滨州市人教版七年级上册数学期末考试试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滨州市人教版七年级上册数学期末考试试卷及答案 一、选择题 1.下列判断正确的是( )
A .3a 2bc 与bca 2不是同类项
B .225
m n 的系数是2 C .单项式﹣x 3yz 的次数是5
D .3x 2﹣y +5xy 5是二次三项式
2.在0,1-, 2.5-,3这四个数中,最小的数是( )
A .0
B .1-
C . 2.5-
D .3
3.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )
A .23(30)72x x +-=
B .32(30)72x x +-=
C .23(72)30x x +-=
D .32(72)30x x +-=
4.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )
A .
1601603045x x -= B .1601601452x x -= C .1601601542x x -= D .1601603045x x
+= 5.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )
A .4n+1
B .4n+2
C .4n+3
D .4n+5
6.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( )
A .50°
B .130°
C .50°或 90°
D .50°或 130°
7.下列变形不正确的是( )
A .若x =y ,则x+3=y+3
B .若x =y ,则x ﹣3=y ﹣3
C .若x =y ,则﹣3x =﹣3y
D .若x 2=y 2,则x =y
8.﹣3的相反数是( )
A .13-
B .13
C .3-
D .3
9.已知a =b ,则下列等式不成立的是( )
A .a+1=b+1
B .1﹣a =1﹣b
C .3a =3b
D .2﹣3a =3b ﹣2 10.已知105A ∠=︒,则A ∠的补角等于( )
A .105︒
B .75︒
C .115︒
D .95︒ 11.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )
A .不盈不亏
B .盈利 37.5 元
C .亏损 25 元
D .盈利 12.5 元
12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a
;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程
3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1
B .﹣1
C .±1
D .a≠1
二、填空题
13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.
15.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为
______.
16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
17.如果向东走60m 记为60m +,那么向西走80m 应记为______m.
18.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若
OC 6=,则线段AB 的长为______.
19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.
20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).
21.8点30分时刻,钟表上时针与分针所组成的角为_____度.
22.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.
23.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.
24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .
三、解答题
25.计算
(1)()
22315a a a a +⋅-⋅. (2)()2232246()x y x y xy -÷.
26.先化简,再求值:()()223a 4ab 2a ab ---,其中a 2=-,1b 2=
. 27.解方程(1)3x-1=3-x, (2)
3y 23y 123+--= 28.计算:
(1)(﹣0.5)+(﹣32
)﹣(+1) (2)2+(﹣3)2×(﹣112
) (3)3825-+|﹣2|﹣(﹣1)2018
29.如图,O 为直线AB 上的一点,∠AOC =48°24′,OD 平分∠AOC ,∠DOE =90°. (1)求∠BOD 的度数;
(2)OE 是∠BOC 的平分线吗?为什么?
30.把棱长为1cm 的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)
()1该几何体中有多少个小正方体?
()2画出从正面看到的图形;
()3写出涂上颜色部分的总面积.
四、压轴题
31.综合试一试
(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.
(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.
(3)a 是不为1的有理数,我们把11a
-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()
11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.
(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.
(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______
(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.
32.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 6a +(c ﹣4)2=0.
(1)求B、C两点的坐标;
(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;
(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的1
3
?直接写出此时点P的坐
标.
33.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若AC=4cm,求DE的长;
(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据同类项的定义,单项式和多项式的定义解答.
【详解】
A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.
B .225
m n 的系数是25,故本选项错误. C .单项式﹣x 3yz 的次数是5,故本选项正确.
D .3x 2﹣y +5xy 5是六次三项式,故本选项错误.
故选C .
【点睛】
本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.
2.C
解析:C
【解析】
【分析】
由题意先根据有理数的大小比较法则比较大小,再选出选项即可.
【详解】
解:∵ 2.5-<1-<0<3,
∴最小的数是 2.5-,
故选:C .
【点睛】
本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
3.A
解析:A
【解析】
【分析】
设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.
【详解】
设女生x 人,
∵共有学生30名,
∴男生有(30-x )名,
∵女生每人种2棵,男生每人种3棵,
∴女生种树2x 棵,男生植树3(30-x )棵,
∵共种树72棵,
∴2x+3(30-x)=72,
故选:A.
【点睛】
本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.
4.B
解析:B
【解析】
【分析】
甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.
【详解】
甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得
160 4x -160
5x
=1
2

故选B.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
5.A
解析:A
【解析】
试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.
考点:探寻规律.
6.D
解析:D
【解析】
【分析】
根据题意画出图形,再分别计算即可.
【详解】
根据题意画图如下;
(1)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠BOD=180°﹣90°﹣40°=50°,
(2)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠AOD=50°,
∴∠BOD=180°﹣50°=130°,
故选D.
【点睛】
此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.
7.D
解析:D
【解析】
【分析】
根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.
【详解】
解:A、两边都加上3,等式仍成立,故本选项不符合题意.
B、两边都减去3,等式仍成立,故本选项不符合题意.
C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.
D、两边开方,则x=y或x=﹣y,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.
8.D
解析:D
【解析】
【分析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
9.D
解析:D
【解析】
【分析】
根据等式的基本性质对各选项进行逐一分析即可.
【详解】
A 、∵a =b ,∴a+1=b+1,故本选项正确;
B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;
C 、∵a =b ,∴3a =3b ,故本选项正确;
D 、∵a =b ,∴﹣a =﹣b ,∴﹣3a =﹣3b ,∴2﹣3a =2﹣3b ,故本选项错误.
故选:D .
【点睛】
本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.
10.B
解析:B
【解析】
【分析】
由题意直接根据互补两角之和为180°求解即可.
【详解】
解:∵∠A=105°,
∴∠A 的补角=180°-105°=75°.
故选:B .
【点睛】
本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.
11.D
解析:D
【解析】
【分析】
设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.
【详解】
解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..
故选:D
【点睛】
本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.
12.A
解析:A
【解析】
要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合
并得,x=
31
a -,因为无解,所以a ﹣1=0,即a=1. 故选A . 点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.
二、填空题
13.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 14.5
【解析】
【分析】
把x =2代入方程求出a 的值即可.
【详解】
解:∵关于x 的方程5x+a =3(x+3)的解是x =2,
∴10+a=15,
∴a=5,
故答案为5.
【点睛】
本题考查了方程的解
解析:5
【解析】
【分析】
把x=2代入方程求出a的值即可.
【详解】
解:∵关于x的方程5x+a=3(x+3)的解是x=2,
∴10+a=15,
∴a=5,
故答案为5.
【点睛】
本题考查了方程的解,掌握方程的解的意义解答本题的关键.
15.-2
【解析】
【分析】
根据图和题意可得出答案.
【详解】
解:表示的数互为相反数,
且,
则A表示的数为:.
故答案为:.
【点睛】
本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解. 解析:-2
【解析】
【分析】
根据图和题意可得出答案.
【详解】
解:,A B表示的数互为相反数,
AB=,
且4
则A表示的数为:2
-.
故答案为:2
-.
【点睛】
本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解. 16.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
17.-80
【解析】
【分析】
在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
解:如果向东走60m 记为,那么向西走80m 应记为.
故答案为.
【点睛】
本题考查正数和负数
解析:-80
【解析】
【分析】
在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.
故答案为80-.
【点睛】
本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.
18.4或36
【解析】
【分析】
分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线
段和差关系可求AB 的长.
【详解】
解:,
设,,
若点C 在线段AB 上,则,
点O 为AB 的中点,
解析:4或36
【解析】
【分析】
分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.
【详解】
解:
AC 2BC =,
∴设BC x =,AC 2x =,
若点C 在线段AB 上,则AB AC BC 3x =+=,
点O 为AB 的中点,
3AO BO x 2∴==,x CO BO BC 6x 12AB 312362
∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,
点O 为AB 的中点,
x AO BO 2∴==,3CO OB BC x 6x 4AB 42
∴=+==∴=∴= 故答案为4或36
【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 19.36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等

∴x=2,A=14
∴数字总和为:9+3+6+6+
解析:36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等 ∴
()934322
x x x A +=++=+- ∴x=2,A=14
∴数字总和为:9+3+6+6+14-2=36,
故答案为36.
【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面
20.(5a+10b ).
【解析】
【分析】
由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.
【详解】
解:小何总花费:,
故答案为:.
【点睛】
此题主要考查了列代数
解析:(5a +10b ).
【解析】
【分析】
由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.
【详解】
解:小何总花费:510a b +,
故答案为:(510)a b +.
【点睛】
此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.
21.75
【解析】
钟表8时30分时,时针与分针所成的角的角的度数为
30×8-(6-0.5)×30=240-165=75度,
故答案为75.
解析:75
【解析】
钟表8时30分时,时针与分针所成的角的角的度数为
30×8-(6-0.5)×30=240-165=75度,
故答案为75.
22.【解析】
【分析】
【详解】
由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.
考点:一元一次方程的概念及解
x=-
解析:5
【解析】
【分析】
【详解】
由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.
考点:一元一次方程的概念及解
23.28x-20(x+13)=20
【解析】
【分析】
利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.
【详解】
设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,
解析:28x-20(x+13)=20
【解析】
【分析】
利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.
【详解】
设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,
故答案为: 28x-20(x+13)=20.
【点睛】
本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 24.4000
【解析】
【分析】
设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.
【详解】
设放入正方体铁块后水面高为hcm,
由题意得:50×40×8+20×20×h=
解析:4000
【解析】
【分析】
设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.
【详解】
设放入正方体铁块后水面高为hcm ,
由题意得:50×40×8+20×20×h=50×40×h ,
解得:h=10,
则水箱中露在水面外的铁块的高度为:20-10=10(cm ),
所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).
故答案为:4000.
【点睛】
此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.
三、解答题
25.(1)32a a -;(2)46x -
【解析】
【分析】
(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果; (2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.
【详解】
解:(1) 原式3335a a a =+-32a a =-;
(2)原式()22322246x y x y
x y =-÷46x =-. 【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
26.2a 2ab -,6.
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:原式2223a 4ab 2a 2ab a 2ab =--+=-
当a 2=-,1b 2
=时, 原式()1422422=-⨯-⨯
=+ 6=.
【点睛】
本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
27.(1)x=1;(2)y=6 11
.
【解析】
【分析】
(1)移项、合并同类项、系数化为1可得;
(2)依次去分母、去括号、移项、合并同类项、系数化为1计算可得.
【详解】
解:()13x x31
+=+,
4x4
=,
x1
=;
()()()
233y2623y
+-=-,
9y6662y
+-=-,
9y2y666
+=-+,
11y6
=,
6
y
11
=.
【点睛】
本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.
28.(1)﹣3;(2)5
4
;(3)﹣6.
【解析】
【分析】
(1)直接利用有理数的加减运算法则计算得出答案;
(2)直接利用有理数混合运算法则计算得出答案;
(3)直接利用立方根以及绝对值的性质化简各数进而得出答案.【详解】
解:(1)原式=﹣0.5﹣1.5﹣1
=﹣3;
(2)原式=2+9×(﹣
1 12

=2﹣3 4
=5
4;
(3)原式=﹣2﹣5+2﹣1
=﹣6.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
29.(1)155°48′;(2)OE 是∠BOC 的平分线,理由详见解析
【解析】
【分析】
(1)利用角平分线的性质得出11224122
AOC ∠=∠=∠=︒',由∠BOD 与1∠互为邻补角即可求得答案;
(2)分别求出3∠、4∠的度数,结合角平分线的定义得出答案.
【详解】
解:(1)4824AOC ∠=︒',OD 平分AOC ,
11224122
AOC ∴∠=∠=∠=︒', 1801180241215548BOD ∴∠=︒-∠=︒-︒'=︒';
(2)OE 是BOC ∠的平分线.理由如下:
2390DOE ∠=∠+∠=︒,22412∠=︒',
39024126548∴∠=︒-︒'=︒',
415548BOD DOE ∠=∠+∠=︒',
415548906548∴∠=︒'-︒=︒',
346548∴∠=∠=︒',
OE ∴是BOC ∠的平分线.
【点睛】
此题主要考查了角平分线的定义,正确得出各角的度数是解题关键.
30.(1)14个;(2)见解析;(3)33cm 2
【解析】
【分析】
(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;
(2)主视图从上往下三行正方形的个数依次为1,2,3;
(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.
【详解】
解:(1)该几何体中正方体的个数为9+4+1=14个;
(2);
(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,
共有6×4+9=33个面
所以,涂上颜色部分的总面积是:1×1×33=33(cm 2).
【点睛】
考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.
四、压轴题
31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)
25032
;(4)9.38;(5)0;(6)24或40
【解析】
【分析】
(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得
9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.
【详解】
(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,
故答案为23+(-3)3+43,73+(-5)3+(-6)3
(2)∵2a b a ab ⊗=-,
∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15
=(-5)2-(-5)×15
=100.
(3)∵a 1=2,
∴a 2=
1112=--, a 3=11(1)--=12
, 412112
a ==-
a 5=-1
……
∴从a 1开始,每3个数一循环,
∵2500÷3=833……1,
∴a 2500=a 1=2,
∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032
. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,
∴平均分为中间8个分数的平均分,
∵平均分精确到十分位的为9.4,
∴平均分在9.35至9.44之间,
9.35×8=74.8,9.44×8=75.52,
∴8个裁判所给的总分在74.8至75.52之间,
∵打分都是整数,
∴总分也是整数,
∴总分为75,
∴平均分为75÷8=9.375,
∴精确到百分位是9.38.
故答案为9.38
(5)2019÷4=504……3,
∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……
∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0
∴所得结果可能的最小非负数是0,
故答案为0
(6)设x 分钟后甲和乙、丙的距离相等,
∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,
∴120x-400-100x=90x+800-120x
解得:x=24.
∵当乙追上丙时,甲和乙、丙的距离相等,
∴400÷(100-90)=40(分钟)
∴24分钟或40分钟时甲和乙、丙的距离相等.
故答案为24或40.
【点睛】
本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.
32.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(8
3,﹣6)
【解析】 【分析】 (1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;
(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;
(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.
【详解】
(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).
(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12
=
⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意
得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×4
12-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12
-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13
=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83
,﹣6). 综上所述:当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83
,﹣6).
【点睛】
本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.
33.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12
∠AOB ,理由见解析 【解析】 试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,
(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=
12(AC+BC )=12AB=2
a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=
12∠AOB 试题解析:
(1))∵AB=12cm ,
∴AC=4cm ,
∴BC=8cm ,
∵点D 、E 分别是AC 和BC 的中点,
∴CD=2cm ,CE=4cm ,
∴DE=6cm;
(2) 设AC=acm ,
∵点D 、E 分别是AC 和BC 的中点,
∴DE=CD+CE=12(AC+BC )=12
AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;
(3)①当OC 在∠AOB 内部时,如图所示:
∵OM 平分∠AOC,ON 平分∠BOC,
∴∠NOC=
12 ∠BOC,∠COM=12
∠COA. ∵∠CON+∠COM=∠MON, ∴∠MON=12(∠BOC+∠AOC)=12
α; ②当OC 在∠AOB 外部时,如图所示:
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=1
2
(∠AOB+∠BOC),∠CON=
1
2
∠BOC.
∵∠MON+∠CON=∠MOC,
∴∠MON=∠MOC-∠CON=1
2
(AOB+∠BOC)-
1
2
∠BOC=
1
2
∠AOB=
1
2
α.
【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

相关文档
最新文档