高考数学一轮复习第2讲 用样本估计总体

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲用样本估计总体
1.用样本的频率分布估计总体分布
(1)作频率分布直方图的步骤
①求极差(01最大值与02最小值的差).
03组距与04组数.
05分组.
06频率分布表.
07频率分布直方图.
(2)频率分布折线图和总体密度曲线
08中点,就得到频率分布折线图.
09样本容量的增加,作图时10所分的组数增加,11组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.
(3)茎叶图
12中间的一列数,叶是从茎的13旁边生长出来的数.
2.用样本的数字特征估计总体的数字特征
(1)众数:一组数据中出现次数最多的数.
(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.
(3)平均数:x -
=14x1+x2+…+xn n ,反映了一组数据的平均水平.
(4)标准差:是样本数据到平均数的一种平均距离,s = 15 错误!.
(5)方差:s 2
=161
n
[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2](x n 是样本数据,n 是样本
容量,x -是样本平均数).
1.频率分布直方图与众数、中位数与平均数的关系 (1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的.
(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.
2.标准差与方差的特点
反映了各个样本数据聚集于样本平均数周围的程度.标准差(方差)越小,表明各个样本数据在样本平均数周围越集中;标准差(方差)越大,表明各个样本数据在样本平均数的两边越分散.
3.平均数、方差的公式推广
(1)若数据x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x -+a .
(2)若数据x 1,x 2,…,x n 的方差为s 2,则: ①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;
②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.
1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()
A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差
C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数
答案 B
解析因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B.
2.(2020·云川贵百校联考)某课外小组的同学们从社会实践活动中调查了20户家庭某月的用电量,如下表所示:
用电量/度120140160180200
户数2358 2 则这20户家庭该月用电量的众数和中位数分别是()
A.180,170 B.160,180
C.160,170 D.180,160
答案 A
解析用电量为180度的家庭最多,有8户,故这20户家庭该月用电量的众数是180,排除B,C;将用电量按从小到大的顺序排列后,处于最中间位置的两个数是160,180,故这20户家庭该月用电量的中位数是170.故选A.
3.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等
于其他8个长方形的面积和的2
5
,且样本容量为140,则中间一组的频数为()
A.28 B.40 C.56 D.60 答案 B
解析设中间一个小长方形的面积为x,其他8个长方形的面积和为5
2x,因此x+
5
2x=1,所以x=2
7.所以中间一组的频数为140×
2
7
=40.故选B.
4.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()
A.中位数B.平均数
C.方差D.极差
答案 A
解析中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.
5.(2020·全国卷Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()
A.0.01 B.0.1
C.1 D.10
答案 C
解析因为数据ax i+b(i=1,2,…,n)的方差是数据x i(i=1,2,…,n)的方差的a2倍,所以所求数据的方差为102×0.01=1.故选C.
6.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为 .
答案50
解析根据题中的频率分布直方图可知,三等品的频率为1-(0.0500+0.0625+0.0375)×5=0.25,因此该样本中三等品的件数为200×0.25=50.
多角度探究突破
考向一统计图表及应用
角度1扇形图
例1(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是()
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
答案 A
解析设新农村建设前的收入为M,则新农村建设后的收入为2M,新农村建设前种植收入为0.6M,新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A 不正确;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,增加了一倍,所以C正确;新农村建设后,养殖收入与第三产业收入的总和占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D正确.故选A.
角度2折线图
例2(多选)(2020·海南高考调研)如图所示的折线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的折线图,则下列判断正确的是()
A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了1 3
B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例
D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率
答案ABC
解析1月31日陕西省新冠肺炎累计确诊病例共有87例,其中西安32例,所以
西安市所占比例为3287>1
3,故A 正确;由折线图可知,1月25日到2月12日陕西省及
西安市新冠肺炎累计确诊病例都呈递增趋势,故B 正确;2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了213-116=97例,故C 正确;2月8日到2月10日西安市新冠肺炎累计确诊病例增加了98-8888=5
44,2月6日到2月8日西安市新冠肺炎
累计确诊病例增加了88-7474=737,显然737>5
44
,故D 错误.
角度3 频率分布直方图
例3 (1)(2020·天津高考)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )
A .10
B .18
C .20
D .36
答案 B
解析 根据频率分布直方图可知,直径落在区间[5.43,5.47)之间的频率为(6.25+5.00)×0.02=0.225,则直径落在区间[5.43,5.47)内零件的个数为80×0.225=18.故选B.
(2)(多选)(2020·临沂模拟)在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中正确的有( )
A.成绩在[70,80]分的考生人数最多
B.不及格的考生人数为1000人
C.考生竞赛成绩的平均分约为70.5分
D.考生竞赛成绩的中位数为75分
答案ABC
解析根据频率分布直方图得,成绩出现在[70,80]的频率最大,故A正确;不及格考生数为10×(0.010+0.015)×4000=1000,故B正确;根据频率分布直方图估计考试的平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;0.1+0.15+0.2=0.45<0.5,0.1+0.15+0.2+0.3=0.75>0.5,所以考生竞赛成绩
的中位数为70+0.5-0.45
0.3×10≈71.67,故D错误.故选ABC. 常见统计图的特点
(1)通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.
(2)折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.
(3)准确理解频率分布直方图的数据特点
①频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆;
②频率分布直方图中各小长方形的面积之和为1,这是解题的关键,常利用频率分布直方图估计总体分布.
1.(2020·葫芦岛模拟)书籍是人类的智慧结晶和进步阶梯,阅读是一个国家的文化根基和创造源泉.2014年以来,“全民阅读”连续6年被写入政府工作报
告.某高中为了解学生假期自主阅读书籍类型,在全校范围内随机抽取了部分学生进行调查.学生选择的书籍大致分为以下四类:A历史类、B文学类、C科学类、D哲学类.根据调查的结果,将数据整理成如下的两幅不完整的统计图,其中a-b=10.
根据上述信息,可知本次随机抽查的学生中选择A历史类的人数为()
A.45 B.30
C.25 D.22
答案 B
解析由题可知,样本容量为30-18
0.1
=120,所以选择A历史类的人数为120-
42-30-18=30.故选B.
2.(2020·汕头二模)新型冠状病毒疫情发生后,口罩的需求量大增,某口罩工厂为提高生产效率,开展技术创新活动,提出两种新的生产方式,为比较两种生产方式的效率,选取80名工人,将他们随机分成两组,每组40人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.
第一种生产方式40名工人完成同一生产任务所用时间(单位:min)如表:68728577838290838984 88877691799087918692 88878176959463878571 96637485929987827569 第二种生产方式40名工人完成同一生产任务所用时间(单位:min)如扇形图所示:
(1)请填写第一种生产方式完成任务所用时间的频数分布表并作出频率分布直方图:
生产时间[60,70)[70,80)[80,90)[90,100]
频数
(2)试从扇形图中估计第二种生产方式的平均数;
(3)根据频率分布图和扇形图判断哪种生产方式的效率更高?并说明理由.
解(1)第一种生产方式完成任务所用时间的频数分布表如下:
生产时间[60,70)[70,80)[80,90)[90,100]
频数481810
频率分布直方图如下:
(2)从扇形图中估计第二种生产方式的平均数为
65×0.25+75×0.5+85×0.2+95×0.05=75.5 min.
(3)从频率分布直方图中估计第一种生产方式的平均数为
65×0.1+75×0.2+85×0.45+95×0.25=83.5 min,
从平均数的角度发现:用第一种生产方式的工人完成生产任务所需要的时间高于80分钟;用第二种生产方式的工人完成生产任务所需要的时间低于80分钟,因此第二种生产方式的效率更高.
考向二用样本估计总体
例4(1)(多选)为了了解某校高一年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论正确的是()
A.该校高一年级学生1分钟仰卧起坐的次数的中位数为26.25次
B.该校高一年级学生1分钟仰卧起坐的次数的众数为27.5次
C.该校高一年级学生1分钟仰卧起坐的次数超过30次的约有320人
D.该校高一年级学生1分钟仰卧起坐的次数少于20次的约有32人
答案ABC
解析由题图可知中位数是26.25次,众数是27.5次,1分钟仰卧起坐的次数超过30次的频率为0.2,所以估计该校高一年级学生1分钟仰卧起坐的次数超过30次的约有320人;1分钟仰卧起坐的次数少于20次的频率为0.1,所以该校高一年级学生1分钟仰卧起坐的次数少于20次的约有160人.故A,B,C正确,D错误,故选ABC.
(2)(2020·香坊区校级二模)2020年初新冠病毒疫情爆发,全国范围开展了“停课不停学”的线上教学活动.哈六中数学组积极研讨网上教学策略:先采取甲、乙两套方案教学,并对分别采取两套方案教学的班级的7次线上测试成绩进行统计如图所示:
①请填写如表(要求写出计算过程)
平均数方差甲

②从下列三个不同的角度对这次方案选择的结果进行分析:a.从平均数和方差相结合看(分析哪种方案的成绩更好);b.从折线图上两种方案的走势看(分析哪种方案更有潜力).
解①由图象可得,x-甲=1
7×(109+111+113+115+117+119+121)=115,
x-乙=1
7×(121+115+109+115+113+117+115)=115,
则s2甲=1
7×(62
+42+22+02+22+42+62)=16,
s2乙=1
7×(62
+02+62+02+22+22+02)=
80
7≈11.43,
故表格第一行:115,16;第二行:115,约为11.43.
②a.因为x-甲=x-乙,s2甲>s2乙,故乙方案更好.
b.由折线图可知甲走势稳定上升,故甲方案更好.
众数、中位数、平均数、方差的意义及常用结论
(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述数据的集中趋势,方差和标准差描述数据的波动大小.
(2)方差的简化计算公式:s2=1
n[(x21+x2+…+x2n)-n x
-2
],或写成s2=
1
n(x21+x2
+…+x2n)-x-2,即方差等于原始数据平方的平均数减去平均数的平方.
3.某学校共有学生2000人,其中高一800人,高二、高三各600人,学校对学生在暑假期间每天的读书时间做了调查统计,全体学生每天的读书时间的平均数为x-=3小时,方差为s2=1.966,其中三个年级学生每天读书时间的平均数分别为x-1=2.7,x-2=3.1,x-3=3.3,又已知高一学生、高二学生每天读书时间的方差分别为s21=1,s2=2,则高三学生每天读书时间的方差s23= .
答案 3
解析由题意可得,1.966=800
2000×[1+(2.7-3)2]+
600
2000×[2+(3.1-3)2]+
600
2000
×[s23+(3.3-3)2],解得s23=3.
4.(2020·南宁模拟)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图.若尺寸落在区间
(x
--2s,x-+2s)之外,则认为该零件属于“不合格”的零件,其中x-,s分别为样本平均数和样本标准差,计算可得s≈15(同一组中的数据用该组区间的中点值作代表).
(1)求样本平均数的大小;
(2)若一个零件的尺寸是100 cm ,试判断该零件是否属于“不合格”的零件.
解 (1)x -=35×10×0.005+45×10×0.010+55×10×0.015+65×10×0.030+75×10×0.020+85×10×0.015+95×10×0.005=66.5.
(2)x -+2s =66.5+30=96.5,x --2s =66.5-30=36.5,100>96.5,∴该零件属于“不合格”的零件.
一、单项选择题
1.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为s A 和s B ,则( )
A.x -A >x -B ,s A >s B
B .x -A <x -B ,s A >s B C.x -A >x -B ,s A <s B
D .x -A <x -B ,s A <s B
答案 B
解析 由图可得样本A 的数据都在10及以下,样本B 的数据都在10及以上,所以x -A <x -B ,样本B 的数据比样本A 的数据波动幅度小,所以s A >s B ,故选B.
2.在高一期中考试中,甲、乙两个班的数学成绩统计如下表: 班级 人数 平均数 方差
甲20x-

2
乙30x-

3
其中x-甲=x-乙,则两个班数学成绩的方差为()
A.3 B.2
C.2.6 D.2.5
答案 C
解析由题意可知两个班的数学成绩的平均数为x-=x-甲=x-乙,则两个班数学成
绩的方差为s2=
20
20+30[2+(x


-x-)2]+
30
20+30[3+(x


-x-)2]=
20
20+30×2+
30
20+30×3=2.6.
3.(2020·河南省名校联考)如图给出的是某小区居民一段时间内访问网站的比例图,则下列选项中不超过21%的为()
A.腾讯与百度的访问量所占比例之和
B.网易与搜狗的访问量所占比例之和
C.淘宝与论坛的访问量所占比例之和
D.新浪与小说的访问量所占比例之和
答案 B
解析由于网易与搜狗的访问量所占比例之和为18%,不超过21%,故选B.
4.(2020·安庆模拟)某单位统计了本单位的职工一天行走步数(单位:百步)得到如
图所示的频率分布直方图,估计该单位职工一天行走步数的平均值为(同一组中的数据用该组区间的中点值为代表)()
A.125 B.125.6
C.124 D.126
答案 B
解析由频率分布直方图,估计该单位职工一天行走步数的平均值为x-=60×0.002×20+80×0.006×20+100×0.008×20+120×0.012×20+140×0.010×20+160×0.008×20+180×0.002×20+200×0.002×20=125.6.故选B.
5.(2020·威海一模)恩格尔系数是食品支出总额占个人消费支出总额的比重,其数值越小说明生活富裕程度越高.统计改革开放40年来我国历年城镇和农村居民家庭恩格尔系数,绘制了如图的折线图.根据该折线图,下列结论错误的是()
A.城镇居民家庭生活富裕程度不低于农村居民家庭
B.随着改革开放的不断深入,城镇和农村居民家庭生活富裕程度越来越高
C.1996年开始城镇和农村居民家庭恩格尔系数都低于50%
D.随着城乡一体化进程的推进,城镇和农村居民家庭生活富裕程度差别越来越小
答案 C
解析由折线图可知,对于A,因为城镇的恩格尔系数较小,故城镇居民家庭生活富裕程度不低于农村居民,A正确;对于B,城镇和农村的恩格尔系数整体上都在下降,说明城镇和农村居民家庭生活富裕程度越来越高,B正确;对于C,1996~2000年我国农村居民家庭恩格尔系数高于50%,C错误;对于D,结合图形得到城镇和农村家庭恩格尔系数之间的差距越来越小,说明城镇和农村家庭生活富裕程度差别越来越小,D正确.故选C.
6.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()
A.各月的平均最低气温都在0 ℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20 ℃的月份有5个
答案 D
解析由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;平均最高气温高于20 ℃的月份为六月、七月、八月,只有3个,D错误.
7.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布扇形图和90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是()
注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数超过总人数的20%
C.互联网行业中从事运营岗位的人数90后比80前多
D.互联网行业中从事技术岗位的人数90后比80后多
答案 D
解析由题图易知互联网行业从业人员90后占56%,A正确;仅90后从事技术岗位的人数占总人数的0.22176,超过20%,B正确;90后从事运营岗位的人数占总人数的0.56×0.17=0.0952>0.03,C正确;90后从事技术岗位的人数占总人数的
0.22176<0.41,而题中未给出80后从事互联网行业岗位分布情况,故D不一定正确.
二、多项选择题
8.(2020·青岛模拟)近几年,在国家大力支持和引导下,中国遥感卫星在社会生产和生活各领域的应用范围不断扩大,中国人民用遥感卫星系统研制工作取得了显著成绩,逐步形成了气象、海洋、陆地资源和科学试验等遥感卫星系统.如图是2007~2018年中国卫星导航与位置服务产业总体产值规模(万亿)及增速(%)的统计图,则下列结论中正确的是()
A.2017年中国卫星导航与位置服务产业总体产值规模达到2550亿元,较2016年增长20.40%
B.若2019年中国卫星导航与位置服务产业总体产值规模保持2018年的增速,总体产值规模将达3672亿元
C.2007~2018年中国卫星导航与位置服务产业总体产值规模逐年增加,但不与时间成正相关
D.2007~2018年中国卫星导航与位置服务产业总体产值规模的增速中有些与时间成负相关
答案ABD
解析对于A,根据图中数据可知2017年中国卫星导航与位置服务产业总体产值规模达到2550亿元,较2016年增长20.40%,故A正确;对于B,2019年中国卫星导航与位置服务产业总体产值规模保持2018年的增速,即为20%,故2019年总体产值规模为3060×(1+20%)=3672(亿元),故B正确;对于C,根据正相关的定义,散点位于从左下角到右上角区域,则两个变量具有正相关关系,故C错误;对于D,根据负相关的定义,散点位于从左上角到右下角区域,则两个变量具有负相关关系,故D 正确.故选ABD.
9.为了了解某校九年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论正确的是()
A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25次
B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5次
C.该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人
D.该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有32人
答案ABC
解析由题图可知中位数是26.25次,众数是27.5次,1分钟仰卧起坐的次数超过30次的频率为0.2,所以估计该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人;1分钟仰卧起坐的次数少于20次的频率为0.1,所以该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有160人.故A,B,C正确,D错误.故选ABC.
10.在发生某公共卫生事件期间,我国有关机构规定:“该事件在一段时间没有发生规模群体感染的标志为连续10天,每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,不一定符合该标志的是() A.甲地总体均值为3,中位数为4
B.乙地总体均值为2,总体方差大于0
C.丙地中位数为3,众数为3
D.丁地总体均值为2,总体方差为3
答案ABC
解析由于平均数和中位数不能确定某一天的病例不超过7人,A不一定符合该标志;当总体方差大于0,不知道总体方差的具体数值,因此不能确定数据的波动大小,B不一定符合该标志;中位数和众数也不能确定某一天的病例不超过7人,C不一定符合该标志;当总体平均数是2,若有一个数据超过7,则方差就超过3,D一定符合该标志.故选ABC.
三、填空题
11.(2021·湖北宜昌高三月考)甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):
人入选,则入选的最佳人选应是 . 答案 甲
解析 因为x 甲=x 乙=9,s 2甲=1
5×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-
9)2
]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2
]=6
5
>s 2甲,故甲更稳
定.
12.已知30个数据的60%分位数是8.2,这30个数据从小到大排列后第18个数据是7.8,则第19个数据是 .
答案 8.6
解析 由30×60%=18,设第19个数据为x ,则7.8+x 2=8.2,解得x =8.6,即第
19个数据是8.6.
四、解答题
13.(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
解(1)由已知得0.70=a+0.20+0.15,
故a=0.35,b=1-0.05-0.15-0.70=0.10.
(2)甲离子残留百分比的平均值的估计值为
2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.
乙离子残留百分比的平均值的估计值为
3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.
14.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准,用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:t),制作了频率分布直方图.
(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整; (2)用样本估计总体,如果希望80%的居民每月的用水量不超过标准,则月均用水量的最低标准定为多少吨?并说明理由;
(3)从频率分布直方图中估计该100位居民月均用水量的平均数.(同一组中的数据用该区间的中点值代表)
解 (1)
(2)月均用水量的最低标准应定为2.5 t .样本中月均用水量不低于2.5 t 的居民占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5 t.
(3)这
100













为0.5×
⎝ ⎛⎭
⎪⎪⎫14×0.10+34×0.20+54×0.30+74×0.40+94×0.60+114×0.30+134×0.10=
1.875(t).。

相关文档
最新文档