1)设x PA =,则)2(31312xx x S PA V PDCB PBCDA -=⋅='底面- 令)0(,632)22(31)(32>-=-=x x x x x x f ,则232)(2x x f -='由上表易知:当332==x PA 时,有PBCD A V -'取最大值。
导数在实际生活中的运用
导数在实际生活中的运用1. 引言1.1 导数的概念导数是微积分中的重要概念,是描述函数变化率的数学工具。
在数学上,导数可以理解为函数在某一点处的斜率,也就是函数在该点附近的局部近似线性变化率。
导数的计算可以帮助我们研究函数的几何性质和特征,如最大值、最小值、凹凸性等。
导数的概念最初由牛顿和莱布尼兹在17世纪同时独立发现,是微积分学科的基础之一。
导数在实际生活中扮演着至关重要的角色。
通过导数,我们可以了解事物的变化速率和趋势,从而为我们的决策和行为提供依据。
比如在经济领域,导数可以帮助我们预测股票价格的波动趋势,优化投资组合,分析市场需求和供给关系。
在工程领域,导数可以帮助我们设计建筑的结构稳定性,优化材料的使用效率,提高工程项目的效率和安全性。
在医学领域,导数可以帮助我们分析生物体的生长发育规律,制定治疗方案和药物剂量,提高医疗技术水平和治疗效果。
导数不仅是一种抽象的数学概念,更是一种强大的工具和思维方式,对我们的生活、工作和社会发展有着深远而广泛的影响。
1.2 导数在实际生活中的重要性导数在实际生活中的重要性体现在我们日常生活的方方面面。
导数是微积分中一个重要的概念,它描述了函数在某一点的变化率,可以帮助我们理解函数的变化规律以及预测未来的趋势。
在金融领域中,导数被广泛应用于投资和风险管理中,帮助分析股票价格的波动性和趋势,提高投资决策的准确性和效益。
在医学领域中,导数可以用来描述人体各种生理指标的变化趋势,帮助医生准确地诊断疾病和制定治疗方案。
在工程领域中,导数可以帮助工程师分析和优化设计方案,提高产品的质量和效率。
在生态学领域中,导数可以帮助科学家研究生态系统的稳定性和变化规律,提高环境保护和生态恢复的效果。
在物理学领域中,导数可以帮助研究人员描述物体的运动和相互作用,推动科学技术的发展和应用。
导数在实际生活中的重要性不言而喻,它不仅拓宽了我们对世界的认识,还促进了人类社会的进步和发展。
2. 正文2.1 金融领域中的应用金融领域中,导数的应用是非常广泛和重要的。
导数在实际生活中的运用
导数在实际生活中的运用
导数是微积分中的重要概念,它代表了一个函数在某一点的局部变化率。
在实际生活中,导数有很多运用,下面我将介绍其中几个常见的应用:
1. 最优化问题:最优化是导数应用的一个重要领域,通过求函数的导数可以找到函
数的最大值或最小值。
在经济学中,市场需求曲线和供给曲线的交点处的价格和数量是市
场的均衡点,通过求导可以找到这个均衡点。
2. 积分求面积和体积:导数与积分是微积分的两大基本运算,导数可以用来求解函
数的变化率,而积分则可以反过来求解函数的变化量。
通过对速度函数求积分可以求得物
体的位移,对密度函数求积分可以求得物体的质量。
3. 实际问题的建模:导数有助于将复杂的实际问题转化为更简单的数学问题。
在物
理学中,当我们知道一个物体的加速度和初始速度时,可以通过对加速度函数积分求得速
度函数,再对速度函数积分求得位移函数,从而得到物体的运动轨迹。
4. 统计分析:导数在统计学中的应用很广泛,在回归分析中,通过求导可以得到最
小二乘法的估计结果,帮助我们找到最佳拟合的直线。
导数还可以用来求解概率密度函数、累积分布函数和概率分布函数等统计量。
5. 金融工程:导数在金融工程中也有重要的应用。
在期权定价模型中,通过对期权
收益率函数求导可以得到期权的风险中性概率,从而推导出期权的定价公式。
导数还可以
用来计算利率衍生品的风险敞口和风险管理。
导数在实际生活中的应用非常广泛,无论是在经济学、物理学、统计学还是金融工程
等领域,都有重要的作用。
掌握导数的概念和运用方法,可以帮助我们更好地理解和解决
实际问题。
导数与函数的极值与最值
导数与函数的极值与最值导数与函数的极值与最值是微积分中的重要概念,它们在实际问题中有着广泛的应用。
本文将介绍导数、函数的极值与最值的基本概念、求解方法及其应用。
一、导数的定义及性质导数是函数的一个基本性质,它描述了函数在某一点上的变化率。
在数学中,导数可以用极限的概念来定义。
当函数f(x)在点x处可导时,它的导数f'(x)的定义如下:f'(x) = lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx〗导数具有一些重要的性质,包括可导函数的和、差、积、商的导数运算法则。
这些性质为求解函数的极值和最值提供了数学工具。
二、函数的极值与最值函数的极值指的是函数在某一区间内取得的最大值或最小值。
特别地,当函数在某一点上取得最大值或最小值时,称为函数的局部极值。
函数的极大值和极小值统称为极值。
函数的最值是指函数在定义域上取得的最大值或最小值。
与极值不同的是,最值可能发生在函数的端点或无穷远处。
函数的最值是极值的一个特例。
三、求解函数的极值与最值为了求解函数的极值和最值,我们需要利用导数的概念和性质。
下面介绍一些常用的求解方法。
1. 导数为零的点如果在某一点x处,函数的导数f'(x)为零或不存在,那么该点可能是函数的极值点。
然而,这种方法只是提供了一个可能性,我们还需要进行进一步的验证。
2. 导数的符号变化对于连续函数f(x),如果在某一点x处,f'(x)由正数变为负数,或由负数变为正数,那么该点可能是函数的极值点。
3. 极值的判别法通过求解函数的导数f'(x)的零点,可以得到函数的驻点,即可能的极值点。
然后,通过极值的判别法判断哪些点是真正的极值点。
四、导数与函数的极值与最值的应用导数与函数的极值与最值在实际问题中有着广泛的应用。
以下列举几个例子:1. 经济学中的最大收益问题在经济学中,我们常常需要求解某一产品的最大利润。
利用导数与函数的极值与最值的概念,我们可以优化生产过程,使得利润达到最大化。
导数在生活中的具体应用
导数在生活中的具体应用
关于微积分中导数在生活中的具体应用,我们可以从以下几点入手:
首先,导数在工程设计中的应用非常广泛。
例如,在结构受力分析中,工程师需要用到导数,以求出某结构在受力作用下各部分承受压力的变化情况,并作出精准计算,确保结构的安全性。
同时,导数还被用来计算热量传递、曲线拟合以及飞机飞行技术等方面。
其次,导数也可以用来分析投资渠道。
投资者需要准确知道某个投资渠道在投资期间的收益,并据此来提高投资的收益率,而导数的应用可以帮助投资者快速求得投资收益的变化率,从而更好地指导投资行为。
最后,几何学也是微积分的重要应用之一。
几何学的基本原理来源于导数,导数可以用来求解几何图形的各种属性,例如曲线的曲率、随着某一参数变化的情况、以及曲线在一定空间内行走的距离等。
以上就是微积分中导数在生活中的具体应用,其中涉及到了工程设计、投资和几何学等多个不同领域。
导数在这些领域中都发挥着重要作用,帮助人们把握形势、预测变化和实现目标。
谈谈导数在实际生活中的应用
谈谈导数在实际生活中的应用导数是高中数学的重要内容,作为工具可以解决有关函数最大值、最小值的实际问题。
标签:导数;实际问题;极值;最值导数作为一种工具,在求解数学问题时显得极为方便,尤其是利用导数判断函数的单调性求极值和最值。
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:(1)与几何有关的最值问题。
(2)与物理有关的最值问题。
(3)与利润及成本有关的最值问题。
(4)效率最值问题。
下面通过两个具体实例谈谈导数在实际生活中的应用。
例1:统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速x(千米/小时)的函数解析式可以表示为:当x∈(0,80)时,h’(x)0,h(x)是增函数;∴当x=80时,h(x)取到极小值h(80)=11.25。
因为h(x)在(0,20]上只有一个极值,所以它是最小值。
故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。
例2:甲方是一农场,乙方是一工厂,由于乙方生产须占用甲的资源,因此甲有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系x=2000〖KF(〗t〖KF)〗。
若乙方每生产一吨产品必须赔付甲方s元(以下称为赔付价格)。
(1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?解析:(1)因为赔付价格为s(元/吨),所以乙方的实际利润为w=2000〖KF (〗t〖KF)〗-st。
所以s=20时,v取最大值,因此甲方向乙方要求赔付价格s=20(元/吨)时,获得最大净收入。
实际应用性问题有时需要先建立函数关系式,然后对函数求导,这种处理方法是常用的解答方法。
导数在实际生活的应用
再见
解答
(2)若广告商要求包装盒容积V最大,则x应取何值?并求出此时包装 盒的高与底面边长的比值.
解 包装盒容积 V=2x2· 2(30-x)=-2 2x3+60 2x2(0<x<30), 所以 V′=-6 2x2+120 2x=-6 2x(x-20).
令V′>0,得0<x<20; 令V′<0,得20<x<30.
答 当 x=20 时,包装盒容积 V 取得最大值,此时包装盒的底面边长为 20 2 cm,高为 10 2 cm,包装盒的高与底面边长的比值为12.
解答
反思与感悟 (1)立体几何中的最值问题往往涉及空间图形的表面积、 体积,并在此基础上解决与实际相关的问题. (2)解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已 知图形是由简单几何体组合而成,则要分析其组合关系,将图形进 行拆分或组合,以便简化求值过程.
(1)求年利润W(万元)关于年产量x(千件)的函数解析式;
解答
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的 年利润最大,并求出最大值.
解答
规律与方法 1.利用导数解决生活中优化问题的一般步骤 (1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出 实际问题中变量之间的函数关系y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0; (3)比较函数在区间端点和使f′(x)=0的点的函数值的大小,最大(小) 者为最大(小)值. 2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主 要思路.另外需要特别注意:(1)合理选择变量,正确写出函数解析式, 给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想 的应用.
浅谈导数在实际生活中的一些应用
浅谈导数在实际生活中的一些应用我们平时的生活中,充满了各种各样的数学知识,而其中最重要的就是导数,它在实际生活中有着多种多样的应用。
在这里,我将从几个方面,比如经济学、工程学和技术学等,对导数在实际生活中的一些应用进行浅谈。
首先,导数在经济学中有着重要的作用。
例如,在进行市场分析时,需要用到导数,以准确判断市场需求量随价格的变化趋势。
在研究各个市场出现的利润最大值时,也需要用到导数。
同时,导数也用于对经济发展的趋势进行分析,从而判断出经济发展的方向和趋势。
其次,导数在工程学中有着重要的作用。
例如,在建筑设计中,可以使用导数来计算结构的实际长度、厚度及其他物理参数,从而有效控制建筑的强度和稳定性。
此外,在航空航天、船舶和汽车等工程领域,运用导数也可以更好地控制运动物体的速度、加速度、动量等参数,从而更有效地发挥其性能。
最后,导数在技术学中可以应用于计算机科学、生物学和信息学等领域。
如在计算机科学中,由于对复杂函数的求导,可以使计算机有更可靠的性能,对计算机程序进行优化和改进。
在生物学中,科学家使用导数研究基因组的复杂性,从而可以计算基因序列上可能出现的突变几率和结果。
而在信息学行业,运用导数可以更快地分析复杂的信息,评估信息编码中的传播效率,从而可以更有效地传输信息。
以上的一些应用,可见导数在实际生活中发挥着重要的作用,它能够帮助我们更准确、更客观地分析各种问题,从而可以更有效地发挥它们的功能。
因此,我们应该重视学习和使用导数,以便获得最大的效益。
总而言之,导数在实际生活中有着多种多样的应用,它可以帮助我们更准确、更客观地分析各种问题,有效地控制各种事物的运动趋势,以及更有效地传输信息。
因此,我们平时更应注重学习和使用导数,以获得最大的效益。
导数在实际生活中的运用
导数在实际生活中的运用【摘要】导数在实际生活中的运用十分广泛。
在物理学中,导数被应用于描述运动的速度和加速度,帮助工程师设计出更高效的机械系统。
在经济学中,通过导数可以计算出边际效益,指导决策者进行资源配置。
工程学中的优化问题也常常需要用到导数,以找到最优解决方案。
医学领域中的生物动力学则利用导数来研究生物体的运动和力学特性。
而在计算机科学中,算法优化更是离不开导数的帮助。
导数在各个领域中都扮演着重要角色,学习导数对解决实际问题至关重要。
导数的运用不仅使生活更加便利和高效,还推动了科技和社会的发展。
【关键词】导数、实际生活、物理学、运动学、经济学、边际效益、工程学、优化问题、医学、生物动力学、计算机科学、算法优化、重要作用、解决实际问题、便利、高效。
1. 引言1.1 导数在实际生活中的运用导数在实际生活中的运用广泛而深远,它是微积分的重要概念之一,通过对函数的变化率进行研究,可以帮助我们更好地理解和解决实际生活中的问题。
导数的应用涵盖了物理学、经济学、工程学、医学和计算机科学等多个领域。
在物理学中,导数被广泛运用于运动学的研究中。
通过对位置、速度和加速度的导数进行推导,可以得到物体的运动状态,从而更准确地预测其未来的运动轨迹。
在经济学中,导数被用来研究边际效益。
通过对边际成本和边际收益的导数进行计算,可以帮助企业决定最优化的生产方案,提高效益和降低成本。
在工程学中,导数被广泛应用于优化问题的求解。
通过对函数的导数进行分析,可以找到最优解,实现工程设计和生产过程的高效运行。
在医学中,导数在生物动力学的研究中发挥重要作用。
通过对生物体内部各种生理变量的导数进行分析,可以帮助医生更好地理解疾病的发展过程,并制定更有效的治疗方案。
在计算机科学中,导数被运用于算法优化。
通过对算法的导数进行计算,可以提高算法的效率和准确性,加快计算速度,实现更快速的数据处理和分析。
导数在各个领域中都发挥着重要作用,学习导数对于解决实际问题具有重要意义。
导数在实际生活中的运用
导数在实际生活中的运用【摘要】导数在实际生活中的运用非常广泛。
在物体运动中,导数可以帮助我们计算速度和加速度,从而预测物体的运动轨迹。
在最优化问题中,导数也被广泛应用,帮助我们找到函数的最大值和最小值。
在经济学中,导数被用于边际分析,帮助企业和政府做出决策以最大化利润或效益。
在医学领域,导数可以帮助分析身体的变化和疾病的发展趋势。
而在工程领域,导数则被用于解决各种实际问题,例如设计建筑结构和优化生产过程。
导数在不同领域中都起着重要作用,通过综合运用导数,我们能够更好地解决各种实际生活中的问题。
【关键词】导数、实际生活、物体运动、速度、加速度、最优化、边际分析、医学、工程领域、重要作用、解决问题1. 引言1.1 导数在实际生活中的运用导数在实际生活中的运用是一种重要的数学概念,它广泛应用于各个领域,为解决实际生活中的问题提供了有效的数学工具。
导数是函数在某一点处的变化率,它可以帮助我们理解事物的变化规律,并从中得出一些有用的结论。
在物理学中,导数被用来描述物体的运动速度和加速度,帮助我们预测物体的运动轨迹。
在最优化问题中,导数可以帮助我们找到函数的最大值和最小值,从而优化生产和经营活动。
在经济学中,导数被应用于边际分析中,帮助我们确定最优的生产和消费决策。
在医学领域,导数被用来描述生物体的变化规律,帮助医生做出诊断和治疗方案。
工程领域的实际情况中,导数被广泛应用于设计和优化工程系统,提高生产效率和质量。
导数在不同领域中均起着重要作用,综合运用导数能够解决各种实际生活问题,为我们的生活带来更多便利和效率。
2. 正文2.1 物体运动的速度和加速度物体运动的速度和加速度是导数在实际生活中的一个重要应用领域。
在物理学中,我们经常需要研究物体在运动中的速度和加速度变化情况,而导数提供了一种有效的工具来描述这些变化。
我们知道速度是描述物体在单位时间内所经历的位移量,而加速度则是描述速度在单位时间内的改变量。
简单来说,速度是位移关于时间的导数,而加速度则是速度关于时间的导数。
2015高考数学二轮复习热点题型专题十五 导数与函数的最值及在实际生活中的应用
专题十五导数与函数的最值及在实际生活中的应用【高频考点解读】1.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.会利用导数解决某些实际问题.【热点题型】题型一函数的最值与导数例1、已知a∈R,函数f(x)=ax+ln x-1.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)求f(x)在区间(0,e]上的最小值.【提分秘籍】- 2 -1.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.2. 求给定区间上的函数的最值关键是判断函数在此区间上的单调性,但要注意极值点不一定是最值点,还要与端点值比较,对于含参数的函数最值,要注意分类讨论.【举一反三】已知函数f (x )=ax -2x-3ln x ,其中a 为常数. (1)当函数f (x )的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f (x )在⎣⎡⎦⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围;【热点题型】题型二 生活中的优化问题例2、某商场根据调查,估计家电商品从年初(1月)开始的x 个月内累计的需求量p (x )(单位:百件)满足p (x )=x 2(39x -2x 2+41)(1≤x ≤12且x ∈N *). (1)求第x 个月的需求量f (x )的表达式;(2)若第x 个月的销售量满足g (x )=⎩⎪⎨⎪⎧ f x -21x 1≤x <7,x ∈N *f(x 2ex ⎝⎛⎭⎫13x 2-10x +96x ≤12,x ∈N *) (单位:百件),每件利润q (x )=100e x-6元,求该商场销售该商品,第几个月的月利润达到最大值,最大是多少?(e 6取值为403)【提分秘籍】 利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x ),根据实际意义确定定义域;(2)求函数y =f (x )的导数f ′(x ),解方程f ′(x )=0得出定义域内的实根,确定极值点;(3)比较函数在区间端点和极值点处的函数值大小,获得所求的最大(小)值;(4)还原到原实际问题中作答.【举一反三】某玩具厂生产一种儿童智力玩具,每个玩具的材料成本为20元,加工费为t 元(t 为常数,且2≤t ≤5),出厂价为x 元(25≤x ≤40).根据市场调查知,日销售量q (单位:个)与e x 成反比,且当每个玩具的出厂价为30元时,日销售量为100个.(1)求该玩具厂的日利润y 元与每个玩具的出厂价x 元之间的函数关系式;(2)若t =5,则每个玩具的出厂价x 为多少元时,该工厂的日利润y 最大?并求最大值.- 4 -解析:(1)设日销量q =k e x (k ≠0),则k e 30=100, ∴k =100e 30,∴日销量q =100e 30e x , ∴y =100e 30x -20-t e x(25≤x ≤40).【热点题型】题型三 不等式的证明问题例3、已知函数f (x )=ln x +mx 2(m ∈R).(1)求函数f (x )的单调区间;(2)若m =0,A (a ,f (a ))、B (b ,f (b ))是函数f (x )图象上不同的两点,且a >b >0,f ′(x )为f (x )的导函数,求 证:f ′⎝⎛⎭⎫a +b 2<f a -f b a -b<f ′(b );(2)易知原不等式等价于2a +b <f a -f b a -b <1b ,要证f a -f b a -b<1b ,只需证ln a b <a b -1,令a b=t >1,即证ln t -t +1<0,令g (t )=ln t -t +1,则g ′(t )=1t-1<0, 因此g (t )<g (1)=0,f a -f b a -b<1b 得证.【提分秘籍】1.要证明f (x )<g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义,可知对任意的x ∈(a ,b ),有F (x )<0,即证明了f (x )<g (x ).2.对于和形式的不等式的证明,一般地根据条件先构造一恒成立的不等式,将和式拆解,再利用同向不等式的可加性,进行转化放缩以证明结论.【举一反三】已知函数f (x )=a ln x +1(a >0).(1)当x >0时,求证:f (x )-1≥a ⎝⎛⎭⎫1-1x ; (2)在区间(1,e)上f (x )>x 恒成立,求实数a 的范围;(3)当a =12时,求证:f (2)+f (3)+…+f (n +1)>2(n +1-n +1)(n ∈N *).-6 -【热点题型】题型四 由不等式恒成立求参数范围例4、设函数f (x )=ln x -12ax 2-bx . (1)当a =b =12时,求函数f (x )的最大值; (2)令F (x )=f (x )+12ax 2+bx +a x (0<x ≤3),其图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,求实数a 的取值范围;【提分秘籍】利用不等式恒成立求参数范围的方法(1)根据不等式分离参数.(2)利用分离参数后的不等式构造新函数F (x ).(3)判断F (x )的单调性及求其最值.(4)根据参数m ≥F (x )max 或m ≥F (x )min 求参数范围.【热点题型】题型五 由不等式存在成立求参数范围例5、已知函数f (x )=ax sin x +cos x ,且f (x )在x =π4处的切线斜率为2π8. (1)求a 的值,并讨论f (x )在[-π,π]上的单调性;(2)设函数g (x )=ln(mx +1)+1-x 1+x,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈[0,π2],使得g (x 1)≥f (x 2)成立,求m 的取值范围.-8 -【提分秘籍】1.对于任意x 1∈D 1存在x 2∈D 2使得g (x 1)≥f (x 2)成立其解决方法是:(1)求出g (x )在D 1的最大值.(2)求出f (x )在D 2的最小值.(3)转化g (x )大≥f (x )小,求出参数范围.2.若存在成立的不等式中参数可得如M ≥F (x ),则只需求出F (x )的最小值可解决问题.【举一反三】已知函数f (x )=a 2x+x ln x ,g (x )=x 3-x 2-x -1. (1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M ,求满足该不等式的最大整数M ;(2)如果对任意的s ,t ∈⎣⎡⎦⎤13,2,都有f (s )≥g (t )成立,求实数a 的取值范围.【高考风向标】1.(2014·四川卷)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【解析】解:(1)由f(x)=e x-ax2-bx-1,得g(x)=f′(x)=e x-2ax-b.所以g′(x)=e x-2a.-10 -因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.2.(2014·安徽卷)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.(2)因为a>0,所以x1<0,x2>0,①当a≥4时,x2≥1.由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1.由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,- 12 -所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值; 当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.3.(2014·北京卷)已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2. (1)求证:f (x )≤0;(2)若a <sin xx<b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立. 所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1. 4.(2014·福建卷)已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .-14 -5.(2014·湖北卷)π为圆周率,e =2.718 28…为自然对数的底数. (1)求函数f (x )=ln xx的单调区间;(2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论. 【解析】解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).-16 -即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π. 6.(2014·湖南卷)已知常数a >0,函数 f (x )=ln(1+ax )-2xx +2. (1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.令2a -1=x .由0<a <1且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.-18 -7.(2014·江西卷)已知函数f (x )=(x 2+bx +b )1-2x (b ∈R). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围.8.(2014·辽宁卷)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3]【答案】C 【解析】当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1=-2.当x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2.9.(2014·全国卷)函数f (x )=ln(x +1)-axx +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.-20 -当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立. 根据 (i)(ii)知对任何n ∈结论都成立.10.(2014·新课标全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)11.(2014·新课标全国卷Ⅰ)设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.12.(2014·新课标全国卷Ⅱ)已知函数f (x )=e x -e -x -2x .(1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).-22 -13.(2014·山东卷)设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 14.(2014·陕西卷)设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.-24 -下面用数学归纳法证明.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.-26 -结论得证.15.(2014·天津卷)设f (x )=x -a e x (a ∈R),x ∈R.已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2.(1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大.这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).16.(2014·浙江卷)已知函数f(x)=x3+3|x-a|(a∈R).(1)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a);(2)设b∈R,若[f(x)+b]2≤4对x∈[-1,1]恒成立,求3a+b的取值范围.-28 -所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a+b,最小值是h(-1)=-4-3a+b,则-4-3a+b≥-2且4-3a+b≤2,矛盾.17.(2014·重庆卷)已知函数f(x)=a e2x-b e-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(1)确定a,b的值;(2)若c=3,判断f(x)的单调性;(3)若f(x)有极值,求c的取值范围.-30 -当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0.从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).18.(2013·安徽卷)设函数f n (x)=-1+x +x 222+x 332+…+x nn 2(x ∈R ,n ∈N *).证明:(1)对每个n ∈N *,存在唯一的x n ∈23,1,满足f n (x n )=0;(2)对任意p ∈N *,由(1)中x n 构成的数列{x n }满足0<x n -x n +p <1n.19.(2013·安徽卷)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}.(1)求I的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.-32 -20.(2013·安徽卷)若函数f(x)=x 3+ax 2+bx +c 有极值点x 1,x 2,且f(x 1)=x 1,则关于x 的方程3(f(x))2+2af(x)+b =0的不同实根个数是( )A .3B .4C .5D .621.(2013·福建卷)已知函数f(x)=x -aln x(a ∈R). (1)当a =2时,求曲线y =f(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值.22.(2013·湖北卷)设n 是正整数,r 为正有理数.(1)求函数f(x)=(1+x)r +1-(r +1)x -1(x>-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r <(n +1)r +1-n r +1r +1;(3)设x ∈R ,记[x]为不小于x 的最小整数,例如[2]=2,[π]=4,-32=-1.令S =381+382+383+…+3125,求[S]的值.(参数数据:8043≈344.7,8143≈350.5,12443≈618.3,12643≈631.7)-34 -23.(2013·湖北卷)已知a 为常数,函数f(x)=x(ln x -ax)有两个极值点x 1,x 2(x 1<x 2),则( )A .f(x 1)>0,f(x 2)>-12B .f(x 1)<0,f(x 2)<-12C .f(x 1)>0,f(x 2)<-12D .f(x 1)<0,f(x 2)>-12【解析】D 【解析】f′(x)=ln x -(2ax -1)==2ax -1,函数y =ln x 与函数y =2ax-1的图像有两个交点,令y 1=ln x ,y 2=2ax -1,在同一坐标系中作出这两个函数的图像,显然a≤0时,两个函数图像只有一个公共点,故a>0,此时当直线的斜率逐渐变大直到直线y =2ax -1与曲线y =ln x 相切时,两函数图像均有两个不同的公共点,y′1=1x ,故曲线y =ln x上的点(x 0,ln x 0)处的切线方程是y -ln x 0=1x 0(x -x 0),该直线过点(0,-1),则-1-ln x 0=-1,解得x 0=1,故过点(0,-1)的曲线y =ln x 的切线斜率是1,故2a =1,即a =12,所以a的取值范围是0,12.因为0<x 1<1<x 2,当x ∈(x 1,x 2)时,f′(x)>0,f(x)递增,f(1)=-a ,f(x 1)<f(1)=-a<0,f(x 2)>f(1)=-a>-12,选D.24.(2013·江西卷)已知函数f(x)=a ⎝⎛⎭⎫1-2⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△ABC 的面积为S(a),讨论S(a)的单调性.当a>12时,有- 36 -f(f(x))=⎩⎪⎨⎪⎧4a 2x ,x≤14a,2a -4a 2x ,14a <x≤12,2a (1-2a )+4a 2x ,12<x≤4a -14a,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a 1+4a 2,2a 1+2a ,4a 21+4a 2,又f(0)=0,f ⎝⎛⎭⎫2a 1+2a =2a 1+2a , f ⎝⎛⎭⎫2a 1+4a 2≠2a 1+4a 2,f⎝⎛⎭⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值范围为a>12.25.(2013·北京卷)设L 为曲线C :y =ln xx在点(1,0)处的切线. (1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 【解析】解:(1)设f(x)=ln x x ,则f′(x)=1-ln x x 2.所以f′(1)=1.所以L 的方程为y =x -1.(2)令g(x)=x -1-f(x),则除切点之外,曲线C 在直线L 的下方等价于,x≠1).g(x)满足g(1)=0,且26.(2013·辽宁卷)已知函数f(x)=(1+x)e -2x,g(x)=ax +x 32+1+2xcos x .当x ∈[0,1]时,(1)求证:1-x≤f(x)≤11+x;(2)若f(x)≥g(x)恒成立,求实数a 的取值范围.-38 -从而当x ∈(0,1)时,G′(x)<G′(0)=0,故G(x)在[0,1]上是减函数.于是G(x)≤G(0)=2.从而a +1+G(x)≤a +3,所以,当a≤-3时,f(x)≥g(x)在[0,1]上恒成立. 下面证明,当a >-3时,f(x)≥g(x)在[0,1]上不恒成立. f(x)-g(x)≤11+x -1-ax -x 32-2xcos x=-x 1+x -ax -x 32-2xcos x=-x ⎝⎛⎭⎫11+x +a +x22+2cos x .记I(x)=11+x +a +x 22+2cos x =11+x +a +G(x),则I′(x)=-1(1+x )2+G′(x).当x ∈(0,1)时,I′(x)<0.故I(x)在[0,1]上是减函数,于是I(x)在[0,1]上的值域为[a +1+2cos 1,a +3].因为当a >-3时,a +3>0,所以存在x 0∈(0,1),使得I(x 0)>0,此时f(x 0)<g(x 0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a 的取值范围是(-∞,-3].下面证明,当a>-3时,f(x)≥g(x)在[0,1]上不恒成立.因为27.(2013·辽宁卷)设函数f(x)满足x2f′(x)+2xf(x)=e xx,f(2)=e28,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值-40 -28.(2013·全国卷)已知函数f(x)=ln(1+x)-x (1+λx )1+x.(1)若x≥0时f(x)≤0,求λ的最小值;(2)设数列{a n }的通项a n =1+12+13+…+1n ,证明:a 2n -a n +14n>ln 2.29.(2013·全国卷)若函数f(x)=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞)C .[0,3]D .[3,+∞)30.(2013·山东卷)设函数f(x)=x e 2x+c(e =2.718 28…是自然对数的底数,c ∈R). (1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数.-42 -综上所述,当c<-e -2时,关于x 的方程|lnx|=f(x)根的个数为0;当c =-e-2时,关于x 的方程|lnx|=f(x)根的个数为1; 当c>-e -2时,关于x 的方程|lnx|=f(x)根的个数为2.31.(2013·陕西卷)已知函数f(x)=e x ,x ∈R.(1)若直线y =kx +1与f(x)的反函数的图像相切,求实数k 的值;(2)设x>0,讨论曲线y =f(x)与曲线y =mx 2(m>0)公共点的个数;(3)设a<b ,比较f (a )+f (b )2与f (b )-f (a )b -a的大小,并说明理由.-44 -综上所述,x>0时,若0<m<e 24,曲线y =f(x)与y =mx 2没有公共点; 若m =e 24,曲线y =f(x)与y =mx 2有一个公共点; 若m>e 24,曲线y =f(x)与y =mx 2有两个公共点.当x>0时,u(x)>u(0)=0.令x =b -a ,则得(b -a)e b -a +(b -a)-2e b -a +2>0, ∴eb +e a 2-e b -e ab -a>0, 因此,f (a )+f (b )2>f (b )-f (a )b -a. 32.(2013·四川卷] 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2.(1)指出函数f(x)的单调区间;(2)若函数f (x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.-46 -33.(2013·四川卷)设函数f(x)=e x +x -a(a ∈R ,e 为自然对数的底数).若曲线y =sinx 上存在(x 0,y 0)使得f(f(y 0))=y 0,则a 的取值范围是( )A .[1,e]B .[e -1-1,1] C .[1,e +1] D .[e -1-1,e +1] 【答案】A 【解析】因为y 0=sin x 0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x +x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x +x -a =x 在[0,1]上有解.当x≥0时,两边平方得e x +x -a =x 2,故a =e x -x 2+x.记g(x)=e x -x 2+x ,则g′(x)=e x -2x +1.当x ∈⎣⎡⎦⎤0,12时,e x >0,-2x +1≥0,故g′(x)>0, 当x ∈⎝⎛⎦⎤12,1时,e x >e >1,0>-2x +1≥-1, 故g′(x)>0.综上,g′(x)在x ∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值范围是[1,e].34.(2013·四川卷)函数y =x 33x -1的图像大致是( )图1-535.(2013·天津卷)已知函数f(x)=x 2ln x.(1)求函数f(x)的单调区间;(2)证明:对任意的t>0,存在唯一的s ,使t =f(s);- 48 -(3)设(2)中所确定的s 关于t 的函数为s =g(t).证明:当t>e 2时,有25<ln g (t )ln t <12. (2)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t ,x ∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=-t<0,h(e t )=e 2t ln e t -t =t(e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f(s)成立.36.(2013·天津卷)已知函数f(x)=x(1+a|x|),设关于x 的不等式f(x +a)<f(x)的解集为A ,若-12,12A ,则实数a 的取值范围是( ) A.1-52,0B.1-32,0 C.1-52,0∪0,1+32D .-∞,1-52在x<0时,f(x)=-ax 2+x ,f(x +a)=-a(x +a)2+x +a ,令f(x)=f(x +a),则x =1-a 22a ,令1-a 22a <12,可得a 2+a -1<0,故1-52<a<0. 37.(2013·新课标全国卷Ⅱ] 已知函数f(x)=e x -ln(x +m).(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.-50 - 38.(2013·新课标全国卷Ⅱ] 等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.【答案】-49 【解析】由已知,a 1+a 10=0,a 1+a 15=103d =23,a 1=-3,∴nS n =n 3-10n 23,易得n =6或n =7时,nS n 出现最小值.当n =6时,nS n =-48;n =7时,nS n =-49.故nS n 的最小值为-49.39.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f (x)的极值点,则f′(x 0)=40.(2013·浙江卷)已知e 为自然对数的底数,设函数f(x)=(e x -1)(x -1)k (k =1,2),则( )A .当k =1时,f(x)在x =1处取到极小值B .当k =1时,f(x)在x =1处取到极大值C .当k =2时,f(x)在x =1处取到极小值D .当k =2时,f(x)在x =1处取到极大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题导数与函数的最值及在实际生活中的应用【高频考点解读】1.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.会利用导数解决某些实际问题.【热点题型】题型一函数的最值与导数例1、已知a∈R,函数f(x)=ax+ln x-1.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)求f(x)在区间(0,e]上的最小值.【提分秘籍】1.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.2. 求给定区间上的函数的最值关键是判断函数在此区间上的单调性,但要注意极值点不一定是最值点,还要与端点值比较,对于含参数的函数最值,要注意分类讨论.【举一反三】已知函数f (x )=ax -2x-3ln x ,其中a 为常数.(1)当函数f (x )的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f (x )在⎣⎡⎦⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围;【热点题型】题型二 生活中的优化问题例2、某商场根据调查,估计家电商品从年初(1月)开始的x 个月内累计的需求量p (x )(单位:百件)满足p (x )=x2(39x -2x 2+41)(1≤x ≤12且x ∈N *).(1)求第x 个月的需求量f (x )的表达式;(2)若第x 个月的销售量满足g (x )=⎩⎪⎨⎪⎧f x -21x 1≤x <7,x ∈N *x 2e x ⎝⎛⎭⎫13x 2-10x +967≤x ≤12,x ∈N *(单位:百件),每件利润q (x )=100e x -6元,求该商场销售该商品,第几个月的月利润达到最大值,最大是多少?(e 6取值为403)【提分秘籍】 利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x ),根据实际意义确定定义域;(2)求函数y =f (x )的导数f ′(x ),解方程f ′(x )=0得出定义域内的实根,确定极值点; (3)比较函数在区间端点和极值点处的函数值大小,获得所求的最大(小)值; (4)还原到原实际问题中作答. 【举一反三】某玩具厂生产一种儿童智力玩具,每个玩具的材料成本为20元,加工费为t 元(t 为常数,且2≤t ≤5),出厂价为x 元(25≤x ≤40).根据市场调查知,日销售量q (单位:个)与e x 成反比,且当每个玩具的出厂价为30元时,日销售量为100个.(1)求该玩具厂的日利润y 元与每个玩具的出厂价x 元之间的函数关系式;(2)若t =5,则每个玩具的出厂价x 为多少元时,该工厂的日利润y 最大?并求最大值.解析:(1)设日销量q =k e x (k ≠0),则ke 30=100,∴k =100e 30,∴日销量q =100e 30ex ,∴y =100e 30x -20-te x(25≤x ≤40).【热点题型】题型三 不等式的证明问题例3、已知函数f (x )=ln x +mx 2(m ∈R). (1)求函数f (x )的单调区间;(2)若m =0,A (a ,f (a ))、B (b ,f (b ))是函数f (x )图象上不同的两点,且a >b >0,f ′(x )为f (x )的导函数,求 证:f ′⎝⎛⎭⎫a +b 2<f a -f ba -b<f ′(b );(2)易知原不等式等价于2a +b <f a -f b a -b <1b ,要证f a -f b a -b <1b ,只需证ln a b <ab -1,令ab=t >1,即证ln t -t +1<0,令g (t )=ln t -t +1,则g ′(t )=1t -1<0,因此g (t )<g (1)=0,f a-f b a -b<1b 得证.【提分秘籍】1.要证明f (x )<g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义,可知对任意的x ∈(a ,b ),有F (x )<0,即证明了f (x )<g (x ).2.对于和形式的不等式的证明,一般地根据条件先构造一恒成立的不等式,将和式拆解,再利用同向不等式的可加性,进行转化放缩以证明结论.【举一反三】已知函数f (x )=a ln x +1(a >0). (1)当x >0时,求证:f (x )-1≥a ⎝⎛⎭⎫1-1x ; (2)在区间(1,e)上f (x )>x 恒成立,求实数a 的范围;(3)当a =12时,求证:f (2)+f (3)+…+f (n +1)>2(n +1-n +1)(n ∈N *).【热点题型】题型四 由不等式恒成立求参数范围 例4、设函数f (x )=ln x -12ax 2-bx .(1)当a =b =12时,求函数f (x )的最大值;(2)令F (x )=f (x )+12ax 2+bx +a x (0<x ≤3),其图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,求实数a 的取值范围;【提分秘籍】利用不等式恒成立求参数范围的方法(1)根据不等式分离参数.(2)利用分离参数后的不等式构造新函数F (x ). (3)判断F (x )的单调性及求其最值.(4)根据参数m ≥F (x )max 或m ≥F (x )min 求参数范围. 【热点题型】题型五 由不等式存在成立求参数范围例5、已知函数f (x )=ax sin x +cos x ,且f (x )在x =π4处的切线斜率为2π8.(1)求a 的值,并讨论f (x )在[-π,π]上的单调性; (2)设函数g (x )=ln(mx +1)+1-x1+x,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈[0,π2],使得g (x 1)≥f (x 2)成立,求m 的取值范围.【提分秘籍】1.对于任意x 1∈D 1存在x 2∈D 2使得g (x 1)≥f (x 2)成立其解决方法是: (1)求出g (x )在D 1的最大值. (2)求出f (x )在D 2的最小值. (3)转化g (x )大≥f (x )小,求出参数范围. 2.若存在成立的不等式中参数可得如M ≥F (x ),则只需求出F (x )的最小值可解决问题. 【举一反三】已知函数f (x )=a2x+x ln x ,g (x )=x 3-x 2-x -1.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M ,求满足该不等式的最大整数M ; (2)如果对任意的s ,t ∈⎣⎡⎦⎤13,2,都有f (s )≥g (t )成立,求实数a 的取值范围.【高考风向标】1.(2014·四川卷)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【解析】解:(1)由f(x)=e x-ax2-bx-1,得g(x)=f′(x)=e x-2ax-b.所以g′(x)=e x-2a.因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0得a+b=e-1<2,则g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.2.(2014·安徽卷)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.(2)因为a>0,所以x1<0,x2>0,①当a≥4时,x2≥1.由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1.由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值; 当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.3.(2014·北京卷)已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2. (1)求证:f (x )≤0;(2)若a <sin xx<b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立. 所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1. 4.(2014·福建卷)已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .5.(2014·湖北卷)π为圆周率,e =2.718 28…为自然对数的底数. (1)求函数f (x )=ln xx的单调区间;(2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论. 【解析】解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).即这6个数从小到大的顺序为3e,e3,πe,eπ,π3,3π. 6.(2014·湖南卷)已知常数a>0,函数f(x)=ln(1+ax)-2x x+2.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.令2a -1=x .由0<a <1且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.7.(2014·江西卷)已知函数f (x )=(x 2+bx +b )1-2x (b ∈R). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 8.(2014·辽宁卷)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3]【答案】C 【解析】当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1=-2.当x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2.9.(2014·全国卷)函数f (x )=ln(x +1)-axx +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立. 根据 (i)(ii)知对任何n ∈结论都成立.10.(2014·新课标全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)11.(2014·新课标全国卷Ⅰ)设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.12.(2014·新课标全国卷Ⅱ)已知函数f (x )=e x -e -x -2x .(1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).13.(2014·山东卷)设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 14.(2014·陕西卷)设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.下面用数学归纳法证明.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.结论得证.15.(2014·天津卷)设f (x )=x -a e x (a ∈R),x ∈R.已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2.(1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大.这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).16.(2014·浙江卷)已知函数f(x)=x3+3|x-a|(a∈R).(1)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a);(2)设b∈R,若[f(x)+b]2≤4对x∈[-1,1]恒成立,求3a+b的取值范围.所以由(1)知,(i)当a≤-1时,h(x)在(-1,1)上是增函数,h(x)在[-1,1]上的最大值是h(1)=4-3a+b,最小值是h(-1)=-4-3a+b,则-4-3a+b≥-2且4-3a+b≤2,矛盾.17.(2014·重庆卷)已知函数f(x)=a e2x-b e-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(1)确定a,b的值;(2)若c=3,判断f(x)的单调性;(3)若f(x)有极值,求c的取值范围.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0.从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).18.(2013·安徽卷)设函数f n (x)=-1+x +x 222+x 332+…+x nn 2(x ∈R ,n ∈N *).证明:(1)对每个n ∈N *,存在唯一的x n ∈23,1,满足f n (x n )=0;(2)对任意p ∈N *,由(1)中x n 构成的数列{x n }满足0<x n -x n +p <1n.19.(2013·安徽卷)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}.(1)求I的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.20.(2013·安徽卷)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3 B.4C.5 D.621.(2013·福建卷)已知函数f(x)=x -aln x(a ∈R). (1)当a =2时,求曲线y =f(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值.22.(2013·湖北卷)设n 是正整数,r 为正有理数.(1)求函数f(x)=(1+x)r +1-(r +1)x -1(x>-1)的最小值; (2)证明:n r +1-(n -1)r +1r +1<n r <(n +1)r +1-n r +1r +1;(3)设x ∈R ,记[x]为不小于x 的最小整数,例如[2]=2,[π]=4,-32=-1.令S =381+382+383+…+3125,求[S]的值.(参数数据:8043≈344.7,8143≈350.5,12443≈618.3,12643≈631.7)23.(2013·湖北卷)已知a 为常数,函数f(x)=x(ln x -ax)有两个极值点x 1,x 2(x 1<x 2),则( )A .f(x 1)>0,f(x 2)>-12B .f(x 1)<0,f(x 2)<-12C .f(x 1)>0,f(x 2)<-12D .f(x 1)<0,f(x 2)>-12【解析】D 【解析】f′(x)=ln x -(2ax -1)=0ln x =2ax -1,函数y =ln x 与函数y =2ax -1的图像有两个交点,令y 1=ln x ,y 2=2ax -1,在同一坐标系中作出这两个函数的图像,显然a≤0时,两个函数图像只有一个公共点,故a>0,此时当直线的斜率逐渐变大直到直线y =2ax -1与曲线y =ln x 相切时,两函数图像均有两个不同的公共点,y′1=1x ,故曲线y =ln x上的点(x 0,ln x 0)处的切线方程是y -ln x 0=1x 0(x -x 0),该直线过点(0,-1),则-1-ln x 0=-1,解得x 0=1,故过点(0,-1)的曲线y =ln x 的切线斜率是1,故2a =1,即a =12,所以a的取值范围是0,12.因为0<x 1<1<x 2,当x ∈(x 1,x 2)时,f′(x)>0,f(x)递增,f(1)=-a ,f(x 1)<f(1)=-a<0,f(x 2)>f(1)=-a>-12,选D.24.(2013·江西卷)已知函数f(x)=a ⎝⎛⎭⎫1-2⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△ABC 的面积为S(a),讨论S(a)的单调性.当a>12时,有f(f(x))=⎩⎪⎨⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a 1+4a 2,2a 1+2a ,4a 21+4a 2,又f(0)=0,f⎝⎛⎭⎫2a 1+2a =2a 1+2a , f ⎝⎛⎭⎫2a 1+4a 2≠2a 1+4a 2,f ⎝⎛⎭⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值范围为a>12.25.(2013·北京卷)设L 为曲线C :y =ln xx在点(1,0)处的切线. (1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 【解析】解:(1)设f(x)=ln x x ,则f′(x)=1-ln x x 2.所以f′(1)=1.所以L 的方程为y =x -1.(2)令g(x)=x -1-f(x),则除切点之外,曲线C 在直线L 的下方等价于 g(x)>0(x>0,x≠1). g(x)满足g(1)=0,且26.(2013·辽宁卷)已知函数f(x)=(1+x)e -2x,g(x)=ax +x 32+1+2xcos x .当x ∈[0,1]时,(1)求证:1-x≤f(x)≤11+x;(2)若f(x)≥g(x)恒成立,求实数a 的取值范围.从而当x ∈(0,1)时,G′(x)<G′(0)=0,故G(x)在[0,1]上是减函数.于是G(x)≤G(0)=2.从而a +1+G(x)≤a +3,所以,当a≤-3时,f(x)≥g(x)在[0,1]上恒成立. 下面证明,当a >-3时,f(x)≥g(x)在[0,1]上不恒成立. f(x)-g(x)≤11+x -1-ax -x 32-2xcos x=-x 1+x -ax -x 32-2xcos x=-x ⎝⎛⎭⎫11+x +a +x22+2cos x .记I(x)=11+x +a +x 22+2cos x =11+x +a +G(x),则I′(x)=-1(1+x )2+G′(x).当x ∈(0,1)时,I′(x)<0.故I(x)在[0,1]上是减函数,于是I(x)在[0,1]上的值域为[a +1+2cos 1,a +3].因为当a >-3时,a +3>0,所以存在x 0∈(0,1),使得I(x 0)>0,此时f(x 0)<g(x 0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a 的取值范围是(-∞,-3].下面证明,当a>-3时,f(x)≥g(x)在[0,1]上不恒成立.因为27.(2013·辽宁卷)设函数f(x)满足x2f′(x)+2xf(x)=e xx,f(2)=e28,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值28.(2013·全国卷)已知函数f(x)=ln(1+x)-x (1+λx )1+x.(1)若x≥0时f(x)≤0,求λ的最小值;(2)设数列{a n }的通项a n =1+12+13+…+1n ,证明:a 2n -a n +14n>ln 2.29.(2013·全国卷)若函数f(x)=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞)C .[0,3]D .[3,+∞)30.(2013·山东卷)设函数f(x)=x e 2x+c(e =2.718 28…是自然对数的底数,c ∈R). (1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数.综上所述,当c<-e -2时,关于x 的方程|lnx|=f(x)根的个数为0;当c =-e-2时,关于x 的方程|lnx|=f(x)根的个数为1; 当c>-e -2时,关于x 的方程|lnx|=f(x)根的个数为2.31.(2013·陕西卷)已知函数f(x)=e x ,x ∈R.(1)若直线y =kx +1与f(x)的反函数的图像相切,求实数k 的值;(2)设x>0,讨论曲线y =f(x)与曲线y =mx 2(m>0)公共点的个数;(3)设a<b ,比较f (a )+f (b )2与f (b )-f (a )b -a的大小,并说明理由.综上所述,x>0时,若0<m<e24,曲线y=f(x)与y=mx2没有公共点;若m=e24,曲线y=f(x)与y=mx2有一个公共点;若m>e24,曲线y=f(x)与y=mx2有两个公共点.当x>0时,u(x)>u(0)=0.令x =b -a ,则得(b -a)e b -a +(b -a)-2e b -a +2>0,∴e b +e a 2-e b -e ab -a>0, 因此,f (a )+f (b )2>f (b )-f (a )b -a. 32.(2013·四川卷] 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2.(1)指出函数f(x)的单调区间;(2)若函数f (x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.33.(2013·四川卷)设函数f(x)=e x +x -a(a ∈R ,e 为自然对数的底数).若曲线y =sinx 上存在(x 0,y 0)使得f(f(y 0))=y 0,则a 的取值范围是( )A .[1,e]B .[e -1-1,1]C .[1,e +1]D .[e -1-1,e +1]【答案】A 【解析】因为y 0=sin x 0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x +x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x +x -a =x 在[0,1]上有解.当x≥0时,两边平方得e x +x -a =x 2,故a =e x -x 2+x.记g(x)=e x -x 2+x ,则g′(x)=e x -2x +1.当x ∈⎣⎡⎦⎤0,12时,e x >0,-2x +1≥0,故g′(x)>0, 当x ∈⎝⎛⎦⎤12,1时,e x >e >1,0>-2x +1≥-1,故g′(x)>0.综上,g′(x)在x ∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值范围是[1,e].34.(2013·四川卷)函数y =x 33x -1的图像大致是( )图1-535.(2013·天津卷)已知函数f(x)=x 2ln x.(1)求函数f(x)的单调区间;(2)证明:对任意的t>0,存在唯一的s ,使t =f(s);(3)设(2)中所确定的s 关于t 的函数为s =g(t).证明:当t>e 2时,有25<ln g (t )ln t <12. (2)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t ,x ∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=-t<0,h(e t )=e 2t ln e t -t =t(e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f(s)成立.36.(2013·天津卷)已知函数f(x)=x(1+a|x|),设关于x 的不等式f(x +a)<f(x)的解集为A ,若-12,12A ,则实数a 的取值范围是( ) A.1-52,0B.1-32,0C.1-52,0∪0,1+32D .-∞,1-52在x<0时,f(x)=-ax 2+x ,f(x +a)=-a(x +a)2+x +a ,令f(x)=f(x +a),则x =1-a 22a ,令1-a 22a<12,可得a 2+a -1<0,故1-52<a<0. 37.(2013·新课标全国卷Ⅱ] 已知函数f(x)=e x -ln(x +m).(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.38.(2013·新课标全国卷Ⅱ] 等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.【答案】-49 【解析】由已知,a 1+a 10=0,a 1+a 15=103d =23,a 1=-3,∴nS n =n 3-10n 23,易得n =6或n =7时,nS n 出现最小值.当n =6时,nS n =-48;n =7时,nS n =-49.故nS n 的最小值为-49.39.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f (x)的极值点,则f′(x 0)=040.(2013·浙江卷)已知e 为自然对数的底数,设函数f(x)=(e x -1)(x -1)k (k =1,2),则( )A .当k =1时,f(x)在x =1处取到极小值B .当k =1时,f(x)在x =1处取到极大值C .当k =2时,f(x)在x =1处取到极小值D .当k =2时,f(x)在x =1处取到极大值。