石家庄市人教版七年级上册数学期末试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石家庄市人教版七年级上册数学期末试卷及答案
一、选择题
1.下列方程中,以3
2
x =-为解的是( ) A .33x x =+ B .33x x =+
C .23x =
D .3-3x x =
2.-2的倒数是( ) A .-2
B .12
-
C .
12
D .2
3.计算32a a ⋅的结果是( ) A .5a ;
B .4a ;
C .6a ;
D .8a .
4.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )
A .132°
B .134°
C .136°
D .138° 5.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )
A .1
B .﹣1
C .3
D .﹣3
6.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )
A .1010
B .4
C .2
D .1
7.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )
A .a+b >0
B .ab >0
C .a ﹣b <o
D .a÷b >0
8.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道
理应是( ) A .两点确定一条直线 B .两点之间,线段最短
C .直线可以向两边延长
D .两点之间线段的长度,叫做这两点之间的
距离
9.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513
B .﹣511
C .﹣1023
D .1025
10.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若
x y
m m =,则x y = D .若x y =,则
x y m m
= 11.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )
A .15°
B .25°
C .35°
D .45°
12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱
B .赚了10钱
C .赚了20元钱
D .亏了20元钱
二、填空题
13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.
14.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____. 15.单项式﹣
22
πa b
的系数是_____,次数是_____.
16.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.
17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.
18.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________. 19.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910
=-⨯, 所以:
111
1
122334
910
++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1111111191122334
9101010
=-+-+-+
+-=-= 则
111
1
100101101102102103
20192020
+++
+
=⨯⨯⨯⨯_________.
20.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.
21.化简:2x+1﹣(x+1)=_____. 22.4是_____的算术平方根.
23.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.
24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
三、解答题
25.如图,已知∠1=∠2,∠BAC=∠DEC ,试判断AD 与FG 的位置关系,并说明理由.
26.先化简,再求值: 222
121
44x x x x
--+--,其中5x =. 27.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若
1COD AOB 2
∠∠=,则COD ∠是AOB ∠的内半角.
()1如图1,已知AOB 70∠=,AOC 25∠=,COD ∠是AOB ∠的内半角,则
BOD ∠=______;
()2如图2,已知AOB 60∠=,将AOB ∠绕点O 按顺时针方向旋转一个角度
α(0α60)<<至COD ∠,当旋转的角度α为何值时,COB ∠是AOD ∠的内半角.
()3已知AOB 30∠=,把一块含有30角的三角板如图3叠放,将三角板绕顶点O 以3
度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,
OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.
28.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).
(1)当买文具盒40个时,分别计算两种方案应付的费用;
(2)当购买文具盒多少个时,两种方案所付的费用相同;
(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?
29.如图,点O是直线AE上的一点,OC是∠AOD的平分线,∠BOD=1
3
∠AOD.
(1)若∠BOD=20°,求∠BOC的度数;
(2)若∠BOC=n°,用含有n的代数式表示∠EOD的大小.
30.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.
四、压轴题
31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分别为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第
1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、
2Q 、3Q 的位置如图2所示.
解决如下问题:
(1)如果4t =,那么线段13Q Q =______;
(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.
32.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .
(1)分别求a ,b ,c 的值;
(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.
i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.
ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.
33.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.
(1)求B 、C 两点的坐标;
(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;
(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的1
3
?直接写出此时点P的坐
标.
【参考答案】***试卷处理标记,请不要删除一、选择题
1.A
解析:A
【解析】
【分析】
把
3
2
x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.
【详解】解:
A中、把
3
2
x=-代入方程得左边等于右边,故A对;
B中、把
3
2
x=-代入方程得左边不等于右边,故B错;
C中、把
3
2
x=-代入方程得左边不等于右边,故C错;
D中、把
3
2
x=-代入方程得左边不等于右边,故D错.
故答案为:A.
【点睛】
本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可. 2.B
解析:B
【解析】
【分析】
根据倒数的定义求解.
【详解】
-2的倒数是-1 2
故选B
【点睛】
本题难度较低,主要考查学生对倒数相反数等知识点的掌握
3.A
解析:A 【解析】
此题考查同底数幂的乘法运算,即(0)m
n
m n
a a a a +⋅=>,所以此题结果等于325a a +=,
选A ;
4.B
解析:B 【解析】
过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:
过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,
∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
5.B
解析:B 【解析】 【分析】
将1x =-代入2ax x -=,即可求a 的值. 【详解】
解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.6.B
解析:B
【解析】
【分析】
根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.
【详解】
解:由题意可得,
当x=1时,
第一次输出的结果是4,
第二次输出的结果是2,
第三次输出的结果是1,
第四次输出的结果是4,
第五次输出的结果是2,
第六次输出的结果是1,
第七次输出的结果是4,
第八次输出的结果是2,
第九次输出的结果是1,
第十次输出的结果是4,
……,
∵2020÷3=673…1,
则第2020次输出的结果是4,
故选:B.
【点睛】
本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.
7.C
解析:C
【解析】
【分析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,
∴a+b<0,ab<0,a﹣b<0,a÷b<0.
故选:C.
8.A
解析:A
【解析】
根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案. 【详解】
解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”. 故答案为:A. 【点睛】
本题考查的知识点是直线公理的实际运用,易于理解掌握.
9.D
解析:D 【解析】 【分析】
观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可. 【详解】
解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】
此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.
10.D
解析:D 【解析】 【分析】
等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可. 【详解】
A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;
B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;
C. 等式
x y
m m
=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y
m m
=不成立,故D 选项错误; 故选:D . 【点睛】
本题考查等式的变形,熟记等式的基本性质是解题的关键.
11.B
解析:B 【解析】
利用直角和角的组成即角的和差关系计算.
【详解】
解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,
∵∠BOD+∠AOC=∠AOB+∠COD,
∵∠AOB=155°,
∴∠COD等于25°.
故选B.
【点睛】
本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.
12.A
解析:A
【解析】
设一件的进件为x元,另一件的进价为y元,
则x(1+25%)=200,
解得,x=160,
y(1-20%)=200,
解得,y=250,
∴(200-160)+(200-250)=-10(元),
∴这家商店这次交易亏了10元.
故选A.
二、填空题
13.8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点
解析:8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点睛】
此题考查多边形的对角线,解题关键在于掌握计算公式.
14.﹣1或﹣5
【解析】
【分析】
利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.
【详解】
解:∵|x|=3,y2=4,
∴x=±3,y=±2,
∵x<y,
∴x=﹣3,y=±2,
当x=﹣
解析:﹣1或﹣5
【解析】
【分析】
利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.
【详解】
解:∵|x|=3,y2=4,
∴x=±3,y=±2,
∵x<y,
∴x=﹣3,y=±2,
当x=﹣3,y=2时,x+y=﹣1,
当x=﹣3,y=﹣2时,x+y=﹣5,
所以,x+y的值是﹣1或﹣5.
故答案为:﹣1或﹣5.
【点睛】
本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.
15.﹣; 3.
【解析】
【分析】
根据单项式的次数、系数的定义解答.
解:单项式﹣的系数是﹣,次数是2+1=3,
故答案是:﹣;3.
【点睛】
本题考查了单项式系数、次数的定义
解析:﹣
2
π; 3. 【解析】
【分析】 根据单项式的次数、系数的定义解答.
【详解】 解:单项式﹣
22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣
2
π;3. 【点睛】
本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 16.56
【解析】
【分析】
由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案
【详解】
样本容量为80,某组样本的频率为0.7,
该组样本的频数=0.7×80
解析:56
【解析】
【分析】
由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案
【详解】
样本容量为80,某组样本的频率为0.7,
该组样本的频数=0.7×80=56
故答案为:56
【点睛】
此题考查频率分布表,掌握运算法则是解题关键
【解析】
【分析】
先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】
∵数轴上点A,B表示的数分别是1,–,
∴AB=1–(–)=1+,
则点C表示的数为1+1+
解析:2+2
【解析】
【分析】
先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.
【详解】
∵数轴上点A,B表示的数分别是1,–2,
∴AB=1–(–2)=1+2,
则点C表示的数为1+1+2=2+2,
故答案为2
【点睛】
本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.
18.6×
【解析】
试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.
所以,4 600 000 0
10
解析:6×9
【解析】
试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于
4 600 000 000有10位,所以可以确定n=10-1=9.
所以,4 600 000 000=4.6×109.
故答案为4.6×109.
19.【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】
解:
故答案为
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525
【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭ 1111111110010110110210210320192020
-+-+-++-= 96
10100242525=
= 故答案为
242525
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 20.36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等
∴
∴x=2,A=14
∴数字总和为:9+3+6+6+
解析:36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等 ∴
()934322
x x x A +=++=+- ∴x=2,A=14
∴数字总和为:9+3+6+6+14-2=36,
故答案为36.
【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面
21.x
【解析】
【分析】
首先去括号,然后再合并同类项即可.
【详解】
解:原式=2x+1﹣x ﹣1=x ,
故答案为:x .
【点睛】
此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.
解析:x
【解析】
【分析】
首先去括号,然后再合并同类项即可.
【详解】
解:原式=2x+1﹣x ﹣1=x ,
故答案为:x .
【点睛】
此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.
22.【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
解析:【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
23.【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第个单项式的系数是;
单
解析:()21n
n x - 【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;
单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;
第n 个单项式是()21n
n x -; 故答案为()21n
n x -. 【点睛】
此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.
24.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.
三、解答题
25.AD//FG ,理由见解析.
【解析】
【分析】
由∠BAC=∠DEC ,根据同位角相等,两直线平行可得AB//DE ,继而可得∠BAD=∠2,由等量代换可得∠1=∠BAD ,再根据同位角相等,两直线平行即可求得答案.
【详解】
AD//FG ,理由如下:
∵∠BAC=∠DEC ,
∴AB//DE ,
∴∠BAD=∠2,
∵∠1=∠2,
∴∠1=∠BAD ,
∴AD//FG.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定方法与性质定理是解题的关键.
26.
2x x +;57
. 【解析】
【分析】 直接利用分式的加减运算法则化简,然后代入求值,进而得出答案.
【详解】
解: 原式221214
x x x --+=-222(2)4(2)(2)2x x x x x x x x x --===-+-+; 当x=5时,原式=
57
. 【点睛】 此题主要考查了分式的化简求值,正确掌握分式的加减运算法则是解题关键.
27.(1)10°;(2) 20;(3)见解析.
【解析】
【分析】
(1)根据内半角的定义解答即可;
(2)根据内半角的定义解答即可;
(3)根据根据内半角的定义列方程即可得到结论.
【详解】
解:()1COD ∠是AOB ∠的内半角,AOB 70∠=, 1COD AOB 352
∠∠∴==, AOC 25∠=,
BOD 70352510∠∴=--=,
故答案为10,
()2AOC BOD α∠∠==,
AOD 60α∠∴=+,
COB ∠是AOD ∠的内半角,
()
1BOC 60α60α2∠∴=+=-, α20∴=,
∴旋转的角度α为20时,COB ∠是AOD ∠的内半角;
()3在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角;
理由:设按顺时针方向旋转一个角度α,旋转的时间为t ,
如图1,BOC ∠是AOD ∠的内半角,AOC BOD α∠∠==,
AOD 30α∠∴=+,
()
130302αα∴+=-, 解得:10α=,
103
t s ∴=; 如图2,BOC ∠是AOD ∠的内半角,AOC BOD ∠∠α==,
30AOD ∠α∴=+, ()
130302αα∴+=-, 90α∴=,
90303t s ∴==; 如图3,AOD ∠是BOC ∠的内半角,360AOC BOD ∠∠α==-,
36030αBOC ∠∴=+-,
()
136030α360α302∴+-=--, α330∴=,
330t 110s 3
∴==, 如图4,AOD ∠是BOC ∠的内半角,AOC BOD 360α∠∠==-,
BOC 36030α∠∴=+-,
()()
136030α303036030α2∴+-=+-+-, 解得:α350=,
350t s 3
∴=,
综上所述,当旋转的时间为
10s 3或30s 或110s 或350s 3
时,射线OA ,OB ,OC ,OD 能构成内半角.
【点睛】 本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.
28.(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.
【解析】
【分析】
(1)根据商场实行两种优惠方案分别计算即可;
(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得
1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;
(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.
【详解】
解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),
第②种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);
答:第①种方案应付的费用为640元,第②种方案应付的费用648元;
(2)设购买文具盒x 个时,两种方案所付的费用相同,
由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,
解得:50x =;
答:当购买文具盒50个时,两种方案所付的费用相同;
(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算; 当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择; 当购买文具盒个数大于50个时,选择方案②比较合算.
【点睛】
本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.
29.(1)10°;(2)180°﹣6n
【解析】
【分析】
(1)根据∠BOD =13
∠AOD .∠BOD =20°,可求出∠AOD ,进而求出答案; (2)设∠BOD 的度数,表示∠AOD ,用含有n 的代数式表示∠AOD ,从而表示∠DOE .
【详解】
解:(1)∵∠BOD =13
∠AOD .∠BOD =20°,
∴∠AOD=20°×3=60°,∵OC是∠AOD的平分线,
∴∠AOC=∠COD=1
2
∠AOD=
1
2
×60°=30°,
∴∠BOC=∠COD﹣∠BOD=30°﹣20°=10°;(2)设∠BOD=x,则∠AOD=3x,
有(1)得,∠BOC=∠COD﹣∠BOD,
即:n=3
2
x﹣x,解得:x=2n,
∴∠AOD=3∠BOD=6n,
∠EOD=180°﹣∠AOD=180°﹣6n,
【点睛】
考查角平分线的意义,以及角的计算,通过图形直观得到角的和或差是解决问题的关键.30.见解析
【解析】
【分析】
由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.
【详解】
解:如图所示.
从正面看从侧面看
【点睛】
本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
四、压轴题
31.(1)4;(2)1
2
或
7
2
;(3)
2
7
或
22
13
或2
【解析】【分析】
(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.
(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由
(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.
(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =
【详解】
解:(1)∵t+2t+3t=6t,
∴当t=4时,6t=24,
∵24122=⨯,
∴点3Q 与M 点重合,
∴134Q Q =
(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2
= (3)情况一:3t+4t=2, 解得:2t 7
= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=
情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)
解得:t=2.
综上所述:t 的值为,2或
27或2213. 【点睛】
本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.
32.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s
【解析】
【分析】
(1)根据非负数的性质求得a 、b 、c 的值即可;
(2)i )根据3BC-k•AB 求得k 的值即可;
ii )当AC=
13
AB 时,满足条件. 【详解】
(1)∵a 、b 满足(a-1)2+|ab+3|=0,
∴a-1=0且ab+3=0.
解得a=1,b=-3.
∴c=-2a+b=-5.
故a,b,c的值分别为1,-3,-5.
(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.
所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,
所以存在常数m,m=6这个不变化的值为26.
ii)AC=1
3 AB,
AB=5+t,AC=-5+3t-(1+2t)=t-6,
t-6=1
3
(5+t),解得t=11.5s.
【点睛】
本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.33.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣
3t+21(3)当t为2秒或13
3
秒时,△OPM的面积是长方形OBCD面积的
1
3
.此时点P的坐
标是(0,﹣4)或(8
3
,﹣6)
【解析】
【分析】
(1)根据绝对值、平方和算术平方根的非负性,求得a,b,c的值,即可得到B、C两点的坐标;
(2)分两种情况:①P在OB上时,直接根据三角形面积公式可得结论;②P在BC上时,根据面积差可得结论;
(3)根据已知条件先计算三角形OPM的面积为8,根据(2)中的结论分别代入可得对应t的值,并计算此时点P的坐标.
【详解】
(1)∵|2b+12|+(c﹣4)2=0,∴a+6=0,2b+12=0,c﹣4=0,∴a=﹣6,b=﹣6,c =4,∴B点坐标为(0,﹣6),C点坐标为(4,﹣6).
(2)①当点P在OB上时,如图1,OP=2t,S△OPM1
2
=⨯2t×4=4t;
②当点P在BC上时,如图2,由题意
得:BP=2t﹣6,CP=BC﹣BP=4﹣(2t﹣6)=10﹣2t,DM=CM=3,S△OPM=S长方形
OBCD﹣S△0BP﹣S△PCM﹣S△ODM=6×4
1
2
-⨯6×(2t﹣6)
1
2
-⨯3×(10﹣2t)
1
2
-⨯4×3=﹣3t+21.
(3)由题意得:S △OPM 13=
S 长方形OBCD 13
=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83
,﹣6). 综上所述:当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83
,﹣6).
【点睛】
本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.。