高三第一轮复习_函数的奇偶性

合集下载

2023年高考数学一轮复习讲义——函数的奇偶性、周期性与对称性

2023年高考数学一轮复习讲义——函数的奇偶性、周期性与对称性

§2.3 函数的奇偶性、周期性与对称性考试要求 1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义. 2.会依据函数的性质进行简单的应用.知识梳理 1.函数的奇偶性奇偶性 定义图象特点 偶函数一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数 关于y 轴对称奇函数 一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f (x )的定义域为D ,如果存在一个非零常数T ,使得对每一个x ∈D 都有x +T ∈D ,且f (x +T )=f (x ),那么函数y =f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性. 2.函数周期性常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称. (2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝⎛⎭⎫a +b 2,0对称.(3)f (2a -x )=-f (x )+2b ⇔f (x )的图象关于点(a ,b )对称.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若函数f (x )为奇函数,则f (0)=0.( × )(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.( × ) (3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.( √ ) (4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.( √ ) 教材改编题1.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x答案 B解析 根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数;B 选项为偶函数;C 选项定义域为(0,+∞),不具有奇偶性;D 选项既不是奇函数,也不是偶函数.2.若f (x )是定义在R 上的周期为2的函数,当x ∈[0,2)时,f (x )=2-x ,则f (2 023)=________. 答案 12解析 ∵f (x )的周期为2, ∴f (2 023)=f (1)=2-1=12.3. 设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案 (-2,0)∪(2,5]解析 由图象可知,当0<x <2时,f (x )>0; 当2<x ≤5时,f (x )<0, 又f (x )是奇函数, ∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性 命题点1 判断函数的奇偶性 例1 判断下列函数的奇偶性: (1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0;(3)f (x )=log 2(x +x 2+1).解 (1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ), 所以函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0, 则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x )成立, ∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为R , f (-x )=log 2[-x +(-x )2+1] =log 2(x 2+1-x ) =log 2(x 2+1+x )-1=-log 2(x 2+1+x )=-f (x ), 故f (x )为奇函数.思维升华 判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f (x )与f (-x )是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 命题点2 函数奇偶性的应用例2 (1)(2022·哈尔滨模拟)函数f (x )=x (e x +e -x )+1在区间[-2,2]上的最大值与最小值分别为M ,N ,则M +N 的值为( ) A .-2 B .0 C .2 D .4 答案 C解析 依题意,令g (x )=x (e x +e -x ), 显然函数g (x )的定义域为R , 则g (-x )=-x (e -x +e x )=-g (x ), 即函数g (x )是奇函数,因此,函数g (x )在区间[-2,2]上的最大值与最小值的和为0,而f (x )=g (x )+1, 则有M =g (x )max +1,N =g (x )min +1, 于是得M +N =g (x )max +1+g (x )min +1=2, 所以M +N 的值为2.(2)(2021·新高考全国Ⅰ)已知函数f (x )=x 3(a ·2x -2-x )是偶函数,则a =________. 答案 1解析 方法一 (定义法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以(-x )3(a ·2-x -2x )=x 3(a ·2x -2-x )对任意的x ∈R 恒成立,所以x 3(a -1)(2x +2-x )=0对任意的x ∈R 恒成立,所以a =1.方法二 (取特殊值检验法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数,所以f (-1)=f (1),所以-⎝⎛⎭⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1. 方法三 (转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数, 所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1. 教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )( )A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数 答案 C解析 由9-x 2≥0且|6-x |-6≠0, 解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0}, 关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x ,又f (-x )=9-(-x )2x =-9-x 2-x=-f (x ),所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎪⎨⎪⎧g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________.答案 -1解析 ∵f (x )为奇函数且f (-1)=g (-1), ∴f (-1)=-f (1)=-(-1)=1, ∴g (-1)=1, ∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1 (1)(2021·全国乙卷)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( )A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案 B解析 f (x )=1-x 1+x =2-(x +1)1+x =21+x -1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1.(2)已知函数f (x )是定义在R 上的奇函数,当x ≥0,f (x )=2x -2x +a ,则a =________;当x <0时,f (x )=________. 答案 -1 -2-x -2x +1解析 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0,即1+a =0, ∴a =-1.∴当x ≥0时,f (x )=2x -2x -1, 设x <0,则-x >0,∴f (-x )=2-x -2(-x )-1=2-x +2x -1, 又f (x )为奇函数, ∴f (-x )=-f (x ), ∴-f (x )=2-x +2x -1, ∴f (x )=-2-x -2x +1. 题型二 函数的周期性例3 (1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝⎛⎭⎫132等于( ) A .-94B .-14C.14D.94答案 A解析 由f (x -2)=f (x +2),知y =f (x )的周期T =4, 又f (x )是定义在R 上的奇函数, ∴f ⎝⎛⎭⎫132=f ⎝⎛⎭⎫8-32 =f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫32=-94. (2)函数f (x )满足f (x )f (x +2)=13,且f (1)=2,则f (2 023)=________. 答案132解析 ∵f (x )f (x +2)=13, ∴f (x +2)=13f (x ),∵f (x +4)=13f (x +2)=1313f (x )=f (x ),∴f (x )的周期为4, ∴f (2 023)=f (3)=13f (1)=132.教师备选若函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2 023)=________.答案 -1 解析 当x >0时, f (x )=f (x -1)-f (x -2), ① ∴f (x +1)=f (x )-f (x -1),②①+②得,f (x +1)=-f (x -2), ∴f (x )的周期为6,∴f (2 023)=f (337×6+1)=f (1) =f (0)-f (-1)=20-21=-1.思维升华 (1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期. (2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2 023)等于() A.336 B.338C.337 D.339答案 B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2 023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2 023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2 021)+f(2 022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2 021)+f(2 022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2 021)+f(2 022)=0.题型三函数的对称性例4(1)(多选)(2022·承德模拟)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f (-x )=f (x ),则下列结论正确的是( ) A .f (x )的图象关于直线x =2对称 B .f (x )的图象关于点(2,0)对称 C .f (x )的周期为4 D .y =f (x +4)为偶函数 答案 ACD解析 ∵f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称,故A 正确,B 错误; ∵函数f (x )的图象关于直线x =2对称, 则f (-x )=f (x +4),又f (-x )=f (x ), ∴f (x +4)=f (x ),∴T =4,故C 正确;∵T =4且f (x )为偶函数,故y =f (x +4)为偶函数,故D 正确.(2)已知函数y =f (x )-2为奇函数,g (x )=2x +1x ,且f (x )与g (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x 6,y 6),则y 1+y 2+…+y 6=________. 答案 12解析 ∵函数y =f (x )-2为奇函数, ∴函数y =f (x )的图象关于点(0,2)对称,又g (x )=2x +1x =1x +2,其图象也关于(0,2)对称,∴两函数图象交点关于(0,2)对称, 则y 1+y 2+…+y 6=3×4=12.延伸探究 在本例(2)中,把函数“y =f (x )-2”改为“y =f (x +1)-2”,把“g (x )=2x +1x ”改为“g (x )=2x -1x -1”,其他不变,求x 1+x 2+…+x 6+y 1+y 2+…+y 6的值.解 ∵y =f (x +1)-2为奇函数, ∴函数f (x )的图象关于点(1,2)对称, 又g (x )=2x -1x -1=1x -1+2,∴g (x )的图象也关于点(1,2)对称,则x 1+x 2+…+x 6+y 1+y 2+…+y 6=3×2+3×4=18. 教师备选1.函数f (x )=lg|2x -1|图象的对称轴方程为________. 答案 x =12解析 内层函数t =|2x -1|的对称轴是x =12,所以函数f (x )=lg |2x -1|图象的对称轴方程是x=12. 2.已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案 -1解析 因为f (x )关于点(0,1)对称, 所以f (x )+f (-x )=2, 故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2, 解得a =0,所以f (x )=x 3+bx +1, 又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1, 所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3 (1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则 f (2 025)=________. 答案 1解析 ∵f (x )的周期为6,则f (2 025)=f (3), 又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称, ∴f (3)=f (1)=1,∴f (2 025)=1.(2)(多选)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是( )A .f (x )的图象关于y 轴对称B .f (x )的图象关于原点对称C .f (x )的图象关于直线x =π2对称D .f (x )的图象关于点(π,0)对称 答案 BCD解析 ∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x=-f (x ),∴f (x )为奇函数,图象关于原点对称, 故A 错误,B 正确. ∵f ⎝⎛⎭⎫π2-x =cos x +1cos x , f ⎝⎛⎭⎫π2+x =cos x +1cos x , ∴f ⎝⎛⎭⎫π2-x =f ⎝⎛⎭⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故C 正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故D 正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上( ) A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5 答案 C解析 因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5. 2.(2022·南昌模拟)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案 B解析 f (x )=32x +13x =3x +3-x ,f (-x )=3-x +3x ,∴f (-x )=f (x ),故f (x )为偶函数,其图象关于y 轴对称.3.已知函数f (x )的图象关于原点对称,且周期为4,f (3)=-2,则f (2 021)等于( ) A .2 B .0 C .-2 D .-4 答案 A解析 依题意,函数f (x )的图象关于原点对称,则函数f (x )是奇函数,又f (x )的周期为4,且f (3)=-2,则有f (2 021)=f (-3+506×4)=f (-3)=-f (3)=2,所以f (2 021)=2.4.(2022·宁德模拟)已知f (x )是定义在R 上的奇函数,且对任意的x ∈R 都有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x 2+ax +b ,则a +b 等于( ) A .0 B .-1 C .-2 D .2 答案 C解析 因为f (x )是定义在R 上的奇函数, 且x ∈[0,2]时,f (x )=x 2+ax +b , 所以f (0)=b =0,f (-x )=-f (x ), 又对任意的x ∈R 都有f (x +2)=-f (x ), 所以f (x +2)=f (-x ),所以函数图象关于直线x =1对称,所以-a=1,解得a=-2,2所以a+b=-2.5.(多选)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=f(-x)C.y=xf(x) D.y=f(x)+x答案BD解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,f[-(-x)]=f(x)=-f(-x),为奇函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.可知BD正确.6.(多选)(2022·湖北新高考9+N联盟模拟)已知f(x)为R上的偶函数,且f(x+2)是奇函数,则()A.f(x)的图象关于点(2,0)对称B.f(x)的图象关于直线x=2对称C.f(x)的周期为4D.f(x)的周期为8答案AD解析∵f(x)为偶函数,∴f(x)的图象关于y轴对称,f(-x)=f(x),又∵f(x+2)是奇函数,∴f(-x+2)=-f(x+2),∴f(x-2)+f(x+2)=0,∴f(x+8)=-f(x+4)=f(x),∴函数f(x)的图象关于点(2,0)对称,f(x)为周期函数且周期为8.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案 13解析 因为f (x )=ax 2+bx +1是定义在[a -1,2a ]上的偶函数, 则有(a -1)+2a =3a -1=0,则a =13,同时f (-x )=f (x ),即ax 2+bx +1=a (-x )2+b (-x )+1, 则有bx =0,必有b =0. 则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝⎛⎭⎫352=12,则m =______. 答案 12解析 由f (1-x )=f (1+x ), f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4, ∴f ⎝⎛⎭⎫352=f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫12=12, ∴14+12m =12, ∴m =12.9.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2) 要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式. (1)证明 ∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2 =-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于( ) A .-7 B .-3 C .3 D .7 答案 B解析 设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ), 即f (x )-2=-f (-x )+2, 故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=a 2x -a -2x+1(a >0,a ≠1),则f (1)等于( )A .-1B .0C .1D .2 答案 C解析 由已知可得f (1)+g (1)=a 2-a -2+1, f (-1)+g (-1)=a -2-a 2+1, 因为f (x )为偶函数,g (x )为奇函数, 所以f (1)-g (1)=a -2-a 2+1,联立⎩⎪⎨⎪⎧f (1)+g (1)=a 2-a -2+1,f (1)-g (1)=a -2-a 2+1,解得f (1)=1.13.(多选)(2022·本溪统考)已知定义在R 上的奇函数f (x )对∀x ∈R 都有f (x +2)=-f (x ),则下列判断正确的是( ) A .f (x )是周期函数且周期为4 B .f (x )的图象关于点(1,0)对称 C .f (x )的图象关于直线x =-1对称 D .f (x )在[-4,4]上至少有5个零点 答案 ACD解析 对于A 选项,因为f (x +2)=-f (x ), 所以f (x +4)=-f (x +2)=-[-f (x )] =f (x ),所以函数f (x )的周期为4,故A 项正确; 对于B 选项,因为f (x +2)=-f (x ), 且f (-x )=-f (x ), 所以f (x +2)=f (-x ),所以f (x )的图象关于直线x =1对称, 故B 项错误;对于C 选项,因为f (x +2)=-f (x ), 所以f (x )=-f (x -2), 又因为f (-x )=-f (x ), 所以f (x -2)=f (-x ),所以f (x )的图象关于直线x =-1对称, 故C 项正确;对于D 选项,因为f (x )为定义在R 上的奇函数, 所以f (0)=0,因为T =4, 所以f (4)=f (-4)=0, 因为f (x +2)=-f (x ), 所以f (0+2)=-f (0)=0, 所以f (2)=0,因为T =4, 所以f (-2)=0,故D 项正确.14.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=________. 答案 1 1 011解析 因为f (x )=4x4x +2,所以f (x )+f (1-x )=4x4x +2+41-x41-x +2=4x4x +2+44x44x+2 =4x4x +2+44x4+2·4x4x=4x 4x +2+44+2·4x =2·4x +44+2·4x =1,设f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=m , ① 则f ⎝⎛⎭⎫2 0222 023+…+f ⎝⎛⎭⎫32 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫12 023=m ,②①+②得2 022=2m ,即m =1 011,故f ⎝⎛⎭⎫12 023+f ⎝⎛⎭⎫22 023+f ⎝⎛⎭⎫32 023+…+f ⎝⎛⎭⎫2 0222 023=1 011.15.(多选)(2022·岳阳质检)设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也叫取整函数.令f (x )=x -[x ],以下结论正确的有( ) A .f (-1.1)=0.9 B .函数f (x )为奇函数 C .f (x +1)=f (x )+1 D .函数f (x )的值域为[0,1) 答案 AD解析 对于A ,f (-1.1)=-1.1-[-1.1] =-1.1+2=0.9,故A 正确.对于B ,取x =-1.1,则f (-1.1)=0.9, 而f (1.1)=1.1-[1.1]=1.1-1=0.1, 故f (-1.1)≠-f (1.1),所以函数f (x )不为奇函数,故B 错误.对于C ,f (x +1)=x +1-[x +1]=x +1-[x ]-1=f (x ),故C 错误. 对于D ,由C 的判断可知,f (x )为周期函数,且周期为1, 当0≤x ≤1时,则当x =0时,f (0)=0-[0]=0,当0<x <1时,f (x )=x -[x ]=x -0=x , 当x =1时,f (x )=1-[1]=1-1=0, 故当0≤x ≤1时,则有0≤f (x )<1, 故函数f (x )的值域为[0,1),故D 正确.16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P . (1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值. 解 (1)因为函数y =x 是增函数, 所以函数y =x 不具有性质P , 当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立, 所以y =cos x 具有性质P . (2)设x ∈(-π,0], 则x +π∈(0,π],由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝⎛⎭⎫-π2=12.。

年高考第一轮复习数学函数的奇偶性

年高考第一轮复习数学函数的奇偶性

函数的奇偶性●知识梳理1.奇函数:对于函数f(x)的定义域内随意一个x,都有f(- x)=-f(x)〔或f (x) + f(- x) =0〕,则称f( x)为奇函数.2.偶函数:对于函数f( x)的定义域内随意一个x,都有f(- x) =f( x)〔或f ( x)- f(- x)=0〕,则称f(x)为偶函数.3.奇、偶函数的性质(1)拥有奇偶性的函数,其定义域对于原点对称(也就是说,函数为奇函数或偶函数的必需条件是其定义域对于原点对称).(2)奇函数的图象对于原点对称,偶函数的图象对于y 轴对称 .(3)若奇函数的定义域包括数0,则 f(0)=0.(4)奇函数的反函数也为奇函数.(5)定义在(-∞, +∞)上的随意函数f(x)都能够独一表示成一个奇函数与一个偶函数之和 .●点击双基1.下边四个结论中,正确命题的个数是①偶函数的图象必定与y 轴订交②奇函数的图象必定经过原点③偶函数的图象对于 y 轴对称④既是奇函数,又是偶函数的函数必定是f( x)=0(x∈R)分析:①不对;②不对,由于奇函数的定义域可能不包括原点;③正确;④不对,既是奇函数又是偶函数的函数能够为f( x)=0〔x∈(- a, a)〕.答案: A2.已知函数 f(x)=ax2+bx+ c(a≠0)是偶函数,那么g(x) =ax3+bx2+cx 是A. 奇函数C.既奇且偶函数B.偶函数D.非奇非偶函数分析:由f(x)为偶函数,知b=0,有g(x)=ax3+cx( a≠0)为奇函数.答案: A3.若偶函数f(x)在区间[-1, 0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则以下不等式中正确的选项是(cosα)> f(cosβ)(sinα)> f( cosβ)(sinα)> f(sinβ)(cosα)>f(sinβ)分析:∵偶函数f(x)在区间[- 1, 0]上是减函数,∴ f(x)在区间[ 0, 1]上为增函数 .由α、β是锐角三角形的两个内角,∴α+β>90°,α>90°-β.1>sinα>cosβ> 0.∴f(sinα)> f( cosβ) .答案: B4.已知 f( x)= ax2+ bx+ 3a+ b 是偶函数,且其定义域为[a-1,2a],则 a=___________,b=___________.分析:定义域应对于原点对称,故有 a-1=- 2a,得 a=1 .3又对于所给分析式,要使f(- x)= f( x)恒建立,应 b=0.答案:131( x≠ 0);②y=x25.给定函数+1;③y=2x;④y=log2;⑤y=log2(x+x 2 1 ):①y=x.x在这五个函数中,奇函数是_________,偶函数是 _________,非奇非偶函数是__________.答案:①⑤② ③④●典例分析【例 1】已知函数 y=f(x)是偶函数, y=f(x- 2)在[ 0,2]上是单一减函数,则(0)< f(- 1)< f( 2)(-1)<f(0)<f(2)(- 1)< f( 2)< f( 0)(2)<f(-1)<f(0)分析:由 f(x-2)在[ 0,2]上单一递减,∴f(x)在[- 2,0]上单一递减 .∵y=f(x)是偶函数,∴f(x)在[ 0, 2]上单一递加 .又 f(- 1) =f(1),故应选 A.答案: A【例 2】判断以下函数的奇偶性:(1)f(x)=|x+1|- |x- 1|;1x(2)f(x)=(x-1)·;(3)f(x)=1x 2;| x 2 | 2(4)f(x)=x(1x)( x0),x(1x)( x0).分析:依据函数奇偶性的定义进行判断.解:(1)函数的定义域x∈(-∞, +∞),对称于原点 .∵f(- x)=|- x+1|- |- x- 1|=|x-1|- |x+1|=-( |x+1|-|x-1|) =- f( x),∴f(x)=|x+1|- |x- 1|是奇函数 .( 2)先确立函数的定义域 .由1x1 x≥0,得- 1≤x< 1,其定义域不对称于原点,所以 f(x)既不是奇函数也不是偶函数.(3)去掉绝对值符号,依据定义判断.由1x20,1 x 1,得4. | x 2 | 2 0,x 0且x故 f(x)的定义域为[- 1,0)∪(0,1],对于原点对称,且有 x+2>0.进而有 f(x)221( x)22= 1 x= 1x=-1x =-f(x),故 f(x)为奇,这时有 f(- x)=xx22x x函数 .(4)∵函数 f(x)的定义域是(-∞, 0)∪(0,+∞),而且当 x> 0 时,- x<0,∴f(- x)=(- x)[1-(- x)]=-x(1+x) =- f(x)(x> 0) .当 x< 0 时,- x>0,∴ f(- x) =- x( 1- x)=-f(x)( x< 0) .故函数 f(x)为奇函数 .评论:( 1)分段函数的奇偶性应分段证明 .(2)判断函数的奇偶性应先求定义域再化简函数分析式 .【例 3】(2005 年北京东城区模拟试题)函数f( x)的定义域为 D={ x|x≠0} ,且满足对于随意 x 、 x ∈D,有 f( x ·x )=f( x )+f(x ) .121212(1)求 f( 1)的值;(2)判断 f(x)的奇偶性并证明;(3)假如 f(4)=1, f(3x+1)+f( 2x-6)≤ 3,且 f( x)在( 0,+∞)上是增函数,求 x 的取值范围 .(1)解:令 x1 =x2=1,有 f(1×1)=f( 1) +f(1),解得 f(1)=0.(2)证明:令 x1 =x2=- 1,有 f[(- 1)×(- 1)]=f(- 1)+f(- 1) .解得 f(-1)=0.令 x1 =-1,x2=x,有 f(- x)=f(- 1)+f( x),∴ f(- x)=f( x) .∴f(x)为偶函数.(3)解: f ( 4× 4) =f (4)+f (4)=2,f ( 16×4)=f ( 16)+f (4) =3.∴ f (3x+1)+f (2x -6)≤ 3 即 f [(3x+1)( 2x -6)]≤ f (64) .(* )∵f (x )在( 0, +∞)上是增函数,∴( * )等价于不等式组或 (3x 1)( 2x 6) 0,(3x 1)(2 x 6) 64,x 3或x1 , 1 3,或3 或x 375x R.x3∴3<x ≤5 或- 7≤x <- 1或- 1<x <3.333∴x 的取值范围为 { x|- 7≤x <- 1或- 1<x <3 或 3< x ≤5}.33 3评论:解答此题易出现以下思想阻碍:(1)无从下手,不知怎样脱掉“ f ” .解决方法 :利用函数的单一性 .(2)没法获得另一个不等式 .解决方法:对于原点对称的两个区间上,奇函数的单调性同样,偶函数的单一性相反 .深入拓展已知 f ( x )、g (x )都是奇函数, f ( x )> 0 的解集是( a 2,b ), g ( x )> 0 的解集2是(a, b ), b>a 2,那么 f (x )· g ( x )> 0 的解集是 2 2 2A. ( a 2 , b)2)2 2 B.(- b ,- aC.( a 2, b)∪(- b,- a 2)222 D.(a,b )∪(- b 2,- a 2)2提示: f ( x )·g (x )> 0f (x) 0, 或 f ( x) 0,g( x) 0g ( x)0.∴x ∈( a 2, b )∪(- b,- a 2) .2 2答案: C【例 4】 (2004 年天津模拟试题)已知函数 f (x )=x+ px+m ( p ≠ 0)是奇函数 .(1)求 m 的值 .(2)(理)当 x ∈[ 1, 2]时,求 f (x )的最大值和最小值 .(文)若 p > 1,当 x ∈[ 1,2]时,求 f (x )的最大值和最小值 .解:(1)∵ f (x )是奇函数,∴ f (- x )=-f (x ).∴- x - p +m=-x - p-m.xx∴ 2m=0.∴m=0.(2)(理)(ⅰ)当 p < 0 时,据定义可证明 f (x )在[ 1, 2]上为增函数 .∴ f (x )max =f (2)=2+ p,f ( x ) min =f (1)=1+p.2(ⅱ)当 p > 0 时,据定义可证明 f (x )在( 0, p ]上是减函数,在[p ,+∞)上是增函数 .①当 p <1,即 0< p < 1 时, f (x )在[ 1,2]上为增函数,∴ f (x )max =f (2)=2+ p, f (x )min =f (1)=1+p.2②当 p ∈[ 1,2]时, f ( x )在[ 1,p ]上是减函数 .在[ p , 2]上是增函数 .f ( x ) min =f ( p )=2 p .f ( x ) max =max{ f ( 1),f (2) }=max{1+ p ,2+ p}.2当 1≤p ≤2 时,1+p ≤2+ p,f (x )max =f ( 2);当 2<p ≤4 时,1+p ≥2+ p,f (x )max =f22(1).③当p > 2,即 p > 4 时,f ( x )在[1,2]上为减函数, ∴ f ( x )max =f (1)=1+p ,f (x )min =f (2)=2+ p.2(文)解答略 .评论: f( x) =x+ p( p>0)的单一性是一重要问题,利用单一性求最值是重要方x 法.深入拓展f( x) =x+ p的单一性也可依据导函数的符号来判断,此题怎样用导数来解?x●闯关训练夯实基础1.定义在区间(-∞,+∞)上的奇函数 f ( x)为增函数,偶函数g( x)在区间[ 0, +∞)上的图象与f(x)的图象重合,设a< b< 0,给出以下不等式,此中建立的是①f(b)- f(- a)> g( a)- g(- b)②f(b)- f(- a)< g( a)- g(- b)③f(a)- f(- b)> g( b)- g(- a)④f(a)- f(- b)< g( b)- g(- a)A. ①④B.②③C.①③D. ②④分析:不如取切合题意的函数f(x)=x 及 g(x) =|x|进行比较,或一般地g(x)f ( x)x0, =x f(0)=0, f(a)< f(b)< 0.f ( x)0,答案: D2.(2003 年北京海淀区二模题)函数f(x)是定义域为 R 的偶函数,又是以 2 为周期的周期函数 .若 f(x)在[- 1,0]上是减函数,那么 f( x)在[ 2,3]上是A. 增函数B.减函数C.先增后减的函数D.先减后增的函数分析:∵偶函数f(x)在[- 1,0]上是减函数,∴ f( x)在[ 0,1]上是增函数 .由周期为 2 知该函数在[ 2,3]上为增函数 .答案: A3.已知 f( x)是奇函数,当 x∈( 0,1)时, f(x)=lg1,那么当x∈(-1,0)1 x时, f( x)的表达式是 __________.分析:当 x∈(- 1,0)时,- x∈( 0,1),∴ f(x)=-f(- x)=-lg 1=lg(1 1 x-x) .答案: lg(1-x)x2x1,4.(2003 年北京)函数 f(x)=lg( 1+x2),g(x)= 0| x | 1, h(x)=tan2x中,x2x 1.______________是偶函数 .分析:∵ f(- x)=lg[1+(- x)2]=lg(1+x2) =f(x),∴f(x)为偶函数 .又∵ 1°当- 1≤x≤1 时,- 1≤- x≤1,∴g(- x) =0.又 g( x) =0,∴ g(- x)=g( x).2°当 x<- 1 时,- x> 1,∴g(- x) =-(- x)+2=x+2.又∵ g( x) =x+2,∴ g(- x)=g( x) .3°当 x> 1 时,-x<- 1,∴g(- x) =(- x)+2=-x+2.又∵ g( x) =- x+2,∴ g(- x)=g(x).综上,对随意 x∈ R 都有 g(- x) =g(x).∴g(x)为偶函数 .h(- x)=tan(- 2x) =-tan2x=- h( x),∴h(x)为奇函数 .答案: f( x)、g(x)5.若 f(x)= a 2x a 2为奇函数,务实数 a 的值 .2 x1解:∵x∈ R,∴要使 f(x)为奇函数,一定且只需 f( x)+f(- x)=0,即 a-2+2 x1 a-2=0,得 a=1.x216.(理)定义在[- 2, 2]上的偶函数 g(x),当 x≥0 时, g(x)单一递减,若 g (1- m)< g(m),求 m 的取值范围 .解:由 g(1-m)< g(m)及 g(x)为偶函数,可得g(|1- m|)< g( |m|).又 g(x)在(0,+∞)上单一递减,∴ |1-m|>|m|,且 |1-m|≤ 2,|m|≤2,解得- 1≤m<1 . 2说明:也能够作出g(x)的表示图,联合图形进行分析.(文)( 2005 年北京西城区模拟试题)定义在R 上的奇函数 f( x)在( 0,+∞)上是增函数,又 f(- 3)=0,则不等式 xf(x)< 0 的解集为A. (- 3,0)∪( 0, 3)B.(-∞,- 3)∪( 3,+∞)C.(- 3,0)∪( 3, +∞)D.(-∞,- 3)∪( 0,3)分析:由奇偶性和单一性的关系联合图象来解.答案: A培育能力已知()=(1+1).7.f xx2 x 1 2(1)判断 f(x)的奇偶性;(2)证明 f(x)> 0.(1)解:f(x)= x·2x1,其定义域为 x≠0 的实数 .又 f(- x)=- x·22( 2x1)2( 2xx11)=-x· 1 2x=x· 2 x 1=f(x),2(1 2 x )2(2 x1)∴f(x)为偶函数 .(2)证明:由分析式易见,当x>0 时,有 f(x)> 0.又 f(x)是偶函数,且当 x< 0 时- x>0,∴当 x<0 时 f(x)= f (- x)> 0,即对于 x≠0 的任何实数 x,均有 f( x)> 0.研究创新8.设 f(x)=log 1(1ax)为奇函数,a为常数,2x1(1)求 a 的值;(2)证明 f(x)在( 1, +∞)内单一递加;对于[ 3, 4]上的每一个x 的值,不等式 f( x)>(1)x+m 恒建立,求2实数 m 的取值范围 .(1)解: f( x)是奇函数,∴ f(- x)=-f(x).∴ log 11ax=- log 12x 12 a=1(舍),∴ a=-1.1 ax1 ax=x 1> 0 1- a2x2=1- x2a=± 1.查验x 1x 1 1 ax(2)证明:任取 x1> x2>1,∴ x1- 1> x2-1>0.220< 1+ x 21< 1+ x2x11x21x11∴0<x 1<x211210<x11<x21 log 1x11>12log 1x21,即 f(x1)> f( x2).∴f(x)在( 1, +∞)内单一递加 .2x21(3)解: f( x)-(1)x>m 恒建立 . 2令 g(x) =f(x)-(1)x.只需 g(x)min> m,用定义能够证 g( x)在[ 3, 4]2上是增函数,∴ g( x)min()-9∴<-9时原式恒建立 .=g 3 =. m88●思悟小结1.函数的奇偶性是函数的整体性质,即自变量x 在整个定义域内随意取值 .2.有时可直接依据图象的对称性来判断函数的奇偶性.●教师下载中心教课点睛1.函数的奇偶性常常与函数的其余性质,如单一性、周期性、对称性联合起来考察.所以,在复习过程中应增强知识横向间的联系.2.数形联合,以形助数是解决本节问题常用的思想方法.3.在教课过程中应重申函数的奇偶性是函数的整体性质,而单一性是其局部性质 .拓展题例2【例 1】 已知函数 f (x )=ax1(a 、b 、c ∈ Z )是奇函数,又 f ( 1)=2,f (2)bx c<3,求 a 、b 、c 的值 .解:由 f (- x )=-f (x ),得- bx+c=-( bx+c ).∴ c =0.由 f (1)=2,得 a+1=2b.由 f (2)< 3,得4a 1<3,a 1解得- 1<a <2.又 a ∈ Z ,∴a=0 或 a=1.若 a=0,则 b= 1,与 b ∈Z 矛盾 .∴a=1, b=1,c=0.2【例 2】 已知函数 y=f (x )的定义域为R ,对随意 x 、 x ′∈ R 均有 f (x+x ′) =f(x ) +f (x ′),且对随意 x >0,都有 f (x )< 0,f (3)=-3.(1)试证明:函数 y=f ( x )是 R 上的单一减函数;(2)试证明:函数 y=f ( x )是奇函数;(3)试求函数 y=f (x )在[ m , n ](m 、 n ∈ Z ,且 mn <0)上的值域 .分析:(1)可依据函数单一性的定义进行论证, 考虑证明过程中怎样利用题设条件 .(2)可依据函数奇偶性的定义进行证明,应由条件先获得f ( 0)=0 后,再利用条件 f (x 12)=f ( 1 ) +f ( 2)中 x 1、 2 的随意性,可使结论得证.+xx x x(3)由( 1)的结论可知 f ( m )、f (n )分别是函数 y=f (x )在[ m 、 n ]上的最大值与最小值,故求出 f (m )与 f (n )便可得所求值域 .(1)证明:任取 x 1、 x 2∈R ,且 x 1<x 2,f (x 2) =f [x 1+(x 2-x 1)],于是由条件f(x+x′) =f(x)+f( x′)可知 f(x2) =f(x1)+f(x2-x1) .∵x2> x1,∴ x2- x1>0.∴f(x2-x1)< 0.∴f(x2)=f(x1)+f( x2-x1)< f(x1) .故函数 y=f(x)是减函数 .(2)明:∵ 随意x、x′∈ R 均有 f(x+x′) =f(x) +f(x′),∴若令 x=x′ =0, f( 0) =f(0)+f(0).∴f(0)=0.再令 x′=-x,可得 f(0) =f(x)+f(- x) .∵f(0)=0,∴ f(- x)=-f( x) .故 y=f( x)是奇函数 .(3)解:由函数 y=f(x)是 R 上的减函数,∴y=f(x)在[ m,n]上也减函数 .∴y=f(x)在[ m,n]上的最大 f(m),最小 f(n).∴f(n)=f[1+(n-1)] =f(1)+f( n- 1) =2f( 1) +f(n-2)=⋯=nf(1).同理, f( m)=mf(1).∵f(3)=-3,∴ f(3)=3f(1)=-3.∴f(1)=-1.∴f(m)=-m, f(n)=-n.所以,函数 y=f(x)在[ m, n]上的域[- n,- m].述:( 1)足条件f( x+x′) =f(x)+f( x′)的函数,只需其定域是关于原点称的,它就奇函数.(2)若将条件中的x>0,均有 f( x)< 0 改成均有 f(x)> 0,函数 f(x)就是 R 上的增函数 .(3)若条件中的m、n∈Z 去掉,我就没法求出f(m)与 f(n)的,故 m、n∈Z 不行少 .。

高考数学一轮复习-2-3函数的奇偶性与周期性课件-理

高考数学一轮复习-2-3函数的奇偶性与周期性课件-理
•由f(x)是定义在R上的奇函数,且满足f(x-4)= -f(x),得f(11)=f(3)=-f(-1)=f(1). •∵f(x)在区间[0,2]上是增函数,
•f(x)在R上是奇函数, •∴f(x)在区间[-2,2]上是增函数, •∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).
基础诊断
考点突破
课堂总结
考点二 函数周期性的应用 【例 2】(1)(2014·安徽卷)若函数 f(x)(x∈R)是周期为 4 的奇函
数,且在[0,2]上的解析式为 f(x)=xsin1-πxx,,1<0≤x≤x≤2,1, 则 f 249+f 461=________. (2)已知 f(x)是定义在 R 上的偶函数,且 f(x+2)=-f(x),当 2≤x≤3 时,f(x)=x,则 f(105.5)=________.
• 第3讲 函数的奇偶性与周期性
基础诊断
考点突破
课堂总结
• 考试要求 1.函数奇偶性的含义及判断,B级 要求;2.运用函数的图象理解、研究函数的奇 偶性,A级要求;3.函数的周期性、最小正周 期的含义,周期性的判断及应用,B级要求.
基础诊断
考点突破
课堂总结
• 知识梳理 • 1.函数的奇偶性
奇偶 性
基础诊断
考点突破
课堂总结
【训练 2】 (2014·南通模拟)已知函数 f(x)是定义在 R 上的奇函数, 且是以 2 为周期的周期函数.若当 x∈[0,1)时,f(x)=2x-1,则
f(log16)的值为________.
2
解析 ∵f(x)是周期为 2 的奇函数.
∴f(log16)=f
2
log1
2
法二 易知 f(x)的定义域为 R. ∵f(-x)+f(x)=log2[-x+ -x2+1]+ log2(x+ x2+1)=log21=0,即 f(-x)=-f(x), ∴f(x)为奇函数. 对于 g(x),由|x-2|>0,得 x≠2. ∴g(x)的定义域为{x|x≠2}. ∵g(x)的定义域关于原点不对称, ∴g(x)为非奇非偶函数. 答案 (1)① (2)奇 非奇非偶

高考数第一轮复习函数的奇偶性与周期性

高考数第一轮复习函数的奇偶性与周期性

1.已知函数y=f(x)是奇函数,则函数y=f(x+1)的图象的对 称中心是( ) (A)(1,0) (B)(-1,0) (C)(0,1) (D)(0,-1) 【解析】选B.函数y=f(x)的图象关于点(0,0)对称,函数 y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位得到, 故函数y=f(x+1)的图象的对称中心为(-1,0).
周期性求f(1)+f(2)+…+f(2 012).
(2)利用周期性可知f(-1)=f(1),
列方程
组求解.
【规范解答】(1)选B.∵f(x+6)=f(x),∴T=6. ∵当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x, ∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0, f(5)=f(-1)=-1,f(6)=f(0)=0,∴f(1)+f(2)+…+f(6)=1, ∴f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12) =…=f(2 005)+f(2 006)+…+f(2 010)=1, ∴f(1)+f(2)+…+f(2 010)=1× =335. 而f(2 011)+f(2 012)=f(1)+f(2)=3, ∴f(1)+f(2)+…+f(2 012)=335+3=338.
(2)因为f(x)的周期为2,所以

又因为
所以
∴3a+2b=-2
①,
又因为f(-1)=f(1),所以
即b=-2a ②,

高三第一轮复习_函数的奇偶性

高三第一轮复习_函数的奇偶性

大家好
13
It's your turn now… 练习3 定义在R上的奇函数f(x)在(0, +∞)上是增函数,
且f(-3)=0,则不等式 xf(x)<0的解集为_______________.
(-3,0) ∪ (0, 3)
大家好
14
结束
大家好
15
x? 3? 3
x
Q f ( ? x ) ? ? 1 ??( x ) 2 ? ? f ( x ) ?x
故原函数为奇函数.
大家好
7
It's your turn now…
练习1 判断下列各函数的奇偶性:
(1)f(x)=|x+2|+|x-2|
解析:原函数的定义域为R.
∵f(-x)=|-x+2|+|-x-2|=|x-2|+|x+2|=f(x)
§2.2 函数奇偶性
大家好
1
要点梳理
1.函数的奇偶性
(1)如果对于函数 f(x)定义域内 任意 一个 x,都有 _f_(_-x_)_=_f_(x_)_,那么函数f(x)就叫做偶函数.
(2)如果对于函数f(x)定义域内任意一个x,都有 _f_(-_x_)_=_-f_(_x_),那么函数f(x)就叫做奇函数.
奇函数的图象关于原点对称, 反过来,如果一个函数的图象关于 原点对称,那么 这个函数是奇函数;
大家好
3
3.函数奇偶性的判定
(1)根据定义判定,首先看函数的定义域是否 关于 原点对称,若不对称则函数是非奇非偶函数.
若对称,再判定f(-x)=f(x)或f(-x)=-f(x).
(2)利用函数的图象判定.
(2)解:

8、高三数学一轮复习精品讲义----函数的奇偶性

8、高三数学一轮复习精品讲义----函数的奇偶性

函数的奇偶性知识回顾:1、函数的奇偶性定义:对于函数)(x f ,其定义域关于原点对称.........: 如果______________________________________,那么函数)(x f 为奇函数; 如果______________________________________,那么函数)(x f 为偶函数.2、函数奇偶性的性质:奇函数的图象关于__________对称,偶函数的图象关于_________对称。

奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。

典型例题分析:一、判断函数的奇偶性例1、判断下列函数的奇偶性:(1)()(f x x =-(2)2()f x = (3)22,(0)(),(0)x x x f x x x x ⎧+<⎪=⎨->⎪⎩ ;(4)2,(1)()0,(11)2,(1)x x f x x x x +<-⎧⎪=-≤≤⎨⎪-+>⎩; (5)2()2f x xx a =--+ ;(6)()f x =例2、函数(1)sin y x x =(2)2121x y =+-(3)22,(0)()log ,(01)x x f x x x ⎧≤=⎨<≤⎩(4)[]2()21,2,2f x x x x =-++∈-中,图象具有对称性的是 。

例3、定义在实数集上的函数()f x ,对任意,x y R ∈有()()2()()f x y f x y f x f y ++-=且(0)0f ≠,(1)求证:(0)1f =(2)求证:()y f x =是偶函数二、利用函数奇偶性的定义求参数例4、若函数)2(log )(22a x x x f n ++=是奇函数,则a =例5、已知函数22()21x x a a f x +-=+是定义在实数集上的奇函数,求a 的值。

三、函数奇偶性的应用例6、)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间(0,6)内解的个数的最小值是( ) A .2 B .3 C .4 D .5例7、已知()g x 是奇函数,2()log )()2x f x x g x =++且1(3)58f -=,求(3)f 。

高考数学第一轮考点复习课件 函数的奇偶性

高考数学第一轮考点复习课件 函数的奇偶性
x). ▪ ∴f(x)为偶函数.
(4)由1x2--x12≥≥00,, 得 x2=1, ∴x=±1,且 f(x)=0. ∴f(-x)=f(x)=-f(x). ∴f(x)既是奇函数又是偶函数.

▪ 判断函数的奇偶性,首先应考察定义域是 否关于原点对称,再研究f(x)与f(-x)的关 系.
变式迁移 1 判断下列各函数的奇偶性: (1)f(x)=(x-1) 11-+xx; (2)f(x)=|xlg2-(1-2|-x2)2.
f(x-,x)=都f(有x)
,那么函数f(x)就
叫做偶函数.
▪ (2)如果对于函数f(x)奇定函义数域内任意一个 x,都有f(-x)=-f(x),那么函数f(奇x)偶就性叫 做 .如果函数f(x)是奇函数或偶函数, 那么我们就说函数f(x)具有 .
▪ 2.具有奇偶性的函数的图象特点
▪ 一般地,奇函数的图象原关点于 对称,反
过来,如果一个原点函数的图象关于 对称,
那么这个函数是奇y轴函数;偶函数的图象关
于 对称,反过来,如果一偶函个数函数的图
象关于y轴对称,那么这个函数是

▪ 3.函数奇偶性的判定方法
▪ (1)根据定义判定,首先看函数的定义 原域点是否关于 对称,若不非对奇称非,偶 则函数是
函数;若对称,再判定f(-x)= f(x)或f(-x)=-f(x).有时判f定(x)f=(-0 x)= ±f(x或)比±判较1定困难,可考虑判定f(-x)±
▪ 因为∀x1,x2∈R,且x1<x2,均有x<x, 从而x+x1<x+x2.
________.
▪ 解析:∵f(x-4)=-f(x), ▪ ∴f(x)=-f(x-4)=-[-f(x-8)]=f(x-
8).

3.2.2-奇偶性课件-2025届高三数学一轮复习

3.2.2-奇偶性课件-2025届高三数学一轮复习

A)
A.单调递增,且最大值为f −2
B.单调递增,且最大值为f −3
C.单调递减,且最大值为f −2
D.单调递减,且最大值为f −3
【解析】任取−3 ≤ x1 < x2 ≤ −2,
∴ 2 ≤ −x2 < −x1 ≤ 3,
又函数f x 在区间[2,3]上单调递增,
∴ f −x2 < f −x1 .
∵ 函数f x 为奇函数,
D.若f x 是定义域为的奇函数,则f 0 = 0
)
【解析】对任意x ∈ ,满足f −x = f x ,f x x ∈ 才是偶函数,仅凭两个特殊
的函数值相等不足以判定函数的奇偶性,故A错误.
当f x x ∈ 是偶函数时,∀x ∈ ,f −x = f x ,因此f −2 = f 2 成立,故B正确.
x2
+
a
x
x ≠ 0, a ∈ ;
【解析】当a = 0时,f x = x 2 为偶函数.
当a ≠ 0时,f x =
x2
+
a
x
x ≠ 0 ,取x = ±1,
得f −1 + f 1 = 2 ≠ 0,f −1 − f 1 = −2a ≠ 0,
即f −1 ≠ −f 1 ,f −1 ≠ f 1 ,
∴ 函数f x 既不是奇函数也不是偶函数.
D.h x =
f x
2−g x
是奇函数
【解析】对于A,h x = f x + g x = 4 − x 2 + x − 2 = 4 − x 2 + 2 − x,
x ∈ [−2,2],h −x = 4 − x 2 + 2 + x,由于h −x ≠ h x ,h −x ≠ −h x ,所以h x

函数的奇偶性(1)

函数的奇偶性(1)

一个人如果没有多姿多彩的经历,真理是发展的, 已经引起社会上的广泛关注, 写一篇文章。不见一个人影儿。越分越细,贴切生动的比喻,世上做成人做领导做有权评判他人的人,比如“诗意地生活”,用图钉钉在黑板上。我表舅把两个茶缸并放桌上,隔不一会,思T>G>T>T>G> 亦有如此体会
既然是说“选择”,一直犹豫不敢走这索桥,文体自选。我问:见女人大腿没?对人类而言是无价之宝,但这痛苦不是因为死的来临,一是少女写好信不小心遗落的,“免免免,多数人忍受不了这个失去了模子的自己,后来幸亏了酷爱诗歌的物理学家麦克斯韦以他特有的形象思维和精练的语言,拿
合。它们必须对在很远的地方发生的非常非常小的事情保持足够的警惕, 是智者所为。陡然到了这里,就有唱。是大自然的最宠爱的一幅杰作。专家问:“这个例子说明了什麽?也折不断红柳苍老的手臂了。人伏得远远的,梦见我也变成了一个西瓜,连结小溪与浓密树林。就能从其中学得到宝贵
的功课,是生命最原初的动力。小事总有一天会变成大事的!你没能按时完成,德国设计师在靠近站台约50厘米内铺上了金属装饰,我们安然不动,等到他们把畚箕搬到房间的时候,也把他烧得面目全非,我们要听黄莺的歌声,再试着步步向深水走,他打开了汽车中的收音机,如果每块瓜代表同等
不定主意。但我确信少年已经飞过了。她把梳子齿缝的发丝绺下来,也可以是反面的教训。他拿起粉笔在黑板上画了一个圈,第一眼看到的便是“我很重要”这四个字。 连半点瑕疵都没有。享受和攫取的欲望比乡村强烈百倍。立意自定,从这一点出发,为采访一个在原始森林失踪5天后生还的男孩,
挺立在雨后的河岸, 等人喊他们的名字。忧郁如同一只老狗,它首先是一个人尤其是一个年轻人在追求理想,可你怎么也想不到吧!于是从箱底翻出一件过去自己穿过的衣服,幸福是你口渴难耐时一捧甘甜的泉水;这幢别墅只售一美元!人有一个肉体似乎是一件尴尬事。双方又有一种微妙的合作

高考第一轮复习 函数的奇偶性

高考第一轮复习 函数的奇偶性

函数的奇偶性函数奇偶性的性质:(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)若奇函数()f x 定义域中含有0,则必有(0)0f =.故(0)0f =是()f x 为奇函数的既不充分也不必要条件。

(3)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”。

如设)(x f 是定义域为R 的任一函数,()()()2f x f x F x +-=,()()()2f x f x G x --=。

(4)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.(5)设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇.题型1:判断有解析式的函数的奇偶性【例1】直接写出下列函数的奇偶性:① ()0=x f :_____; ② ()1212+-=x x x f :_____; ③()xx x f +-=11lg :_____。

④()|1||1|++-=x x x f :_____;【例2】若函数f(x)= 3(x x)+g(x)是偶函数,且f (x)不恒为零,判断函数g(x)的奇偶性.课堂练习:1.下列函数中,在其定义域内既是奇函数又是增函数的是 ( )A .)R (3∈+=x x x yB .)R (3∈=x y xC .)R 0(log 2∈>-=x x x y ,D .)0,R (1≠∈=x x x y2.函数()y f x =与()y g x =有相同的定义域,对定义域中任何x ,有()()0f x f x +-=,()()1g x g x -=,若函数g(x)=1的解集是,则2()()()()1f x F x f xg x =+-是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数题型2:奇偶性求解析式和函数的值【例1】已知()f x 是定义域为R 的奇函数,当0x <时,2()2f x x x =+-,求()f x 的解析式.课堂练习:1.()y f x =图象关于1x =对称,当1x ≤时,2()1f x x =+,求当1x >时()f x 的表达式.2.已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例2】已知f (x ),.10)2(832=-+++=f bx ax x 且求f (2).课堂练习:1.广东卷12.设函数3()cos 1f x x x =+,若()11f a =,则f (-a )=_______2.安徽卷11.设()f x 是定义在R 上的奇函数,当x ≤0时,()f x =22x x -,则(1)f = .3.湖南卷12.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .题型3:抽象函数的奇偶性【例1】定义在区间)1,1(-上的函数f (x )满足:对任意的)1,1(,-∈y x ,都有)1()()(xyy x f y f x f ++=+. 求证:f (x )为奇函数;【例2】已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围。

2021年新高考一轮复习函数的奇偶性、对称性、周期性

2021年新高考一轮复习函数的奇偶性、对称性、周期性

微专题 函数的奇偶性、对称性、周期性【方法点拨】1.函数奇偶性、对称性间关系:(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称;一般的,若对于R 上的任意x 都有f (a -x )=f (a +x ),则y =f (x )的图象关于直线x =a+b 2对称.(2)若函数y =f (x +a )是奇函数,即f (-x +a )+f (x +a )=0,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (-x +a )+f (x +a )=2b ,则y =f (x )的图象关于点(a ,b )中心对称.2. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍,为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍.3. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1(2019·江苏启东联考)已知函数f (x )对任意的x ∈R ,都有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________.【解析】因因因因f (x 因1)因因因因因因因f (因x 因1)因因f (x 因1)因因因因f ⎝⎛⎭⎫12因x 因 f ⎝⎛⎭⎫12因x 因因因f (1因x )因f (x )因因因f (x 因1)因因f (x )因因f (x 因2)因因f (x 因1)因f (x )因 因因 因因f(x )因因因因2因因因因因因因因x 因12因因因因因因因f (x )因因因因因因因因由图象可得f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4. 例2 已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .50【分析】同例1得f (x )的的的的4,故f (1) +f (2) +f (3) +f (4)=f (5) +f (6) +f (7) +f (8)=···=f (45) +f (46) +f (47) +f (48),而f (1)=2,f (2)=f (0)=0(f (1-x )=f (1+x )中,取x =1)、f (3)=f (-1) =-f (1)=-2、f (4)=f (0)=0,故f (1) +f (2) +f (3) +f (4)=f(5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48) =0,所以f (1) +f (2) +f (3) +···+f (50) =f (47) +f (48) =f (1) +f (2) =2.例3已知函数()y f x =是R 上的奇函数,对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则下列结论正确的有( ) A .f (1)f +(2)f +(3)(2019)0f +⋯+=B .直线5x =-是函数()y f x =图象的一条对称轴C .函数()y f x =在[7-,7]上有5个零点D .函数()y f x =在[7-,5]-上为减函数【解答】解:根据题意,函数()y f x =是R 上的奇函数,则(0)0f =;对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当2x =时,有(0)2f f =(2)0=,则有f (2)0=,则有(2)()f x f x -=,即1x =是函数()f x 的一条对称轴;又由()f x 为奇函数,则(2)()f x f x -=--,变形可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,故函数()f x 是周期为4的周期函数,当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则函数()f x 在区间[0,1]上为增函数,又由()y f x =是R 上的奇函数,则()f x 在区间[1-,1]上为增函数;据此分析选项:对于A ,(2)()f x f x +=-,则f (1)f +(2)f +(3)f +(4)[f =(1)f +(3)][f + (2)f +(4)]0=, f (1)f +(2)f +(3)(2019)504[f f +⋯+=⨯(1)f +(2)f +(3)f +(4)]f +(1)f +(2)+(3)f =(2)0=,A 正确;对于B ,1x =是函数()f x 的一条对称轴,且函数()f x 是周期为4的周期函数,则5x = 是函数()f x 的一条对称轴,又由函数为奇函数,则直线5x =-是函数()y f x =图象的一条对称轴,B 正确;对于C ,函数()y f x =在[7-,7]上有7个零点:分别为6-,4-,2-,0,2,4,6;C 错误;对于D ,()f x 在区间[1-,1]上为增函数且其周期为4,函数()y f x =在[5-,3]-上为增函数,又由5x =-为函数()f x 图象的一条对称轴,则函数()y f x =在[7-,5]-上为减函数,D 正确;故选:ABD .【巩固训练】1.已知函数()1()2x a f x -=关于1x =对称,则()()220f x f -≥的解集为_____.2.已知定义在R 上的函数()f x 满足(1)(3)f x f x +=--,且()f x 的图象与()lg 4x g x x=-的图象有四个交点,则这四个交点的横纵坐标之和等于___________. 3.已知函数()()f x x R ∈满足(1)(1),(4)(4)f x f x f x f x +=-+=-,且33x -<≤时,()ln(f x x =,则(2018)f =( )A .0B .1 C.2) D.2)4.已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间上有四个不同的根,则 85. (多选题)已知()f x 是定义域为R 的奇函数,且函数(2)f x +为偶函数,下列结论正确的是( )A .函数()y f x =的图象关于直线1x =对称B .f (4)0=C .(8)()f x f x +=D .若(5)1f -=-,则(2019)1f =-6.(多选题)函数()f x 的定义域为R ,且(1)f x -与(2)f x -都为偶函数,则( )A .()f x 为偶函数B .(1)f x +为偶函数C .(2)f x +为奇函数D .()f x 为同期函数 7.若定义在R 上的函数()f x 满足()()2f x f x +=-,()1f x +是奇函数,现给出下列4个论断: ①()f x 是周期为4的周期函数;②()f x 的图象关于点()1,0对称;③()f x 是偶函数; ④()f x 的图象经过点()2,0-;其中正确论断的个数是______________.)(x f (4)()f x f x -=-[]8,8-1234,,,x x x x 1234_________.x x x x +++=【答案或提示】1.【答案】[]1,2【解析】∵函数()1()2x a f x -=关于1x =对称,∴()111,2x a f x -⎛⎫== ⎪⎝⎭, 则由()()12202f x f -≥=,结合图象可得0222x ≤-≤,求得12x ≤≤.2.【答案】8 【解析】()lg 4x g x x=-,故(4)()g x g x -=-,即()y g x =的图象关于点(2,0)对称,又函数()f x 满足(1)(3)f x f x +=--,则函数()y f x =的图象关于点(2,0)对称,所以四个交点的横纵坐标之和为8.3.【答案】D【解析】因为()()()()11,44f x f x f x f x +=-+=-,所以()(2),()(8)(2)(8)826,f x f x f x f x f x f x T =-=-∴-=-∴=-=(2018)(2)ln(2f f ∴==+ .4.【答案】-85.【答案】BCD6.【答案】ABD7.【答案】3【解析】命题①:由()()2f x f x +=-,得:()()()42f x f x f x +=-+=, 所以函数()f x 的周期为4,故①正确;命题②:由()1f x +是奇函数,知()1f x +的图象关于原点对称,所以函数()f x 的图象关于点()1,0对称,故②正确;命题③:由()1f x +是奇函数,得:()()11f x f x +=--, 又()()2f x f x +=-,所以()()()()()()21111f x f x f x f x f x -=--+=-+-=--=, 所以函数()f x 是偶函数,故③正确;命题④:()()()2220f f f -=--+=-,无法判断其值,故④错误.综上,正确论断的序号是:①②③.。

高三数学一轮备考函数奇偶性知识点

高三数学一轮备考函数奇偶性知识点

高三数学一轮备考函数奇偶性知识点
高三数学一轮备考函数奇偶性知识点
对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数,以下是函数奇偶性知识点,请考生掌握。

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与
f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与
f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义。

函数的奇偶性课件-2024届高三数学一轮复习

函数的奇偶性课件-2024届高三数学一轮复习
,

的最小值为

x
1 e
m n
− = −
−x ∈ A,且_______________,那么函数f
x 就叫作奇函数
图象
关于

______
对称
关于
坐标原点
_______
对称
【微点拨】奇、偶函数定义域的特点是关于原点对称,函数的定义域关于原点
对称是函数具有奇偶性的必要不充分条件.
1.函数f x 具有奇偶性的前提是什么?
D.f c > f b > f a
1
log 2 ,
4
活动四 奇偶性的应用(求参数)
34页 2.已知函数f x = a −
2
ex +1
1
a ∈ 是奇函数,则a =___.
[例4] (1)若函数f x = x + a ln
A.−1
(2)若f x = ln a +
B.0

1
1−x
2x−1
2x+1
为偶函数,则a =(
B.c < b < a
C.b < c < a
2.(2024·常州调研)已知f x = lg e
则f a ,f b ,f c 的大小关系为(
A.f c

x
+ 1 ,a =
20.3 ,b
)
D.a < b < c
= log 3 2,c =
)
>f a >f b
B.f b > f a > f c
C.f a > f b > f c
3.已知f x = ax 2 + bx是定义在[a − 1,2a]上的偶函数,那么a + b的值是(

高考一轮复习题型归纳专题3-4:函数的奇偶性

高考一轮复习题型归纳专题3-4:函数的奇偶性

第四节:函数的奇偶性题型14、函数奇偶性的概念知识点摘要:➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间),如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。

➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。

②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。

③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。

④偶函数)(x f y =必满足|)(|)(x f x f =。

典型例题精讲精练:1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型15、判断函数的奇偶性知识点摘要:➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。

➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。

➢ 抽象函数奇偶性:赋值法。

典型例题精讲精练:15.1.定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.15.2.奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()x x x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x ③x x cos y =【答案:(1)奇函数. (2)奇函数. (3)奇函数】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。

函数的奇偶性(1)

函数的奇偶性(1)
高三数学第一轮复习:
7.
知识回顾:
1. 奇函数 偶函数的定义 奇(偶)函数的定义域一定关于原点对称. 问:函数定义域关于原点对称是函数为奇(偶)函数的 必要不充分 条件. 2. 奇函数的图像关于原点对称, 偶函数的图像关于y轴对称. 判断函数奇偶性的方法:
定义法(首先判断函数的定义域是否关于原点对称)
x 2
偶函数 奇函数
1 x (3) f ( x) (1 x) 1 x
非奇非偶函数
2 x (4) f ( x) | x 2 | 2
2
奇函数
2 1) 的图像的对称性 例2.分析函数 y lg( 1 x
练:设奇函数f(x)定义域为[-5,5], 若当x [0,5]时,f(x) 的图像如图所示,求不等式f(x)<0的解集
(2)
小结:
1.奇(偶)函数的定义及其图像的性质特征
2.会判断一个函数的奇偶性
3.奇(偶)函数的性质
4.函数奇偶性的应用
作业: <数学之友> P7
y y0x0 Nhomakorabeax
f(x)=x3
f(x)=x2
网址导航 / 网址导航
秀女の情况。她也清楚,家世好の秀女别行,因为那两各儿子都没什么位分高の位置留给新人,家世低の也别行,现在皇上选秀女,选の都是家世出身差の,她の儿子总别能 跟皇上抢诸人吧。于是选来选去,她大致看上咯几各家世中等の秀女作为备选,然后找机会跟两各儿子商量商量。她当然是先跟二十三小格说の那件事情,结果二十三小格壹 听完她の话,立即板起壹副面孔:“额娘,儿子府里の诸人已经够多の咯,额娘の心意儿子领咯,但是再娶诸人の事情,就算咯吧。”“嘿,老二十三,您那话说の!还有谁 会嫌诸人多?您怎么也跟老八学起那各来咯?连娶各诸人都缩手缩脚の?”“额娘,儿子别是跟八哥学啥啊,儿子真の是诸人足够咯,那还争风吃醋打得别亦乐乎呢,那要是 再娶进来壹各,儿子の耳根子就别想清静咯!”“您是爷,哪各诸人敢对您说各‘别’字?到底是谁推三阻四の?谁要是敢拦着,您先休咯她再说。别过,穆哲肯定别会,她 历来都是壹各豁达の人。”二十三小格壹听德妃说の是娶亲の事情,当即就别高兴起来。因为早已心有所属の他看谁都别顺眼,至此他才真正体会到咯沧海水、巫山云原来说 の就是那种感觉。所以他也别想再耽误哪家の姑娘,已经娶进府の没什么办法,何苦再娶进来壹各,他并别爱她,何苦凭白地耽误咯姑娘の壹辈子。第壹卷 第542章 回绝因 为别想再娶诸人,二十三小格随便找咯壹各借口,企图糊弄过去,谁想到德妃居然说穆哲最豁达,刚刚还心烦别已の他,此时差点儿被他の额娘逗笑咯。可是那各掩饰别住の 笑意让德妃竟然误会咯他の意思,以为老二十三被她说动咯心,于是趁热打铁地劝道:“就是嘛,您那当爷の,就得有各当爷の样儿!别总让诸人束咯手脚,您是要办大事儿 の人。”“额娘!您说の别要让诸人束咯手脚,可是您为啥啊还要让儿子娶诸人?那么多の诸人,儿子都被绊得走别动道儿咯!”“您真是别识好歹の东西!”“额娘,儿子 还有事情,先告辞咯。”在二十三小格那里碰咯壹鼻子灰の德妃,又将满腔の热情倾注在咯她の四小格の身上。当王爷听咯德妃打算再给他娶亲の想法后,先是壹愣,继而正 色回答道:“儿子谢额娘,只是儿子府里现在の诸人也别少咯,那壹次,就先算咯吧。”两各儿子如出壹辙の回答简直就是给德妃兜头浇下の壹盆冷水,自己の儿子那是怎么 咯?全都齐唰唰地说自己の诸人够多咯,天底下怎么还有嫌诸人多の男人,那还是自己の儿子吗?“您府里诸人多?除咯老八府上,就数您の诸人少,您那分明是借 口!”“回额娘,儿子确实是借口。因为儿子想尽心尽力办好皇阿玛交办の差事,别想因为诸人分咯心思,假设因美色而迷咯心窍,乱咯心智,实为误事之举。”德妃被她那 各四小格气得是壹句话都说别出来。原本两各儿子如出壹辙の回复就令她极为光火,现在王爷居然抬出来别娶妻妾是为咯安心办差,免遭美色诱惑那样冠冕堂皇の理由!她那 各额娘本来是好心好意地帮衬两各儿子の府上尽早尽快地多多开枝散叶,结果却是好心没好报,反而她の那番好意竟成咯导致她の儿子们别能安心办差,导致后院别得安宁の 罪魁祸首!那样の结果让德妃气得当场对王爷发起难来:“好,好,您那没良心の东西!您没办好差事,是我那各当额娘の拖咯您の后腿!本宫就多余管您那些破事儿!”德 妃对二十三小格舍别得发脾气,所以她将对那兄弟两人の气全撒到咯王爷壹各人の头上,如火山爆发般喷涌而出。无可奈何の王爷别晓得他那是壹人受着两各人の过,只当是 他刚刚の回绝将额娘惹得别高兴咯。待德妃发完那通脾气,王爷恭敬地告退。回去の那壹路,他满脑子想の,并别是德妃怎么有闲功夫想起再给他娶妻妾の事情,而是在想他 刚才怎么连想都没什么想,壹口就回绝咯德妃の事情。假设是以往,即使是拒绝也别会如此の直白,而是会跟德妃兜兜圈子,拐弯抹脚地说出自己の想法。可是刚才,他就那 么直白地说出咯那各别假思索の想法,引发咯德妃の急风暴雨。为啥啊,极其注重孝道の他连应付他亲生额娘の心思都没什么咯?第壹卷 第543章 热河选秀风波之后过咯将 近四各月の时间,王爷接到皇上の圣旨,前去热河行宫伴驾。今年皇上驻扎热河已经有壹段时间咯,王爷此次被留守京城主持政务。自从康熙五十壹年の塞外之行后,王爷已 经很少随驾,基本都是留守京城。皇上因为远在热河,废太子二小格被监,大小格被圈,京城必须留有可担重任の人掌控局面,所以三小格和四小格成为最佳选择。但是,皇 上即使在行宫驻扎,仍是如同在京城の紫禁城里壹般,随时处理重要政务,而且要时别时地听取那两位年长小格の意见,或是有关京城の情况汇报。虽然也有来自京城の书信 往来,但那还远远别够。所以,三小格和四小格两人轮流,壹各人御前听差,另壹各京城留守,反之亦然。原本王爷早就该去热河,但是因为临时有壹各视察京畿水路の差事, 诚亲王只好在行宫多驻扎咯两各月,那最后の壹各月必须轮到王爷前去替班。好在也就剩下壹各月の时间,熬壹熬就过去咯。壹各月虽然别长,但也别是很短,没什么女眷随 行确实别方便,那么由谁随行呢?福晋?连想也别用想就第壹各被自动忽略,没什么她坐镇王府怎么行!淑清?身体才刚刚好壹些,实在是禁别住长途跋涉の辛苦颠簸;惜 月?上壹次去热河就是由她随行,好事都让她壹各人

函数的奇偶性 适用于高中一轮复习 单元复习

函数的奇偶性 适用于高中一轮复习 单元复习

奇偶性一、知识疏理:函数的奇偶性①定义及判定方法函数的性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,偶+偶=偶;奇+奇=奇;奇+偶=非奇非偶;偶*偶=偶;奇*奇=偶;奇*偶=奇.偶奇=自我检测1.函数()x x x f +=2是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数2.已知函数()x f 为奇函数,且当0>x 时,()xx x f 12+=,则()=-1f ()A.2B.1C.0D.2-3.若()()()4-+=x a x x f 为偶函数,则实数=a 。

4.设函数)(x f 和g(x)分别是R 上的偶函数和奇函数,结论恒成立的是().A .)(x f +|g(x)|是偶函数B .)(x f -|g(x)|是奇函数C .)(x f +g(x)是偶函数D .)(x f -g(x)是奇函数题型一:用定义法判断函数的奇偶性1.判断下列函数的奇偶性:(1)()242x x x f +=;(2)()xx x f 13+=;(3)()2211x x x f -+-=;2.设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数题型二:利用奇偶性求参数的值1.如果定义在区间[]5,3a -上的函数()x f 为奇函数,那么=a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f(x+y)=f(x)+f(y),
(1)求证: f(x)是奇函数; (2)若f(-3)=a,用a表示f(12). (1)证明:显然原函数的定义域是R.在f(x+y)=f(x)+f(y)中, 令y=-x,得f(0)=f(x)+f (-x). 令x = y=0 ,得f(0)=f(0)+f (0),∴ f(0)=0 ∴ f(x)+f (-x) =0 ,即f (-x) = -f(x) , ∴ f(x)是奇函数. (2)解: ∵ f(-3)=a, ∴ f(12)=2f(6)=4f(3)=-4f(-3)=-4a.
题型三 奇偶性与单调性的综合
例5 已知奇函数f(x)是定义在(-1,1)上的增函数, 试求解关于a的不等式 f(a-2)+ f(a2-4)<0. 解析: 由已知得 f(a-2)<- f(a2-4) ∵ f(x)是奇函数,∴- f(a2-4)= f(4-a2), ∴ f(a-2)< f(4-a2). 又f(x)是定义在(-1,1)上的增函数,从而
3.函数奇偶性的判定
(1) 根据定义判定,首先看函数的定义域是否 关于 原点对称,若不对称则函数是非奇非偶函数.
若对称,再判定f(-x)=f(x)或f(-x)=-f(x).
(2)利用函数的图象判定.
题型一 函数奇偶性的判断
例1 判断下列各函数的奇偶性:
x x (1) f ( x) x 1
1 x2 x
2
f ( x)
It’s your turn now…
练习1 判断下列各函数的奇偶性:
(1)f(x)=|x+2|+|x-2|
解析:原函数的定义域为R.
∵f(-x)=|-x+2|+|-x-2|=|x-2|+|x+2|=f(x)
∴f(x) 是偶函数.
easy
例2 已知函数f(x)对一切实数x,y,都有
(-3,0) ∪ (0, 3)
题型二 由函数奇偶性求参数的值
例3 已知函数
a(2 1) 2 f ( x) x 2 1
x
是奇函数,求实数a的值. 解析: 显然0在原函数的定义域内,
a(2 1) 2 得 a=1. f (0) 0, 0 2 1
0
经检验,当a=1时原函数为奇函数. 注:若0在奇函数的定义域内,则必有f(0)=0.
It’s your turn now…
练习2 已知函数
f ( x) x2 m 1 x2
是奇函数,求实数m的值.
m=2
题型二 由函数奇偶性求参数的值
例4 已知函数
f(x)=ax2+bx+c (2a-3≤x≤1)
是偶函数,求实数a和b的值. 解析: 依题意得 f(-x)=f(x),即 a(-x)2-bx+c=ax2+bx+c ∴b=-b=0 而(2a-3)+1=0 ∴a=1. 故a=1,b=0. 注:《360°》P?? 为什么?
注:如果函数f(x)既是奇函数又是偶函数,那么 0 函数f(x)=_______ .
要点梳理
2.奇偶性的函数图象特点 一般地,偶函数的图象关于y轴对称, 反过来,如果一个函数的图象关于 y 轴 对称,那么 这个函数是偶函数 ;
奇函数的图象关于原点对称, 反过来,如果一个函数的图象关于原点对称,那么 这个函数是奇函数;
§2.2 函数奇偶性
要点梳理
1.函数的奇偶性 (1) 如果对于函数 f(x) 定义域内 任意 一个 x ,都有 _________ f(-x)=f(x) ,那么函数f(x)就叫做偶函数. (2)如果对于函数f(x)定义域内任意一个x,都有 f(-x)=-f(x) ,那么函数f(x)就叫做奇函数. _________ 如果函数f(x)是奇函数或偶函数,那么我们就说函 奇偶性 . 数f(x)具有_______
2
1 x (2) f ( x ) x3 3
2
题型一 函数奇偶性的判断
例1 判断下列各函数的奇偶性:
x x (1) f ( x) x 1
2
解析:原函数的定义域为{x|x≠1}
∵当x=-1时,-x=1不在定义域内,
∴f(x)不是奇函数也不是偶函数. 或者说:定义 域不关于原点 对称.
a 2 4 a2 1 a 2 1 2 1 a 4 1
解得
3a2
即不等式的解集为 ( 3, 2)
It’s your turn now…
练习3 定义在R上的奇函数f(x)在(0, +∞)上是增函数, 且f(-3)=0,则不等式 xf(x)<0的解集为_______________.
1 x (2) f ( x ) x3 3
2
解析: 依题意得
2 1 x 0 得 1 x 0 或 0 x 1 x3 3 0
ห้องสมุดไป่ตู้所以原函数的定义域为 [1, 0) (0,1]
1 x2 f ( x) x 33
1 ( x) f ( x) x 故原函数为奇函数.
相关文档
最新文档