3.1不等式的基本性质(1)(人教A版选修4-5)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 同向不等式: • 在两个不等式中,如果每一个的左边都大于右边,或每一个的 左边都小于右边(不等号的方向相同). • 异向不等式: • 在两个不等式中,如果一个不等式的左边大于右边,而另一个 的左边小于右边(不等号的方向相反). • 同解不等式 • 形式不同但解相同的不等式。 • 其它重要概念 • 绝对不等式、条件不等式、矛盾不等式
作业
一、课本 P10 2
二、补充
1.比较 ( x 5)( x 7)与( x 6) 的大小.
2
2.如果x 0,比较 ( x 1) 2 与( x 1) 2 的大小. 3.已知 a 0,比较 (a 2
2a 1)( a
2
2a 1)
与 (a 2 a 1)(a 2 a 1) 的大小.
思考?
从上述事实出发,你认为可以用什么方法
比较两个实数的大小?
要比较两个实数a与b的大小,可以转化为比
较它们的差a - b 与0的大小。在这里,0为实数
比较大小提供了“标杆”。
例1、试比较 2x4+1 与 2x3+x2 的大小 2 4 3 4
• 解: (2x +1) - (2x +x ) = 2x +1 - 2x3 _ x2 • = (2x4 - 2x3 )- (x2 -1) • = 2x3 (x -1) - (x -1) (x +1) • = (x-1) [2x3 - (x +1) ] • = (x-1)[(2x3-2x2) + (2x2-2x) + (x-1)] • = (x -1)2 (2x2 + 2x + 1) • = (x -1)2 [2 (x + 1/2)2 + 1/2] • 技能: • 分组组合;添项、拆项;配方法。
作商比较法: 作商——变形——与1比较大小. 大多用于比较幂指式的大小.
练习
1 、 若 m 0,比 较 m 与 2 的 大 小
2、选择题: 已知 a b ,在以下4个不等式中正确的是:
(1)
m m
1 a
1 b
(2)lg(
a
a
2
1 ) lg( b
b
2
1)
(3) a
2
b
2
(4)
2
2
• • • • • • • • • • •
小结
主要内容 基本理论: a - b > 0 <=> a > b a - b = 0 <=> a = b a - b < 0 <=> a < b 基本理论四大应用之一:比较实数的大小. 一般步骤: 作差-变形-判断符号—下结论。 变形是关键: 1°变形常用方法:配方法,因式分解法。 2°变形常见形式是:变形为常数;一个常数与几 个平方和;几个因式的积。
第一讲 不等式和 绝对值不等式
一 不等式
1
不等式的基本性质
(第一课时)
• 观察以下四个不等式:
• • • •
a+2 > a+1----------------(1) a+3>3a-------------------(2) 3x+1<2x+6--------------(3) x<a------------------------(4)
• = (x -1)2 [2 (x + 1/2)2 + 1/2] • x∈R ∴ 2 (x + 1/2)2 + 1/2 >0 • 若x≠1 那么 (x -1)2 > 0则 2x4+1 > 2x3+x2 • 若 x =1 那么(x -1)2 = 0 则 2x4+1 = 2x3+x2 • 综上所述: 若 x = 1 时 2x4+1 = 2x3+x2 • 求差比较大小 若 x≠1 时 2x4+1 > 2x3+x2 分四步进行:①作差;②变形;③定号; ③下结论。
2.
0
基本理论
X
• 1.实数在数轴上的性质:
• 研究不等式的出发点是实数的大小关系。数 轴上的点与实数1-1对应,因此可以利用数 轴上点的左右位置关系来规定实数的大小:
A a a<b
B b x
B b a>b
A a x
设a,b是两个实数,它们在数轴上所对应的点分别是 A,B,那么,当点A在点B的左边时,a<b;当点A在点B的右 边时,a>b. 关于a,b的大小关系,有以下基本事实:如果a>b,那么 a-b是正数;如果a=b,那么a-b等于零;如果a<b,那么a-b 是负数;反过来也对.
练习
比较x2+y2与xy+x+y-1的大小.
【解题回顾】用作差比较法比较两个实数的大小,步骤 是:作差——变形——判断符号.常见的变形 手段是通分、因式分解或配方等;变形的结果 是常数、若干个因式的积或完全平方式等.
• 例2、比较
练习题
• 1. 已知 x≠0 , 比较 (x2 +2)2 与 x4+x2 +4的大小.
用数学式子表示为:
a b a b 0; a b a b 0; a b a b 0.
a b a b a b
a b 0; a b 0; a b 0.
上式中的左边部分反映的是实数的大小顺 序,而右边部分则是实数的运算性质,合起来 就成为实数的大小顺序与运算性质之间的关系。 这一性质不仅可以用来比较两个实数的大小, 而且是推导不等式的性质、不等式的证明、解 不等式的主要依据。
• 2.比较 (x2 +2)2 与 x4+5x2 +2的大小
• 3. 比较 x3 与 x2-x + 1的大小.
【典型例题】
例3、比较以下两个实数的大小:
(1)16 与18 ;
a
18 16
( 2)
b
1 n1
b a
与2 n (n N )
*
n
(3 ) 比 较 a b 和 a b 的
【解题回顾】本题的解答关键在于选择合适的方法.