2006年第47届国际数学奥林匹克竞赛试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ACB)=∠IBC+∠
四点共圆.但由内外角平分线相垂直知
的中点O为圆心.由于
,PO=IO,故
与圆周的交点即P=I时成立.
的一条对角线称为好的,如果它的两端点将
1
-+,其中
2x

()(((())))Q x P P P x =,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.
证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.
设有整数0x 使得00()Q x x =,00()P x x ≠.作递推数列 1()(012)i i x P x i +==,,.它
以 k 为周期.差分数列1(12)i i i x x i -∆=-=,
,的每一项整除后一项.由周期性及10∆≠,所有||i ∆ 为同一个正整数u .令
121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-=,,,,,.
数列的周期为 2.即0x 是 P 的2-周期点.
设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.
故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.。

相关文档
最新文档