直线与圆的位置关系—知识讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆的位置关系—知识讲解
责编:常春芳
【学习目标】
1.理解并掌握直线与圆的三种位置关系;
2.理解切线的判定定理和性质定理.
【要点梳理】
要点一、直线与圆的位置关系
1.直线和圆的三种位置关系:
(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.
(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.
(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.
2.直线与圆的位置关系的判定和性质.
直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?
由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.
一般地,直线与圆的位置关系有以下定理:
如果⊙O的半径为r,圆心O到直线l的距离为d,那么,
(1)d<r直线l与⊙O相交;
(2)d=r直线l与⊙O相切;
(3)d>r直线l与⊙O相离.
要点诠释:
这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.
要点二、切线的判定定理和性质定理
1.切线的判定定理:
经过半径的外端并且垂直于这条半径的直线是圆的切线.
要点诠释:
切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:
经过切点的半径垂直于圆的切线.
【典型例题】
类型一、直线与圆的位置关系
【高清ID号:356966 关联的位置名称(播放点名称):经典例题1-2】
1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?
(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米
【答案与解析】
解:过点C作CD⊥AB于D,
在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,
,∴AB·CD=AC·BC,

AC BC34
CD===2.4
AB5
∙⨯
(cm),
(1)当r=2cm时,CD>r,∴圆C与AB相离;
(2)当r=2.4cm时,CD=r,∴圆C与AB相切;
(3)当r=3cm时,CD<r,∴圆C与AB相交.
【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.
举一反三:
【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()
A. 相离
B. 相切
C. 相交
D. 相交或相离
【答案】B.
类型二、切线的判定与性质
2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.
【思路点拨】作垂直,证半径.
【答案与解析】
证明:过D作DF⊥AC于F.
∵∠B=90°,
∴DB⊥AB.
又AD平分∠BAC,
∴ DF=BD=半径.
∴ AC与⊙D相切.
【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.
3.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;
(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x 的方程,求出方程的得到x的值,即可确定出DE的长.
【答案与解析】
解:(1)直线DE与⊙O相切,理由如下:
连接OD,
∵OD=OA,
∴∠A=∠ODA,
∵EF是BD的垂直平分线,
∴EB=ED,
∴∠B=∠EDB,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠ODA+∠EDB=90°,
∴∠ODE=180°﹣90°=90°,
∴直线DE与⊙O相切;
(2)连接OE,
设DE=x,则EB=ED=x,CE=8﹣x,
∵∠C=∠ODE=90°,
∴OC2+CE2=OE2=OD2+DE2,
∴42+(8﹣x)2=22+x2,
解得:x=4.75,
则DE=4.75.
【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.
4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AE=8,⊙O的半径为5,求DE的长.
【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.
【答案与解析】
解:(1)直线DE与⊙O相切.
理由如下:
连接OD.
∵AD平分∠BAC,
∴∠EAD=∠OAD.
∵OA=OD,
∴∠ODA=∠OAD.
∴∠ODA=EAD.
∴EA∥OD.
∵DE⊥EA,
∴DE⊥OD.
又∵点D在⊙O上,∴直线DE与⊙O相切.
(2)如上图,作DF⊥AB,垂足为F.
∴∠DFA=∠DEA=90°.
∵∠EAD=∠FAD,AD=AD,
∴△EAD≌△FAD.
∴AF=AE=8,DF=DE.
∵OA=OD=5,∴OF=3.。

相关文档
最新文档