上海民办华二初级中学数学几何模型压轴题单元测试卷 (word版,含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海民办华二初级中学数学几何模型压轴题单元测试卷(word
版,含解析)
一、初三数学旋转易错题压轴题(难)
1.我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为.
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.
【答案】(1)①1
2
;②4;(2)AD=
1
2
BC,证明见解析;(3)存在,证明见解析,
39.【解析】【分析】
(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=1
2
AB′即可解决问题;
②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;
(2)结论:AD=1
2
BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证
明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;
(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;
【详解】
解:(1)①如图2中,
∵△ABC是等边三角形,
∴AB=BC=AB=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=1
2AB′=
1
2
BC,
故答案为1
2
.
②如图3中,
∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,
∵A B=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴AD=1
2B′C′=
1
2
BC=4,
故答案为4.
(2)结论:AD=1
2 BC.
理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M
∵B′D=DC′,AD=DM,
∴四边形AC′MB′是平行四边形,
∴AC′=B′M=AC,
∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,
∴∠BAC=∠MB′A,∵AB=AB′,
∴△BAC≌△AB′M,
∴BC=AM,
∴AD=1
BC.
2
(3)存在.
理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.
连接DF交PC于O.
∵∠ADC=150°,
∴∠MDC=30°,
在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,
∴CM=2,DM=4,∠M=60°,
在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,
∴EM=1
BM=7,
2
∴DE=EM﹣DM=3,
∵AD=6,
∴AE=DE,∵BE⊥AD,
∴PA=PD,PB=PC,
在Rt△CDF中,∵3CF=6,
∴tan∠3
∴∠CDF=60°=∠CPF,
易证△FCP≌△CFD,
∴CD=PF,∵CD∥PF,
∴四边形CDPF是矩形,
∴∠CDP=90°,
∴∠ADP=∠ADC﹣∠CDP=60°,
∴△ADP是等边三角形,
∴∠ADP=60°,∵∠BPF=∠CPF=60°,
∴∠BPC=120°,
∴∠APD+∠BPC=180°,
∴△PDC是△PAB的“旋补三角形”,
在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,
∴PN=2222
DN PD
++=39.
=(3)6
【点睛】
本题考查四边形综合题.
2.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.
(1)求边DA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;
(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.
【答案】(1);(2);(3)不变化,证明见解析.
【解析】
试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.
(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.
(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.
∴DA在旋转过程中所扫过的面积为.
(2)∵MN∥AC,∴,.
∴.∴.
又∵,∴.
又∵,∴.
∴.∴.
∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.
(3)不变化,证明如下:
如图,延长BA交DE轴于H点,则
,,
∴.
又∵.∴.
∴.
又∵, ,∴.
∴.∴.
∴.
∴在旋转正方形ABCD的过程中,值无变化.
考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.
3.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.
(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;
(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段
FH的长;
(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
【答案】(1)△FGH是等边三角形;(2)61
;(3)△FGH的周长最大值为
3
2
(a+b),最小值为3
2
(a﹣b).
【解析】
试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、
(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;
(3)首先证明△GFH的周长=3GF=3
2
BD,求出BD的最大值和最小值即可解决问题;
试题解析:解:(1)结论:△FGH是等边三角形.理由如下:
如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.
∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=
∠AEC,∵EG=GB,EF=FD,∴FG=1
2
BD,GF∥BD,∵DF=EF,DH=HC,∴FH=
1
2
EC,FH∥EC
,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°
∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.
(2)如图2中,连接AF、EC.
易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1,∴AF =2221-=3,在Rt △ABF 中,BF =22AB AF - =6,∴BD =CE =BF ﹣DF =61-,∴FH =12EC =612
-. (3)存在.理由如下.
由(1)可知,△GFH 是等边三角形,GF =
12
BD ,∴△GFH 的周长=3GF =3
2BD ,在△ABD
中,AB =a ,AD =b ,∴BD 的最小值为a ﹣b ,最大值为a +b ,∴△FGH 的周长最大值为
32(a +b ),最小值为3
2
(a ﹣b ). 点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
4.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
(1)概念理解:
如图1,在ABC ∆中,6AC = ,3BC =.30ACB ∠=︒,试判断ABC ∆是否是“等高底”三角形,请说明理由. (2)问题探究:
如图2, ABC ∆是“等高底”三角形,BC 是“等底”,作ABC ∆关于BC 所在直线的对称图形得到A BC '∆,连结AA '交直线BC 于点D .若点B 是123,12z ai z i =-=+的重心,求AC
BC
的值. (3)应用拓展:
如图3,已知12l l //,1l 与2l 之间的距离为2.“等高底”ABC ∆的“等底” BC 在直线1l 上,点A 在直线2l 上,有一边的长是BC 的2倍.将ABC ∆绕点C 按顺时针方向旋转45︒得到
A B C ∆'',A C '所在直线交2l 于点D .求CD 的值.
【答案】(1)证明见解析;(2)
13
2
AC
BC
=(3)CD的值为
2
10
3
,22,2
【解析】
分析:(1)过点A作AD⊥直线CB于点D,可以得到AD=BC=3,即可得到结论;
(2)根据ΔABC是“等高底”三角形,BC是“等底”,得到AD=BC,再由ΔA′BC与ΔABC关于直线BC对称,得到∠ADC=90°,由重心的性质,得到BC=2BD.设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=13x,即可得到结论;
(3)分两种情况讨论即可:①当AB=2BC时,再分两种情况讨论;
②当AC=2BC时,再分两种情况讨论即可.
详解:(1)是.理由如下:
如图1,过点A作AD⊥直线CB于点D,
∴ΔADC为直角三角形,∠ADC=90°.
∵ ∠ACB=30°,AC=6,∴ AD=1
2
AC=3,
∴ AD=BC=3,
即ΔABC是“等高底”三角形.
(2)如图2,∵ ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ ΔA′BC与ΔABC关于直线BC对称,∴ ∠ADC=90°.
∵点B是ΔAA′C的重心,∴ BC=2BD.
设BD=x,则AD=BC=2x,∴CD=3x,
∴由勾股定理得AC=13x,
∴
1313 AC x
BC
==.
(3)①当AB2BC时,
Ⅰ.如图3,作AE⊥l1于点E,DF⊥AC于点F.∵“等高底” ΔABC的“等底”为BC,l1//l2,
l1与l2之间的距离为2,AB2BC,
∴BC=AE=2,AB2,
∴BE=2,即EC=4,∴AC= 25.
∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,∴∠CDF=45°.设DF=CF=x.
∵l1//l2,∴∠ACE=∠DAF,∴
1
2
DF AE
AF CE
==,即AF=2x.
∴AC=3x=25,可得x=2
5
3
,∴CD=2x=
2
10
3
.
Ⅱ.如图4,此时ΔABC是等腰直角三角形,
∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,
∴ΔACD是等腰直角三角形,
∴CD=2AC=22.
②当AC=2BC时,
Ⅰ.如图5,此时△ABC是等腰直角三角形.
∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C,∴A′C⊥l1,∴CD=AB=BC=2.
Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,
∴AC=2BC=2AE,∴∠ACE=45°,
∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C时,点A′在直线l1上,
∴A′C∥l2,即直线A′ C与l2无交点.
综上所述:CD 2
10
3
,222.
点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读
理解能力.解题的关键是对新概念“等高底”三角形的理解.
5.(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接
AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
①∠EAF的度数;
②线段AE,ED,DB之间的数量关系.
【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2
【解析】
试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出
∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.
试题解析:解:(1)①∵△ABC是等边三角形,
∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
在△ACF和△BCD中,
∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;
②DE=EF.理由如下:
∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
(2)①∵△ABC是等腰直角三角形,
∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,
∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
②AE2+DB2=DE2,理由如下:
∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,
AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.
6.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形
,如图2.
①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)
②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.
【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°
【解析】
分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;
(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.
详解:如图1,延长ED交AG于点H,
点O是正方形ABCD两对角线的交点,
,
,
在和中,
,
≌,
,
,
,
,
即;
在旋转过程中,成为直角有两种情况:
Ⅰ由增大到过程中,当时,
,
在中,sin∠AGO=,
,
,
,
,
即;
Ⅱ由增大到过程中,当时,
同理可求,
.
综上所述,当时,或
.
如图3,
当旋转到A 、O 、在一条直线上时,的长最大,
正方形ABCD 的边长为1,
,
,
, ,
,
,
此时
.
点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.
7.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .
(1).如图,猜想ADE ∆是_______三角形;(直接写出结果) (2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论; (3).①当BD=___________时,30DEC ∠=;(直接写出结果)
②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.
【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+ 【解析】 【分析】
(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答. 【详解】
解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,
ADE ∴∆是等边三角形, 故答案为等边三角形; (2)AC CD CE +=,
证明:由旋转的性质可知,60,DAE AD AE ∠==,
ABC ∆是等边三角形
60AB AC BC BAC ∴∠︒==,=, 60BAC DAE ∴∠∠︒==,
BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=, 在ABD ∆和ACE ∆中, AB AC BAD CAE AD AE =⎧⎪
∠=∠⎨⎪=⎩
, ABD ACE SAS ∴∆∆≌()
BD CE ∴=,
CE BD CB CD CA CD ∴++===;
(3)①BD 为2或8时,30DEC ∠=, 当点D 在线段BC 上时,
3060DEC AED ∠︒∠︒=,=,
90AEC ∴∠︒=, ABD ACE ∆∆≌,
9060ADB AEC B ∴∠∠︒∠︒==,又=,
30BAD ∴∠︒=,
1
22
BD AB ∴==,
当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=, 30AEC ∴∠︒=, ABD ACE ∆∆≌,
3060ADB AEC B ∴∠∠︒∠︒==,又=,
90BAD ∴∠︒=, 28BD AB ∴==,
BD ∴为2或8时,30DEC ∠︒=;
②点D 在运动过程中,DEC ∆
的周长存在最小值,最小值为4+
理由如下:
ABD ACE ∆∆≌,
CE BD ∴=,
则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===, 当CE 最小时,DEC ∆的周长最小, ADE ∆为等边三角形, DE AD ∴=,
AD 的最小值为23,
DEC ∴∆的周长的最小值为423+.
【点睛】
本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
8.已知,正方形ABCD 的边长为4,点E 是对角线BD 延长线上一点,AE=BD .将△ABE 绕点A 顺时针旋转α度(0°<α<360°)得到△AB ′E ′,点B 、E 的对应点分别为B ′、E ′.
(1)如图1,当α=30°时,求证:B ′C=DE ;
(2)连接B ′E 、DE ′,当B ′E=DE ′时,请用图2求α的值;
(3)如图3,点P 为AB 的中点,点Q 为线段B ′E ′上任意一点,试探究,在此旋转过程中,线段PQ 长度的取值范围为 .
【答案】(1)证明见解析(2)45°或22.5°(3)2-22+2 【解析】 【分析】
(1)先由正方形的性质得到直角三角形AOE ,再经过简单计算求出角,判断出△ADE ≌△AB′C 即可;(2)先判断出△AEB′≌△AE′D ,再根据旋转角和图形,判断出∠BAB′=∠DAB′即可;(3)先判断出点Q 的位置,PQ 最小时和最大时的位置,进行计算即可. 【详解】
解:(1)如图1,
连接AC,B′C,
∵四边形ABCD是正方形,
∴AB=AD,AC⊥BD,AC=BD=2OA,∠CAB=ADB=45°,∵AE=BD,
∴AC=AE=2OA,
在Rt△AOE中,∠AOE=90°,AE=2OA,
∴∠E=30°,
∴∠DAE=∠ADB-∠E=45°-30°=15°,
由旋转有,AD=AB=AB′∠BAB′=30°,
∴∠DAE=15°,
在△ADE和△AB′C中,
'
' AD AB
DAE CAB AE AC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ADE≌△AB′C,
∴DE=B′C,
(2)如图
2,
由旋转得,AB′=AB=AD,AE′=AE,
在△AEB′和△AE′D中,
'
'
'' AE AE AD AB DB DE
=
⎧
⎪
=
⎨
⎪=
⎩
,
∴△AEB′≌△AE′D,∴∠DAE′=∠EAB′,
∴∠EAE′=∠DAB′,
由旋转得,∠EAE′=∠BAB′,
∴∠BAB′=∠DAB′,
∵∠BAB′+∠DAB′=90°,
∴α=∠BAB′=45°,或α=360°-90°-45°=225°;(3)如图3,
∵正方形ABCD的边长为4,
∴1
2
2,
连接AC交BD于O,
∴OA⊥BD,OA=1
2
AC=
1
2
2
在旋转过程中,△ABE在旋转到边B'E'⊥AB于Q,此时PQ最小,由旋转知,△ABE≌△AB'E',
∴AQ=OA=1
2
BD(全等三角形对应边上的高相等),
∴PQ=AQ-AP=1
2
2-2
在旋转过程中,△ABE在旋转到点E在BA的延长线时,点Q和点E'重合,∴2,
∴2+2,
故答案为2-2+2.
.
二、初三数学 圆易错题压轴题(难)
9.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .
(1)分别求点E 、C 的坐标;
(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.
【答案】(1)点C 的坐标为(-3,0)(2)234333
y x x =++3)⊙M 与⊙A 外切 【解析】
试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;
(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;
(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么
∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.
试题解析:(1)在Rt△EOB 中,3
cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).
在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).
(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得
()()30103a =++,
∴3
3
a =
.
∴()()3
133
y x x =
++,即 2343333
y x x =
++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,
∴MED B ∠=∠.
∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.
∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.
10.如图1,四边形ABCD 中,
、
为它的对角线,E 为AB 边上一动点(点E 不与点
A 、
B 重合),EF ∥A
C 交BC 于点F ,FG ∥B
D 交DC 于点G ,GH ∥AC 交AD 于点H ,连接H
E .记四边形EFGH 的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD 为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD 中,若AB=4,BC=3,则它的“值”为 .
(1)等腰梯形 (填“是”或 “不是”)“四边形”; (2)如图3,是⊙O 的直径,A 是⊙O 上一点,,点为
上的一动
点,将△
沿
的中垂线翻折,得到△
.当点运动到某一位置时,以、、、
、、中的任意四个点为顶点的“四边形”最多,最多有 个. 【答案】“值”为10;(1)是;(2)最多有5个. 【解析】
试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可; (1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;
(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断. 矩形ABCD 中,若AB=4,BC=3,则它的“值”为10; (1)等腰梯形是“四边形”;
(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“
四边形”最多,最多有5个. 考点:动点问题的综合题
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
11.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ=
3
4
,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=
1
3
CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.
(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;
(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值. 【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为3
5
或3. 【解析】
试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;
(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解; (3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可. 试题解析:(1)5t BQ =,2
DF=
t 3
; (2)DE=OD-OE=32t+1-52t=1-t ,()2
2211
·t 13326
S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=
12时,矩形DEGF 的最大面积为
1
6
; (3)当矩形DEGF 为正方形时,221133t t t t -=
-=或,解得3
35
t t ==或.
12.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;
(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;
(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO
于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.
【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)62
【解析】
【分析】
(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;
(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,
∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;
(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设
BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.
【详解】
解:(1)如图1,
∵AC为直径,
∴∠ABC=90°,
∴∠ACB+∠BAC=90°,
∵AB=BC,
∴∠ACB=∠BAC=45°,
∴∠ADB=∠ACB=45°;
(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:
如图2,设∠ABE=α,∠CBF=β,
∵AD∥BF,
∴∠EBF=∠ADB=45°,
又∠ABC=90°,
∴α+β=45°,
过B作BN⊥BE,使BN=BE,连接NC,
∵AB=CB,∠ABE=∠CBN,BE=BN,
∴△AEB≌△CNB(SAS),
∴AE=CN,∠BCN=∠BAE=45°,
∴∠FCN=90°.
∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),
∴EF=FN,
∵在Rt△NFC中,CF2+CN2=NF2,
∴EA2+CF2=EF2;
(3)如图3,延长GE,HF交于K,
由(2)知EA2+CF2=EF2,
∴1
2
EA2+
1
2
CF2=
1
2
EF2,
∴S△AGE+S△CFH=S△EFK,
∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,
∴1
2
S△ABC=
1
2
S矩形BGKH,
∴S△GBH=S△ABO=S△CBO,
∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形CHMO=8:9,
∴S△BMH:S△BGM=8:9,
∵BM平分∠GBH,
∴BG :BH =9:8, 设BG =9k ,BH =8k ,
∴CH =3+k ,
∵AG =3,
∴AE =32,
∴CF =2(k+3),EF =2(8k ﹣3),
∵EA 2+CF 2=EF 2, ∴222(32)[2(3)][2(83)]k k ++=-,
整理得:7k 2﹣6k ﹣1=0,
解得:k 1=﹣
17(舍去),k 2=1. ∴AB =12,
∴AO =22
AB =62, ∴⊙O 的半径为62.
【点睛】
本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.
13.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .
(1)如图1,求证:BH =FH ;
(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.
【答案】(1)见解析;(2)见解析;(3)10 .
【解析】
【分析】
(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;
(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明
Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;
(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明
()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.
【详解】
解:(1)如下图,连接AE
∵AB 为直径
∴90AEB =︒∠
∵
AE BE =
∴AE BE =
∴45B ∠=︒
又∵CD AB ⊥于H ∴45HFB ∠=︒
∴HF HB =;
(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、
AB 为直径,∴90ACB QCS ∠=∠=︒
∴GCQ BCS ∠=∠
∴()Rt CGQ Rt CBS AAS ∆≅∆
∴CG CB =
同理()CBE CGE SAS ∆≅∆
∴EG EB =;
(3)如下图,过点G 作GT CD ⊥于T ,连接CN
设CAB α∠=由(2)知:CM CB =
∴CM CB =
∵HB HF =
∴45HBF HFB ∠=∠=︒
∵GF BE ⊥
∴45NFH NH BH CN BC ∠=︒∴=∴=,,
∴CM CB CN ==
则:2MEB α∠=
902AEG α∠=︒-
∴45EAG EGA α∠=∠=︒+
∴45M MGC α∠=∠=︒+
∴()CMG CNG AAS ∆≅∆
∵CMG ∆面积为6
∴6CAN GAN S S -=
设2122BH NH x OA OB x AN x ====+=+,,
则()CGT BCH AAS ∆≅∆
∴C BH x ==
∴6AN CH AN TH ⋅-⋅=
∴1(22)62
x CT +⋅= 解得:2x =
∵2BC BH BA =⋅
∴2210BC =⨯,则25BC =∴2210BG BC ==
【点睛】
本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.
14.如图,PA ,PB 分别与
O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.
(1)如图1,求证://PF AD ;
(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;
(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5
ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)
257 【解析】
【分析】
(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到
2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;
(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得
APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;
(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由
45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==.延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得
257
PH =
. 【详解】 (1)连接OA 、OB
∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,
∴OA AP ⊥,OB BP ⊥,
∴90OAP OBP ∠=∠=︒,
∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,
∵AB AB =,
∴2AOB ADB ∠=∠,
∴2180P ADB ∠+∠=︒,
∵2180P PEB ∠+∠=︒,
∴ADB PEB ∠=∠,
∴//PF AD
(2)过点P 做PK PF ⊥交EB 延长线于点K
∵90APB ∠=︒,
∴21809090PEB ∠=︒-︒=︒, ∴45PEB ∠=︒,
∵PA 、PB 为圆O 的切线,
∴PA PB =,
∵PK PE ⊥,45PEK ∠=︒,
∴PE PK = ,
∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,
∴APE BPK ∠=∠,
∴APE BPK ∆∆≌,
∴45K AEP ∠=∠=︒,
∴AEP PEB ∠=∠,
∴PE 平分AEB ∠;
(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM
∵45ADE ∠=︒,90AED ∠=︒,
∴DE AE =,
∵OA 、OD 为半径,
∴OA OD =,
∵OE OE =,
∴DEO AEO ∆∆≌, ∴1452AEO OED AED ∠=∠=
∠=︒, ∴90OEP ∠=︒,
∵AM 为圆O 的直径,
∴90ADM ∠=︒,
∵弧AD =弧AD ,
∴ABD AMD ∠=∠,
在Rt ADM ∆中,8AD =,4sin 5AMD ∠=
,则10AM =, ∴5OA OB ==,
由题易证四边形OAPB 为正方形,
∴对角线AB 垂直平分OP ,AB OP =,
∵H 在AB 上,
∴OH PH =,
在Rt OAP ∆中,OP =
=
延长EO 交AD 于K ,
∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,
∴4DK KE ==,3OK =,1OE =
∴在Rt OEP ∆中,7PE ==
在Rt OEH ∆中,222OH OE EH =+
∵OH PH =,7EH PE HP PH =-=-
∴()22217PH PH =+- ∴257
PH =
. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.
15.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,
(1)如图(1)求证:90AEC ∠=︒;
(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠
(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度
【答案】(1)证明见解析;(2)证明见解析;(3)2410MN =
. 【解析】
【分析】
(1)由垂径定理即可证明; (2)利用等弧所对的圆周角相等和三角形外角性质即可得到结论;
(3)由∠MPC=∠NQD 可得:∠BGL=∠BLG ,BL=BG ,作BR ⊥MN ,GT ⊥AF ,HK ⊥AB ,证明:GH 平分∠AGT ,利用相似三角形性质和角平分线性质求得△AGT 三边关系,再求出HK 与GH ,OS ⊥MN ,再利用相似三角形性质求出OS ,利用勾股定理求MN 即可.
【详解】
解:()1证明:∵BC BD =,AB 为直径,
∴AB ⊥CD
∴∠AEC=90°;
()2连接,OM ON ,
∵点M 是弧AC 的中点,点N 是弧DF 的中点,
∴AM CM =,FN DN =,
∴,OM AC ON FD ⊥⊥,
∵OM=ON ,
∴M N ∠=∠,
∵90M MPC N NQB ∠+∠=∠+∠=︒,
MPC NQD ∴∠=∠;
()3如图3,过G 作GT ⊥AF 于T ,过H 作HK ⊥AB 于K ,过B 作BR ⊥MN 于R ,过O 作OS ⊥MN 于S ,连接OM ,设BG=m ,
∵△ABH 的面积等于8,AG=6
∴HK=166
m +, ∵BC BD =,
∴∠BAC=∠BFD ,由(2)得∠MPC=∠NQD
∴∠AGM=∠FLN
∴∠BGL=∠BLG
∴BL=BG ,
∵BR ⊥MN
∴∠ABR=∠FBR
∵GH ⊥MN ∴GH ∥BR
∴∠AGH=∠ABR
∵AB 是直径,GT ⊥AF
∴∠AFB=∠ATG=90°
∴GT ∥BF ,
又∵GH ∥BR
∴∠TGH=∠FBR
∴∠AGH=∠TGH ,
又∵HK ⊥AG ,HT ⊥GT ,
∴HT=HK=166
m +, ∵FH=BG=m , ∴FT=16(8)(2)66m m m m m +--
=++, ∵GT ∥BF ,
∴AT AG FT BG =, ∴6(8)(2)(6)m m AT m m +-=
+,616m AH m -=,48(6)(38)m KG TG m m ==+-, ∵222AT TG AG +=,
代入解得:m=4;
∴AB=10,OM=5,GK=
245,HK=85,OG=1 ∴GH=810, ∵OS ⊥MN
∴∠OSG=∠GKH=90°,GH ∥OS
∴∠HGK=∠GOS
∴△HGK ∽△GOS ,
∴OS GK OG GH
=, ∴31010
OS =, ∴222410MG OM OG =-=
, ∴24105
MN =
; 【点睛】 本题考查了圆的性质,圆周角定理,垂径定理,相似三角形判定和性质,勾股定理等,综合性较强,尤其是第(3)问难度很大,计算量大,解题的关键是熟练掌握所学的知识,正确作出辅助线,运用数形结合的思想进行解题.
16.如图,平行四边形ABCD 中,AB=5,BC=8,cosB=
45
,点E 是BC 边上的动点,以C 为圆心,CE 长为半径作圆C ,交AC 于F ,连接AE ,EF .
(1)求AC 的长;
(2)当AE 与圆C 相切时,求弦EF 的长;
(3)圆C 与线段AD 没有公共点时,确定半径CE 的取值范围.
【答案】(1)AC=5;(2)
410
5
EF=;(3)03
CE
≤<或58
CE
<≤.
【解析】【分析】
(1)过A作AG⊥BC于点G,由cos
4
5
B=,得到BG=4,AG=3,然后由勾股定理即可求出
AC的长度;
(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF的长度;
(3)根据题意,可分情况进行讨论:①当圆C与AD相离时;②当CE>CA时;分别求出CE的取值范围,即可得到答案.
【详解】
解:(1)过A作AG⊥BC于点G,如图:
在Rt△ABG中,AB=5,
4 cos
5
BG
B
AB
==,
∴BG=4,
∴AG=3,
∴844
CG=-=,
∴点G是BC的中点,
在Rt△ACG中,22
345
AC=+=;
(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,如图:
∴CE=CF=4,
∵AB=AC=5,
∴∠B=∠ACB,
∴
4 cos cos
5
CH
B ACB
CF
=∠==,
∴CH=3.2,
在Rt△CFH中,由勾股定理,得
FH=2.4,
∴EH=0.8,
在Rt △EFH 中,由勾股定理,得
224100.8 2.4EF =+=; (3)根据题意,圆C 与线段AD 没有公共点时,可分为以下两种情况:
①当圆C 与AD 相离时,则CE<AE ,
∴半径CE 的取值范围是:03CE ≤<;
②当CE>CA 时,点E 在线段BC 上,
∴半径CE 的取值范围是:58CE <≤;
综合上述,半径CE 的取值范围是:03CE ≤<或58CE <≤.
【点睛】
本题考查了解直角三角形,直线与圆的位置关系,平行四边形的性质,勾股定理,以及线段的动点问题,解题的关键是熟练掌握所学的知识,正确作出辅助线,正确确定动点的位置,从而进行解题.。