直接电位法
直接电位法
•
右为其测量装置图
6.4.1pA(pH)值的实用定义
• pH玻璃电极|试液||饱和甘汞电极
• 电位滴定法测定溶液的pH值,是以pH玻璃电极为指示电极,饱和甘汞电极为 参比电极与待测液组成工作电池,电池可用下式表示:
•
• •
25℃时,电池电动势
E=K+0.059pH试 式中K在一定条件下是常数。由上式可见,电池电动势在一定条件下与溶液 的pH值成线性关系。但K值是一个不固定的常数,很难通过计算得到,因此 普遍采用已知pH值的标准缓冲溶液在酸度计上进行校正。即先测定已知pH值 标准缓冲溶液的电动势 ,然后再测定试液的电动势 。若测量 和 时条件不变 ,可假定 ,在这种条件下根据上式可得:
• 使用注意:
• ① 离子活度系数保持不变时,膜电位才与logci呈线性关系。
• ② 绘图时,E有正负,直线不一定过零点。一般选择±lgci对 应±离子和μg/L、mol/L。
• ③ K’——T、搅拌、Ej等,易平移,需校正。
• ④ 更换试剂或条件不稳定时,应重绘。 • ⑤ 该法适于大批同类试样的测定。对于要求不高的少数试样 ,也可用比较法测定:
对阴离子响应的电极,取负号。 • 同理,K’也是需用已知ai的标准活度溶液比较E而得的复杂参 数。但是目前标准活度溶液很少(Cl—、Na+、Ca2+、F— ),在要求不高时,γi不变,ci代替ai。 • 离子选择性电极测定离子浓度的条件——保持溶液中γi-i不变 • ai=γici,γi——i(离子强度)——ci、i电荷数
•
常见标准
•
缓冲溶液
6.4.3.2 标准曲线法及溶液中F¯浓度的测定
SCE||试液(aF—=x)|F-选择性电极 25℃时,E = K’- 0.0592lgaF— = K’+ 0.0592pF
直接电位法测定溶液的PH
直接电位法测定溶液的PH 直接电位法测定溶液的PH一、直接电位法测定溶液的PH测定原理:1、测定PH的工作电池利用各种氢离子指示电极与参比电极(一般是用饱和甘汞电极做参比电极)构成电池,由测得的电动势算出溶液的pH值。
常用的氢离子指示电极有氢电极、醌—氢醌电极、玻璃电极等。
氢电极测溶液的pH值比较麻烦,需要供给稳定的氢气流冲打铂黑电极,使氢气被铂黑吸附并与待测H+溶液达成平衡:H+(aH+)+e1/2H2(g)氢电极与甘汞电极构成电池:Pt|H2(PH2)|H+||KCl(饱和)|Hg2Cl2|Hg(l)E=K总+0.0592PH2、溶液PH的电位测定方法以玻璃电极作指示电极,饱和甘汞电极作参比电极,用电位法测量溶液的pH值,常采纳相对方法,即选用pH值已经确定的标准缓冲溶液进行比较而得到欲测溶液的pH值。
为此,pH值通常被定义为其溶液所测电动势与标准溶液的电动势差有关的函数,其关系式为:式中,pHx和pHs分别为欲测溶液和标准溶液的pH值;Ex和Es分别为其相应电动势。
该式常称为pH值的应用定义。
二、PH标准缓冲溶液pH缓冲溶液是一种能使pH值保持稳定的溶液。
若向这种溶液中加入少量的酸或碱,或者在溶液中的化学反应产生少量的酸或碱,以及将溶液适当稀释,这个溶液的pH值基本上稳定不变,这种能对抗少量酸或碱或稀释,而使pH值不易发生变化的溶液就称为pH缓冲溶液。
pH标准缓冲溶液特点:标准溶液的pH值是已知的,并达到规定的精准度。
标准溶液的pH值有良好的复现性和稳定性,具有较大的缓冲容量,较小的稀释值和较小的温度系数。
溶液的制备方法简单三、测量仪器1.pH计的工作原理水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。
pH值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般掌控在6.5~7之间。
水在化学上是中性的,某些水分子自发地依照下式分解:H2O=H++OH—,即分解成氢离子和氢氧根离子。
直接电位法 - 直接电位法
残余液接电位
液接电位2
消除方法:选择离子强度和pH与待测液相近的标准 溶液,测定时两溶液的温度相同。
(三)注意事项
1.玻璃电极的使用范围:pH =1~9 2.标液pHs应与待测液pHx接近:pH≤±3
3.玻璃电极需在蒸馏水中浸泡24h以上,稳定 as
4.标液的配制、保存、使用严格按规定进行 5.适于有色、浑浊、胶体及含氧化-还原电对溶液的
标液与试液离子强度一致,活度系数相同 (等量加入TISAB)
两次测量法和标准曲线法中,加入TISAB(总离子 强度调节剂)
TISAB:一种不含被测离子、不污损电极的 浓电解质溶液
作用:
• 维持待测离子强度恒定,活度系数相等; • 调节pH值——缓冲溶液; • 掩蔽干扰离子
(3)标准加入法
• 试样溶液(CX,VX)和适当电极组成电池 →测定E1; • 向试样溶液(CX,VX)中加入标准溶液(CS>10CX, VS< VX
(2)标准曲线法
配制系列标准溶液,并选定指示电极和参比电极 组 相成同化条学件电下池测,定测由定试其样电溶动液势和,电绘极制组E成~ 电lg池Ci的曲电线动;势在, 并从标准曲线上求出待测离子浓度。
优点:即使电极响应不完全服从Nernst方程的也可用 要求:标液组成与试液组成相近,溶液温度相同
选择性系数:同一电极对X和Y离子响应能力之比。 亦即提供相同电位响应的X离子和Y离 子的活度比。
选择性系数K X,Y
aX a nX nY
Y
Kx,y↓→电极对待测离子X响应能力↑(选择性↑好); 干扰离子Y的干扰↓小
例:
K H ,Na 1011
说明此电极对H+的响应比对Na+响应高1011倍
电化学分析方法之一电位分析法
)
(K2
0.0592
lg
aH 内 aH 内表面
)
K
0.0592
lg
a H
外
K
0.0592
pH
C、PH玻璃电极的电极电位:
E玻 E内参 E膜 E内参 K 0.0592 pH试
E玻 K玻 0.0592 pH试
D、电位法测定溶液pH的基本原理 电位法测定溶液的pH,是以玻璃电
极作批示电极,饱和甘汞电极作参比电 极,浸入试液中构成原电池: E = E甘 – E玻
电位滴定法中拟定终点的办法重 要有下列几个:
第一种办法:以测得的电动势和 对应的体积作图,得到E~V曲线, 由曲线上的拐点拟定滴定终点。
第二种办法:作一次微商曲线, 由曲线的最高点拟定终点。具体 由△E/△V对V作图,得到△E/△V 对V曲线,然后由曲线的最高点拟 定终点。
第三种办法:由二次微商求终点
其中,批示电极是看待测离子的 浓度变化或对产物的浓度变化有 响应的电极,参比电极是含有固 定电位值的电极。
在滴定过程中,随着滴定剂的加 入,待测离子或产物离子的浓度 要不停地变化,特别是在计量点 附近,待测离子或产物离子的浓 度要发生突变,这样就使得批示 电极的电位值也要随着滴定剂的 加入而发生突变。
惯用的有Ag/AgCl、甘汞电极 (Hg/Hg2Cl2电极)。
对于甘汞电极,其电极反映为: Hg2Cl2+2e=2 Hg+2Cl-
3. 第三类电极:它由金属,该金属 的难溶盐、与此难溶盐含有相似阴离 子的另一难溶盐和与此难溶盐含有相 似阳离子的电解质溶液所构成。表达 为M (MX,NX,N+)。如: Zn| ZnC2O4(s),CaC2O4(s),Ca2+ Ca2+ + ZnC2O4 +2e CaC2O4+ Zn
第三课 电化学方法对物质的测定-直接电位法
解: 内参比电极的电位为: E(Ag,AgCl)= E(Ag,AgCl)-0.059lgaCl-(内) 膜电位为: E膜=E外-E内=0.059lgaF-(内)/aF-(外)
2018年9月29日
18
19
解:
内参比电极的电位为:
E(Ag,AgCl)= E(Ag,AgCl)-0.059lgaCl-(内) 膜电位为: E膜=E外-E内=0.059lgaF-(内)/aF-(外) 离子选择电极的电位为:
直接电位法测定离子活(浓)度
一、离子活度(或浓度)的测定原理与方法 二、定量分析方法 三、影响电位测定准确性的因素
2018年9月29日
25
直接电位法测定离子活(浓)度
一、离子活度(或浓度)的测定原理与方法
将离子选择性电极(指示电极)和参比电极插入试液可
以组成测定各种离子活度的电池, 参比电极 试液 指示电极 电池电动势为:
2018年9月29日
如果我们把K去掉,把温度补偿到25 0 C 则 E = 0.0592pH。
13
浓度直读对仪器要求:
仪器必须是高阻抗的mv计,否则测不出pH
仪器上设有“定位”旋钮,作用是抵消K值
仪器上设有“温度补偿”旋钮,作用是把溶液温度补偿 25℃ 仪器上设有“斜率补偿”旋钮,作用是电极实际斜率补偿 到理论斜率值。
若测定条件完全一致,则K’s = K’x , 两式相减得: S=2.303RT/F 若以pH玻璃电极作为正极,饱和甘汞电极作为负极,则:
2018年9月29日
Es E x pH x pH s 2.303RT / F
11
12
例1 已知在25℃时,用玻璃电极和饱和甘汞电极测定 pH=9.18的电池电动势是0.220V,测定试样pH时的电池电 动势是0.210V。是计算试样pH?
电位分析
而产生电极电位的,即电极上发生氧化还原反应—电极上
有电子的得失与转移; 离子选择性电极是以敏感膜为基体,选择性地让一些 离子渗透,同时包含着离子的交换过程。因此,离子选择 性电极电位是由离子的交换和扩散作用产生的。 敏感膜是一种能分开两种电解质溶液,并对溶液中某种 物质有选择性响应的薄膜,它能形成膜电位,ISE被认为是 一种电化学传感器,是电位分析中应用最广泛的指示电极。
Chapter 10 Potentiometry
第十章
电位分析法
§10-1 概 述
一、定义
电位分析法指在零电流条件下,利用电极电位和 溶液中某种离子的活度或浓度之间的关系来测定待测 物含量的方法,包括直接电位法和电位滴定法。
直接电位法 电位滴定法
1. 直接电位法 (direct potentiometry) :
将电极插入被测液中,根据测得的电池电动势与
被测溶液中待测物质某种型体的平衡浓度的关系直接
求出待测物质含量的方法。 2. 电位滴定法 (potentiometric titration) : 借助滴定过程中电池电动势的突变来确定滴定 终点,根据滴定剂的体积和浓度来求得待测物质的 含量,所得是某种参与滴定反应物质的总浓度。
3. 任意的i离子选择性电极电位
任意阳离子i 的离子选择性电极的电位均等于膜内扩散
电位和膜与电解质溶液形成的内外界面的界面电位的代数 和。
膜内外表面性质完全相同,所以,内外界面扩散电位 大小相等,方向相反,相互抵消。
而膜内外界面的界面电位为:
外 内
a1 RT K1 ln ’ nF a1 a2 RT K2 ln ’ nF a2
对整个玻璃电极而言,其电极电位应是内参比电极
电位和玻璃膜电位之和:
电位分析法
内、外参比电极的电位值固定,且内充溶液中离子的活度 也一定,则电池电动势为:
RT EK ln ai nF
离子选择性电极的类型和结构
1976年IUPAC基于膜的特征,推荐将其分为以下几类
离子选择性电极(又称膜电极)
注意:离子活度系数保持不变时,膜电位才与log ci
呈线性关系。
总离子强度调节缓冲溶液简称TISAB
TISAB的作用:
①保持较大且相对稳定的离子强度,使活度系数恒定; ②维持溶液在适宜的pH范围内,满足离子电极的要求; ③掩蔽干扰离子。 典型组成(测F-): 1mol/L的NaCl,使溶液保持较大稳定的离子强度; 0.25mol/LHAc和0.75mol/LNaAc, 使溶液pH在5左右; 0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
公式使用时注意:对阳
离子,△E不变;对阴离子,△E
前加负号或取△E的绝对值。
优点:
(1)无须绘制标准曲线
(仅需一种浓度标液) (2)无需配制或添加 TISAB (3)操作步骤简单、快 速
3、直读法--pH测定原理与方法 ⑴ 直读法:对于被测溶液中
的某种成分能够在仪器上直接读 出其浓度的方法称为直读法。如 在pH计或pNa计上就能测定pH值
影响电位测定准确性的因素
(1) 测量温度:影响主要表现在对电极的标准电极电位、 直线的斜率和离子活度的影响上。 仪器可对前两项进行校正,但多数仅校正斜率。 温度的波动可以使离子活度变化,在测量过程中应尽量 保持温度恒定。 (2) 线性范围和电位平衡时间:一般线性范围在10-1~10-6 mol / L;平衡时间越短越好。测量时可通过搅拌使待测离子 快速扩散到电极敏感膜,以缩短平衡时间。 测量不同浓度试液时,应由低到高测量。
举例说明直接电位法和电位滴定法 在环境分析中的应用
使用不同的指示电极,电位滴定法可以进行酸碱滴 定,氧化还原滴定,配合滴定和沉淀滴定。酸碱滴定时 使用PH玻璃电极为指示电极,在氧化还原滴定中,可以 从铂电极作指示电极。在配合滴定中,若用EDTA作滴 定剂,可以用汞电极作指示电极,在沉淀滴定中,若用 硝酸银滴定卤素离子,可以用银电极作指示电极。在滴 定过程中,随着滴定剂的不断加入,电极电位E不断发 生变化,电极电位发生突跃时,说明滴定到达终点。用 微分曲线比普通滴定曲线更容易确定滴定终点。 如果使用自动电位滴定仪,在滴定过程中可以自动 绘出滴定曲线,自动找出滴定终点,自动给出体积,滴 定快捷方便。
标准加入法:
取10mL水样于100mL干燥烧杯中, 加入25.00mL总离子强度调节缓冲溶液, 测定其电位值,然后逐次向烧杯中加入 0.5mL氟标准溶液(10ug/mL),共加四 次,每加一次,记录其电位值。在专用反 对数图纸上绘制关系曲线,求得直线与VS 的交点,用公式CX=-(CS*V)/VX计算出水 样中氟的含量(以PPm表示)。其中CS 为标液的浓度,Vs为标液体积,VX为总 体积35ml.
(三)便携式DPD余氯测定仪 原理 水样中不含碘化物离子时,游离性有效氯立即与 DPD试剂反应产生红色,加入碘离子则起催化作用, 使化合氯也与试剂反应显色。分别测定其吸光度,得 游离氯和总氯,总氯减去游离氯得化合氯。 应用范围 ⑴.本法适用于分别测定生活饮用水、水源水、废水及 海水的游离余氯、总余氯及化合性余氯。 ⑵.水样有色或浑浊,可作空白调零以抵消其影响。
举例说明直接电位法和电位滴定法 在环境分析中的应用
Ppt制作及讲解:木月羽
用直接电位法测水中氟离子的含量 用电位滴定法测水中氯离子的含量
直接电位法:
是通过测量电池电动势来确定指 示电极的电位,然后根据Nernst 方程由所测得的电极电位值计算出 被测物质的含量。直接电位法是电 位分析法的一种。 直接电位法 根据测得的点位数 值来确定被测离子浓度。
《直接电位法》课件
02
03
04
食品工业
用于检测食品中的添加剂、防腐 剂等成分,确保食品安全。
02
直接电位法的基本原理
电位的概念
总结词
电位是描述电场中某一点电荷所具有 的能量状态,是电场中某点对参考点 的电势差。
详细描述
在电场中,电位是指电荷在某一点所 具有的能量状态,通常用符号表示。 电位的大小与参考点的选择有关,其 值等于电荷在该点所具有的势能。
拓展应用范围
深入研究直接电位法在不同条件下的 适用性和应用效果。
加强与其他学科的交叉研究
学科交叉融合
加强与其他相关学科的交叉融合 ,推动多学科协同创新。
跨学科合作
积极开展跨学科合作,共同研究 解决复杂问题。
促进学科发展
通过交叉研究,推动直接电位法 的理论和应用研究不断发展。
感谢您的观看
THANKS
《直接电位法》ppt课件
目录
• 引言 • 直接电位法的基本原理 • 直接电位法的实验方法 • 直接电位法的应用实例 • 直接电位法的优缺点 • 未来展望与研究方向
01
引言
什么是直接电位法
直接电位法是一种电化学分析方法,通过测 量电极电位来推算溶液中离子的浓度。
它基于能斯特方程,通过测量电极电位与离 子浓度的关系,计算出离子的浓度。
配合物研究
该方法还可以用于研究配 合物的组成和性质,如络 合物的稳定常数、解离常 数等。
在生物医学研究中的应用
生物样品分析
直接电位法可用于测定生物样品 中的离子浓度,如血浆、尿液等 ,对于疾病诊断和生理研究具有
重要意义。
药物分析
在药物研发和质量控制过程中,该 方法可用于测定药物中的有效成分 和杂质含量。
直接电位法
概念:
1.Esce:饱和甘汞电极(saturated calomel electrode) 2.Ej:液体接界电极:存在于两种组成不同或浓度不同的溶液接触面上,是由于溶液中离子扩散通过界面的迁移 率不同而产生的。并不是电极反应所产生,会影响电池电动势的测定,实际应该消除。
通常,将常数项合并,则 E = K’+ 0.059pH 由上式可见,电池电动势与试液的pH成线性关系。由于上式中包含了难于 确定的不对称电位和液接电位,因此不能由上式直接计算试液的pH。在实际工
• χi为游离态待测离子占总浓度的分数;γi
是活度系数; cx
是待测离子的总浓度。往试液中准确加入一小体积Vs(约为V0的 1/100) 纯物质配制的标准溶液, 浓度为Cs(约为cx的100倍)
2.303 RT E2 K lg( x2 2c x x2 2 c ) nF
可以认为γ2 ≈γ1,χ2 ≈χ1 则: E E 2 E1
作中,需要将已知pH的标准缓冲溶液作为基准,采用比较法来确定待测溶液的
pH。 取已知pH的标准缓冲溶液s和待测pH的试液x。测定各自的电动势为:
Es K s ' 2.303RT pH s F Ex K x ' 2.303RT pH x F
若测定条件完全一致,则Ks’=Kx’, 两式相减得: pH x pH s
稳定的离子强度;0.25mol/L的HAc和0.75mol/L的NaAc, 使溶液pH在5左右; 0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
(2)标准加入法
• 设某一试液体积为V0,其待测离子的浓度为cx,测定的工作电池 电动势为E1,则:
2.303 RT E1 K lg( xi i c x ) nF
10-4 直接电位分析法
被测离子含量的测定方法: 校准曲线法 标准加入法 格氏作图法
10-4-2.校准曲线法
• 以TISAB(总离子强度调节剂)溶液为稀释 剂,配置一系列含不同浓度被测离子的标准 溶液,并分别将其与所选定的指示电极和参 比电极组成化学电池,测定其电动势,以所 得数据绘制E-lgc校准曲线。然后在相同条件 下测定由试液和电极组成电池的电动势,并 从校准曲线上求出待测液中所含被测离子的 浓度。
10-4 直接电位分析法
10-4-1直接电位法的测量
直接电位分析法中,各种电极电位能表征电池溶 液中某种离子的活度,而且电极电位与活度的关系符 合能斯特方程的计量关系,称为该离子选择性电极对 该种离子的能斯特响应。
实验时,采用离子选择性电极作指示电极,饱
和甘汞电极作参比电极,与待测溶液组成工作电池,
2.电动势测量带来的误差
•直接电位法中,由电池电动势的测量引起的浓度
相对误差可由Nernst方程微分导出,即
E K RT ln a K ' RT ln c
nF
nF
对其微分
dE池
RT nF
dc c
c c
n RT / F
E池
△c:浓度变化
若E池的单位用mV,温度用25。C,则
d.响应时间 电极浸入溶液后达到稳定的电位所需时间 (1)与待测离子到达电极表面的速度有关。 (2)与待测离子活度有关, 活度越小,响应时间越长。 (3)与介质的离子强度有关,含有大量非干扰离子响应快 (4)共存离子的存在对响应时间有影响 (5)与膜的厚度,表面光洁度等有关。
e.迟滞效应 这是与电位响应时间有关的一个现象,即对同一
pH计
pH计是一台高阻抗输入的毫伏计,两次测量得到的是 E-ES,测定的方法是校准曲线法的改进。 •定位的过程是用标准缓冲溶液校准曲线的截距。 •温度校准是调整校正曲线的斜率。 •经过这样的校正后,pH计的刻度就符合校正曲线的要 求,测定未知溶液时,pH计可直接显示其pH的数值。 •测定的准确度首先取决于标准缓冲溶液pHs的准确度, 其次是标准缓冲溶液和待测溶液组成接近的程度。后 者直接影响到包含液接电位的常数项是否相同。
直接电位法 - 直接电位法共30页
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
直接电位法 - 直接电位 法
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
分析化学8-第四节电位测定法.
二价离子,相对误差为7.8%
故电位分析多用于测定低价离子。
3.影响电位测定准确性的因素
(4)干扰离子: 干扰离子的影响表现在两个方面: a. 能使电极产生一定响应, b. 干扰离子与待测离子发生配位或沉淀反应。 结果:测定结果带来误差;
消除方式:掩蔽; 预先分离。
(5) 溶液特性:离子强度、pH及共存组分等。 溶液的总离子强度应保持恒定。
注意:离子活度系数保持不变时,膜电位才与log ci呈线性关系。
总离子强度调节缓冲溶液
(Totle Ionic Strength Adjustment Buffer简称TISAB)
TISAB的作用:
①保持较大且相对稳定的离子强度,使活度系数恒定; ②维持溶液在适宜的pH范围内,满足离子电极的要求; ③掩蔽干扰离子。 典型组成(测F-): 1mol/L的NaCl,使溶液保持较大稳定的离子强度;
cx 是待测离子的总浓度。
γi 是活度系数,
试液中准确加入一小体积Vs(约为V0的1/100)的用待测离子 的纯物质配制的标准溶液, 浓度为cs(约为cx的100倍)。 由于V0>Vs,可认为溶液体积基本不变。
浓度增量为: ⊿c cs Vs / V0
标准加入法
再次测定工作电池的电动势为E2: 2.303RT
第 四 节 电位测定法
一、直接电位法
1.pH测定原理与方法
Ag, AgCl | HCl | 玻璃膜 | 试液溶液 KCl(饱和) | Hg2Cl2(固), Hg
玻璃
甘汞
E E甘汞 E玻璃 E液接
EHg2Cl2/Hg (EAgCl/Ag E膜 ) E液接
E Hg 2Cl 2/Hg
EAgCl/Ag
0.25mol/LHAc和0.75mol/LNaAc, 使溶液pH在5左右; 0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
电解质 离子选择电极法
电解质离子选择电极法电解质是指在溶液中能够产生离子的化合物。
离子是带电的原子或分子,它们在溶液中可以自由移动,并能够在外电场的作用下发生迁移。
电解质离子选择电极法是一种常用的技术手段,用于研究电解质溶液中离子的行为和性质。
电解质离子选择电极法的原理是利用电极-电解质界面上的电位差和电流来实现对离子的选择性分析。
在该方法中,通常选用特定材料制备的电极作为工作电极,而参比电极则选用能够与工作电极反应的电解质溶液。
通过控制电位和电流,可以实现对特定离子的选择性分析。
电解质离子选择电极法主要分为直接电位法和交替电位法两种。
直接电位法是利用工作电极与参比电极之间的电位差来测量离子的浓度。
工作电极表面通常涂有选择性膜,该膜能够与目标离子发生特异性反应,从而使工作电极表面的电位发生变化。
测量时,通过在工作电极和参比电极之间加上一定的电势,测量电位的变化,然后根据标准曲线来确定离子的浓度。
交替电位法是在两个工作电极之间交替施加电位,通过测量电流的变化来确定离子的浓度。
工作电极表面的选择性膜可以使特定的离子在电位切换时发生氧化还原反应,从而导致电流的变化。
通过测量电流的变化,再根据标准曲线来确定离子的浓度。
电解质离子选择电极法具有以下优点:1. 高选择性:通过选择性膜的使用,可以实现对特定离子的选择性分析,避免了其他离子的干扰。
2. 高灵敏度:电解质离子选择电极法对离子的浓度变化非常敏感,可以测量低至微摩尔甚至纳摩尔级别的离子浓度。
3. 实时性:电解质离子选择电极法可以实时监测离子的浓度变化,可以用于动态分析。
4. 简便易行:相比其他分析方法,电解质离子选择电极法具有操作简便、仪器简单、快速灵活等特点,适用于实验室和现场分析。
电解质离子选择电极法在环境监测、生物医学、食品安全等领域具有广泛的应用。
例如,在水质监测中,可以利用电解质离子选择电极法来测量重金属离子、草甘膦等对水质安全具有重要影响的离子物质。
在生物医学领域,电解质离子选择电极法可以用于检测血液中的电解质浓度,以及监测药物的释放和代谢过程。
直接电位法的原理及应用
直接电位法的原理及应用一、原理直接电位法是一种用于电化学分析的方法,它利用电位差测量来确定物质的浓度或其他相关参数。
该方法基于电极与待分析物质之间的电化学反应,通过测量电极的电位来推断待分析物质的浓度。
1.1 电化学反应在直接电位法中,电极与待分析物质发生电化学反应。
这些反应可以是氧化还原反应、离子迁移反应或其他类型的反应。
通过控制电极电位,并测量相应的电流或电位差,可以推断出待分析物质的浓度。
1.2 构建电化学电池为了进行直接电位法分析,需要构建一个电化学电池。
电池由两个电极组成,分别是工作电极和参比电极。
工作电极与待分析物质之间发生反应,而参比电极在整个过程中保持稳定的电位。
1.3 测量电位差通过连接工作电极和参比电极,可以测量它们之间的电位差。
这个电位差与待分析物质的浓度或其他参数相关联。
通过标定电位差与浓度之间的关系,可以推断出待分析物质的浓度。
二、应用直接电位法在很多领域都有广泛的应用,以下列举了一些常见的应用场景。
2.1 环境监测直接电位法可以用于环境监测,比如测量水中各种离子的浓度。
通过测量水样的电位差,可以推断出水中不同离子的浓度,如氯离子、硝酸盐离子等。
这对于水质监测和环境保护非常重要。
2.2 药物分析直接电位法在药物分析中也得到了广泛应用。
通过测量药物溶液的电位差,可以推断出药物的浓度或者纯度。
这对于药品生产过程的控制和质量检测非常重要。
2.3 金属离子检测直接电位法还可以用于金属离子检测。
通过测量金属溶液的电位差,可以推断出金属离子的浓度。
这对于金属加工和质量检测有很大的帮助。
2.4 食品安全直接电位法还可以用于食品安全领域。
通过测量食品样品的电位差,可以推断出其中存在的污染物质、重金属离子等的浓度。
这对于食品质量控制和食品安全监测非常重要。
2.5 医学诊断直接电位法在医学诊断中也有应用。
例如,通过测量血液中某种物质的电位差,可以推断出患者的健康状况。
这对于疾病的早期诊断和治疗非常重要。
3.2.1直接电位法的基本概念及原理
内参比电极, 电位恒定
• • • • • • • • • •
Ag | AgCl,HCl | 玻璃膜 | 试液‖KCl(饱和),Hg2Cl2 | Hg △ EM △El ← 玻璃电极 → ← SCE→ △ EM : 膜电位 △ EM =(2.303RT/F)lg(αH+,试 / αH+,内) αH+,内 是常数,所以: △ EM =K + (2.303RT/F) lg αH+,试 =K – (2.303RT/F) pH试 △ E不对称: 不对称电位(因为△ EM不等于0) △ El : 液接电位 (扩散) EL是液体接界电位,简称液接电位。当两种组成不同或浓度不同的 溶液相接触时,由于正负离子扩散速度的不同,在两种溶液的界面 上电荷分布不同,从而产生电位差,即为液接电位EL。在电池中通 常用盐桥连接两种电解质溶液,使EL减至最小。但在电位测定中, 严格地讲,仍不能忽略这种电位差,不过在一定条件下EL为一常数。
直接电位法的基本概念及原理一能斯特方程二ph值的测定及膜电位一能斯特方程一能斯特方程?1电位分析法的实质??电位分析法的实质是通过在零电流条件下测定两电极间的电位差电池电动势所进行的分析动势所进行的分析测定
直接电位法的基本概念及原理
一、能斯特方程 二、pH值的测定及膜电位
一、能斯特方程
• 1、电位分析法的实质 • • 电位分析法的实质是通过在零电流 条件下测定两电极间的电位差(电池电 动势)所进行的分析测定。通常是由指 示电极、参比电极和待测溶液构成原电 池.
K ' ESCE E AgCl/Ag K E L E不对称
比较法测定待测溶液的pH 测定步骤:有两种溶液,一种是pH已知的标准
缓冲溶液s,另一种是pH待测的试液x。用电位
直接电位法
直接电位法1. 什么是直接电位法?直接电位法是一种电化学方法,用于测量电化学系统中各种物质的电位。
它是通过将一个电极连接到待测物上,并将另一个电极连接到参比物上,然后测量两者之间的电位差来实现的。
2. 直接电位法的原理直接电位法的原理基于电极在电解液中的电位变化。
当两个电极连接到电解液中,它们之间会发生电位差。
这个电位差是由电极与电解液中的离子交换所引起的。
在直接电位法中,一个电极被连接到待测物上,而另一个电极被连接到参比物上。
待测物可以是溶液中的化学物质,或者是通过电极浸泡在溶液中的固体物质。
参比物通常是一个标准电极,其电位已知并且稳定。
3. 直接电位法的应用直接电位法在许多领域都有广泛的应用。
以下是一些常见的应用领域:3.1 电化学分析直接电位法是电化学分析的重要方法之一。
它可以用于确定溶液中各种离子的浓度。
通过测量电位差,可以根据标准电极电位来计算出待测物的浓度。
3.2 腐蚀研究直接电位法可以用于研究金属和其他材料的腐蚀行为。
通过在电极上施加一定的电位,并测量电位的变化,可以评估材料的腐蚀性能。
3.3 电化学储能直接电位法在电化学储能领域也有广泛的应用。
例如,它可以用于研究电池和超级电容器的性能,并优化它们的设计。
3.4 生物传感器直接电位法还可以用于生物传感器的研究和开发。
通过将生物分子与电极接触,可以测量其与电极之间的电位差,从而实现对生物分子的检测和分析。
4. 直接电位法的优缺点直接电位法具有以下的优点和缺点:4.1 优点•简单易操作:直接电位法的实验操作相对简单,不需要复杂的仪器设备和条件。
•直接测量:直接电位法可以直接测量待测物的电位,无需进行复杂的预处理。
4.2 缺点•适用性受限:直接电位法适用于特定类型的物质,对于一些离子或化合物的测量可能不够敏感或准确。
•受干扰:直接电位法的测量结果可能会受到杂质、干扰物质或温度变化的影响。
5. 直接电位法的实验步骤以下是使用直接电位法进行实验的一般步骤:1.准备电解液和参比电极:选择合适的电解液,并准备好待测物和参比电极。
直接电位法定义
直接电位法定义直接电位法定义一、概述直接电位法是一种电化学分析方法,利用电极与待测溶液之间的电势差来测定溶液中的化学物质浓度或其他相关参数。
该方法具有简便、快速、灵敏等优点,在环境监测、生物医学、食品安全等领域得到了广泛应用。
二、原理直接电位法基于Nernst方程,该方程描述了电极与待测溶液之间的电势差与溶液中某种特定物质浓度之间的关系。
当特定物质存在于溶液中时,其会对电极表面产生一定的影响,导致电极与溶液之间的电势差发生变化。
通过测量这种变化,可以计算出待测物质在溶液中的浓度。
三、实验步骤1. 准备工作:选择合适的电极和参比电极,并进行校准;调节温度和pH值等参数。
2. 样品处理:将待测样品进行必要的前处理,如稀释、过滤等。
3. 测量操作:将处理好的样品加入容器中,插入电极并记录下初始电位值;加入适量的标准溶液,记录下与初始电位值的差值;根据Nernst方程计算待测物质的浓度。
4. 数据处理:将实验结果进行统计和分析,得出最终结果。
四、应用领域直接电位法在环境监测、生物医学、食品安全等领域得到了广泛应用。
例如,在环境监测中,可以利用该方法对水体中的重金属、有机污染物等进行检测;在生物医学中,可以用于检测血液中的离子浓度、药物代谢产物等;在食品安全中,可以用于检测食品中的添加剂、残留农药等。
五、优缺点直接电位法具有简便、快速、灵敏等优点。
同时,该方法不需要复杂的仪器设备和昂贵的试剂,成本较低。
但是,该方法也存在一些缺点,如对样品前处理要求高、容易受到干扰等。
因此,在具体应用时需要根据实际情况选择合适的分析方法。
六、总结直接电位法是一种基于Nernst方程的电化学分析方法,可用于测定溶液中的化学物质浓度或其他相关参数。
该方法具有简便、快速、灵敏等优点,在环境监测、生物医学、食品安全等领域得到了广泛应用。
但是,该方法也存在一些缺点,需要根据实际情况进行选择和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pH玻璃电极│标准缓冲溶液(pHs)或试液(pHx)││SCE 根据式(6-22)和式(6-26),在25℃时,可以得到pH的实 用定义为
根据能斯特方程的简化式(P149)和离子选择性的定量依据 式(P162)可得,25℃时:
由于活度系数γi由离子强度决定,如分析测定时能控制试液与标 准溶液的总离子强度一致,则γi不变,可并入常数项,则:
因此,用离子选择性电极测定溶液中待测离子浓度ci的条件 是:必须保持试液和标准溶液的总离子强度相一致。在实 际工作中,控制溶液总离子强度的常用方法是在标准溶液 和试液中均加入相同量的离子强度调节液(简称ISA,常用 惰性电解质)或总离子强度调节缓冲液(简称TISAB)。
测定方法:用测定离子的纯物质 配制一系列不同浓度的标准溶 液,并用TISAB保持溶液的离 子强度相对稳定,分别测定各 溶液的电位值,并绘制E – lgcs (或-Igcs)标准曲线。如图。 随后,从标准曲线上查出Ex所 对应的-lgcx可算出cx。
标准曲线法使用注意
① 离子活度系数保持不变时,膜电位才与logci呈线性关系。 ② 绘图时,E有正负,直线不一定过零点。一般选择±lgci对
若测定条件完全一致,则K’s = K’x , 两式相减得:
式中pHs已知,实验测出Es和Ex后,即可计算出试液的pHx。IUPAC推荐上式 作为pH的实用定义或pH标度。据此可以进行溶液中待测离子活度或浓度的直 接比较法测定和仪器直读,酸度计和离子计的pH(pA)值直读就是按此原理 设计的。
离子浓度的测定条件
标准加入法
• 标准加入法又称为添加法或增量法,是将标准溶 液加入试液中进行测定的。由于加入前后试液的 性质(如组成、γi、pH、温度等)基本不变,所 以该法适用于组成较复杂和少数试样中待测离子 浓度的测定,准确度较高。由于电位分析法中电 位与待测离子活度(或浓度)之间是半对数关系 而非线性关系,所以其标准加入法的计算公式与 其他方法不同。在具体应用时,标准加入法又分 为一次标准加入法和连续标准加入法两种。
TISAB是离子强度调节液、pH缓冲溶液 和消除干扰的掩蔽剂等的混合溶液,使用更 广泛。其作用如下:
①保持试液与标准溶液有较大、稳定和相同 的总离子强度,使其γi恒定;
②维持试液和标准溶液在适宜的pH范围内满 足离子选择性电极的要求;
③掩蔽干扰离子。
定量分析方法
直接比较法及溶液pH的测定
直接比较法主要用于溶液pH的测定,也可用于试样组分较 稳定的试液pH的测定,如电厂水汽中钠离子浓度的监测。此 法的测量仪器室酸度计或离子计,以pH或pA作为标度,在测 量时先用一个或两个标准溶液校正仪器,然后测量试液,即可 直接读取试液的pH或pA,故此法也称为浓度直读法,操作方 法简便快速。 1. 溶液pH的测定原理
2.溶液pH的测定方法
根据pH的实用定义,在实际应用中采用直接比较法来 测定溶液pH,即先将pH玻璃电极和SCE插入已知pHs的标 准缓冲溶液中,通过调节酸度计上的“定位”旋钮使仪 器显示出该标准缓冲溶液在测量温度下的pH值而消除K 值,即进行酸度计的校正。然后再将电极对浸入试液中, 仪器将直接显示试液的pH。
pA(pH)值的实用定义
根据离子选择性电极的电极电位知,25℃时,离子选择性电极的定量 依据是:
φ =K ISE
式中,pA表示待测离子活度的负对数。常数K包括:外参比电极电位、 内参比电极电位、不对称电位、液接电位,是不固定的常数,通常 不能由测量到的电动势根据上式直接计算试样中待测离子的活度, 而必须采用标准溶液进行比较而得到结果。
6.4 直接电位法
药分1331班
本节应达到的基本要求:
• 掌握直接电位法的定量依据、离子浓度测定条件 和常用的定量分析方法,掌握常用酸度计和离子 计的结构原理、基本操作和维护保养方法,能测 定溶液pH或其他离子的浓度,理解影响直接电位 法测量准确度的因素。
直接电位法具有简便、快速、灵敏、应用广泛的特点,广泛用于环境监测、 生化分析、医学临床检验及工业生产流程中的自动在线分析等领域,适用 的浓度范围宽,能测定许多阳、阴离子以及有机离子、生物物质,特别是 其他方法难易测定的碱金属离子和一价阴离子,并能用于气体分析。其中 应用最多的是pH和溶液中离子活度(或浓度)的测定
将一支阳离子An+响应的离子选择性电极与饱和甘汞电极分别插入含An+的标 准溶液(活度为as)或待测溶液(活度为ax)中组成电极:
A电极│含An+标准溶液(as)或待测溶液(ax)││SCE 注意:在实际测定时,除pH玻璃电极以外,其他离子选择性电极是作正极。
实际工作中普遍采用两种溶液,pH已知的标准缓冲溶液S和pH未知的待 测试液X,测定各自的电动势为:
应±离子和μg∙L-1、mol∙L-1。 ③ K’——受T、搅拌、Ej等影响,易平移,需用1~2个标液校
正。 ④ 更换试剂或条件不稳定时,应重绘。 ⑤ 该法适于大批同类试样的测定。对于要求不高的少数试样
,也可用比较法测定,电极斜率为S。
lgcxlg源自csExSEs
(阴阳),S
E1 lg c1
E2 lg c2
3.pH标准缓冲溶液 pH标准缓冲溶液是具有准确pH的缓冲溶液,是测定
溶液pH的基准。常见标准缓冲溶液0~40℃时对应的pH, 如图
注意:pH标准缓冲溶液一般可保存2~3个月,若 发现溶液出现浑浊等现象,则不能再用,应重新 配置。
标准曲线法及溶液中F-浓度的测定
标准曲线法广泛用于试样中待 测离子浓度的测定。
• 电位分析时,能斯特方程式是表示电极电 位与离子活度的关系,因此测量得到的是 离子的活度,而不是浓度。当待测离子的 浓度较高时,校准曲线将偏离线性,而且 浓度越高,误差也越大。同时,由于目前 只能提供CI-、Na+、Ga2+、F-等几种标准 活度浓度,因此,在实际测定中,如果要 求不高并保证离子活度系数不变,则可采 用浓度来代替活度进行测量。