永泰县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永泰县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5
),则向量
在
方向上的投影为( )
A
.
B
.﹣
C
.
D
.﹣
2. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高 杂质低 旧设备 37 121 新设备
22
202
根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关 C .设备是否改造决定含杂质的高低
D .以上答案都不对 3. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的
个数为( ) A .1 B .2 C .3
D .4
4. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )
A .﹣1
B .0
C .1
D .2
5. 设等比数列{a n }的公比q=2,前n 项和为S n
,则=( )
A .2
B .4
C
.
D
.
6. 已知A ,B 是以O 为圆心的单位圆上的动点,且
|
|=
,则
•=( )
A .﹣1
B .1 C
.﹣
D
.
7. 若⎩⎨
⎧≥<+=-)2(,2)
2(),2()(x x x f x f x
则)1(f 的值为( ) A .8 B .8
1 C .
2 D .21
8. 已知角θ的终边经过点P (4,m ),且sin θ
=,则m 等于( ) A .﹣3 B .3 C
. D .±3
9. 已知函数f (x )满足f (x )=f (π﹣x ),且当x
∈(﹣
,
)时,f (x )=e x
+sinx ,则( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A.B.C.
D.
10.与命题“若x∈A,则y∉A”等价的命题是()
A.若x∉A,则y∉A B.若y∉A,则x∈A C.若x∉A,则y∈A D.若y∈A,则x∉A
11.已知函数,函数,其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()
A.B.C.D.
12.已知集合A,B,C中,A⊆B,A⊆C,若B={0,1,2,3},C={0,2,4},则A的子集最多有()A.2个B.4个C.6个D.8个
二、填空题
13.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.
14.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且
对恒成立,则的取值范围是__________________.
15.在△ABC中,a=4,b=5,c=6,则=.
16.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π).
17.下列结论正确的是
①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率为0.7;
②以模型y=ce kx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=e4;
③已知命题“若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=e x﹣mx在(0,+∞)上是减函数”是真命题;
④设常数a,b∈R,则不等式ax2﹣(a+b﹣1)x+b>0对∀x>1恒成立的充要条件是a≥b﹣1.
×的值为_______.
18.如图所示,圆C中,弦AB的长度为4,则AB AC
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.
三、解答题
19.A={x|x 2﹣3x+2=0},B={x|ax ﹣2=0},若B ⊆A ,求a .
20.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5B 两班中各随机抽5名学生进行抽查,其成绩记录如下:
x <y ,且A 和B 两班被抽查的5名学生成绩的平均值相等,方差也相等.
(Ⅰ)若从B 班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率; (Ⅱ)从被抽查的10名任取3名,X 表示抽取的学生中获得荣誉证书的人数,求X 的期望.
21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1
(1)
n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的
取值范围.
22.(本小题满分12分)
如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使
PAD θ∠=,构成四棱锥P ABCD -,且
2PC CD
PF CE
==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为
3
π
时,求折起的角度.
23.(本小题满分12分) 已知函数21()x f x x +=
,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭
(N n *
∈). (1)求数列{}n a 的通项公式;
(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和n T .
【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.
24.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;
(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2
x ∈.
永泰县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】D
【解析】解:∵;
∴在方向上的投影为==.
故选D.
【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.
2.【答案】
A
【解析】
独立性检验的应用.
【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表
杂质高杂质低合计
旧设备37 121 158
新设备22 202 224
合计59 323 382
由公式κ2=≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
3.【答案】B
【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)
|}
将x2﹣y=0代入x2+y2=1,
得y2+y﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M∩N中元素的个数为2个,
故选B.
【点评】本题既是交集运算,又是函数图形求交点个数问题
4.【答案】D
【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.
下列a的取值能使“¬p”是真命题的是a=2.
故选;D.
5.【答案】C
【解析】解:由于q=2,
∴
∴;
故选:C.
6.【答案】B
【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,
即有||2+||2=||2,
可得△OAB为等腰直角三角形,
则,的夹角为45°,
即有•=||•||•cos45°=1××=1.
故选:B.
【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.
7.【答案】B
【解析】
试题分析:()()31
132
8
f f-
===,故选B。
考点:分段函数。
8.【答案】B
【解析】解:角θ的终边经过点P(4,m),且sinθ=,
可得,(m>0)
解得m=3.
故选:B.
【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.
9.【答案】D
【解析】解:由f(x)=f(π﹣x)知,
∴f ()=f (π﹣
)=f (),
∵当x ∈(﹣,)时,f (x )=e x
+sinx 为增函数
∵<
<<
,
∴f ()<f (
)<f (),
∴f (
)<f (
)<f (
),
故选:D
10.【答案】D
【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可. 与命题“若x ∈A ,则y ∉A ”等价的命题是若y ∈A ,则x ∉A . 故选D .
11.【答案】 D
【解析】解:∵g (x )=﹣f (2﹣x ),
∴y=f (x )﹣g (x )=f (x )﹣+f (2﹣x ),
由f (x )﹣+f (2﹣x )=0,得f (x )+f (2﹣x )=,
设h (x )=f (x )+f (2﹣x ), 若x ≤0,则﹣x ≥0,2﹣x ≥2,
则h (x )=f (x )+f (2﹣x )=2+x+x 2
,
若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,
则h (x )=f (x )+f (2﹣x )=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2, 若x >2,﹣x <﹣2,2﹣x <0, 则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x|=x 2
﹣5x+8.
作出函数h (x )的图象如图:
当x ≤0时,h (x )=2+x+x 2=(x+)2
+≥,
当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,
故当=时,h(x)=,有两个交点,
当=2时,h(x)=,有无数个交点,
由图象知要使函数y=f(x)﹣g(x)恰有4个零点,
即h(x)=恰有4个根,
则满足<<2,解得:b∈(,4),
故选:D.
【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.
12.【答案】B
【解析】解:因为B={0,1,2,3},C={0,2,4},且A⊆B,A⊆C;
∴A⊆B∩C={0,2}
∴集合A可能为{0,2},即最多有2个元素,
故最多有4个子集.
故选:B.
二、填空题
13.【答案】
【解析】解:作的可行域如图:
易知可行域为一个三角形,
验证知在点A(1,2)时,
z1=2x+y+4取得最大值8,
∴z=log4(2x+y+4)最大是,
故答案为:.
【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
14.【答案】
【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。
因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。
根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。
许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。
15.【答案】1.
【解析】解:∵△ABC中,a=4,b=5,c=6,
∴cosC==,cosA==
∴sinC=,sinA=,
∴==1.
故答案为:1.
【点评】本题考查余弦定理,考查学生的计算能力,比较基础.
16.【答案】.
【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.
∴点P的极坐标为.
故答案为:.
17.【答案】①②④
【解析】解:①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0)则正态曲线关于x=1对称.若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率P=2×0.35=0.7;故①正确,
②∵y=ce kx,
∴两边取对数,可得lny=ln(ce kx)=lnc+lne kx=lnc+kx,
令z=lny,可得z=lnc+kx,
∵z=0.3x+4,
∴lnc=4,
∴c=e4.故②正确,
③已知命题“若函数f(x)=e x﹣mx在(0,+∞)上是增函数,
则m≤1”的逆否命题是“若m>1,则函数f(x)=e x﹣mx在(0,+∞)上不是增函数”,
若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则f′(x)≥0恒成立,
即f′(x)=e x﹣m≥0在(0,+∞)上恒成立,
即m≤e x,
∵x>0,∴e x>1,
则m≤1.故原命题是真命题,则命题的逆否命题也是真命题,故③错误,
④设f(x)=ax2﹣(a+b﹣1)x+b,
则f(0)=b>0,f(1)=a﹣(a+b﹣1)+b=1>0,
∴要使∀x>1恒成立,
则对称轴x=,
即a+b﹣1≤2a,即a≥b﹣1,
即不等式ax2﹣(a+b﹣1)x+b>0对∀x>1恒成立的充要条件是a≥b﹣1.故④正确,故答案为:①②④
18.【答案】8
三、解答题
19.【答案】
【解析】解:解:集合A={x|x2﹣3x+2=0}={1,2}
∵B⊆A,
∴(1)B=∅时,a=0
(2)当B={1}时,a=2
(3))当B={2}时,a=1
故a值为:2或1或0.
20.【答案】
【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,
=(6+x+8.5+8.5+y),
∵,∴x+y=17,①
∵,
=,
∵,得(x﹣8)2+(y﹣8)2=1,②
由①②解得或,
∵x<y,∴x=8,y=9,
记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,
共有个基本事件,
∴P(C)=,
即2名学生颁发了荣誉证书的概率为.
(Ⅱ)由题意知X所有可能的取值为0,1,2,3,
P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,
EX==.
【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.
21.【答案】
【解析】【命题意图】本题考查等差数列通项与前n项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.
22.【答案】(1)证明见解析;(2)23
πθ=. 【解析】
试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥
平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:
(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,1
2
FG CD =
,又//AB CD ,1
2
AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,
因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23
π
θ=.
考点:点、线、面之间的位置关系的判定与性质. 23.【答案】
【解析】(1)∵211()2x f x x x +=
=+,∴11
()2n n n
a f a a +==+. 即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,
∴1()(22)(1)22
n n a a n n n
S n n ++=
==+, ∴1111(1)1
n S n n n n ==-
++. (8分) ∴1231111n n T S S S S =++++
11111111()()()()1223341
n n =-+-+-++-+ 111n =-+1
n n =+. (12分) 24.【答案】(本小题满分13分)
解:(Ⅰ)2
()363(2)f x ax x x ax '=-=-, (1分)
①当0a >时,解()0f x '>得2x a >或0x <,解()0f x '<得20x a <<, ∴()f x 的递增区间为(,0)-∞和2(,)a
+∞,()f x 的递减区间为2
(0,)a . (4分)
②当0a =时,()f x 的递增区间为(,0)-∞,递减区间为(0,)+∞. (5分)
③当0a <时,解()0f x '>得20x a
<<,解()0f x '<得0x >或2
x a <
∴()f x 的递增区间为2(,0)a ,()f x 的递减区间为2
(,)a
-∞和(0,)+∞. (7分)
(Ⅱ)当2a <-时,由(Ⅰ)知2(,)a -∞上递减,在2
(,0)a
上递增,在(0,)+∞上递减.
∵2
2
240a f a a -⎛⎫=> ⎪⎝⎭
,∴()f x 在(,0)-∞没有零点. (9分) ∵()010f =>,11
(2)028
f a ⎛⎫=+< ⎪⎝⎭,()f x 在(0,)+∞上递减,
∴在(0,)+∞上,存在唯一的0x ,使得()00f x =.且01
(0,)2x ∈ (12分)
综上所述,当2a <-时,()f x 有唯一的零点0x ,且01
(0,)2
x ∈. (13分)。