山西省长治市第二中学2019-2020学年高一上学期期末数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省长治市第二中学2019-2020学年高一上学期
期末数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 设集合,则的所有子集个数为()
A.3 B.4 C.7 D.8
2. 如图是2013年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为()
A.85,84 B.84,85 C.86,84 D.84,84
3. 设,则使函数的值域为R且为奇函数的所有a值为
()
A.1,3 B.,1 C.,3 D.,1,3
4. 在区间内任取一个数,则使有意义的概率为()A.B.C.D.
5. 将一个骰子抛掷一次,设事件A表示向上的一面出现的点数不超过2,事件B表示向上的一面出现的点数不小于3,事件C表示向上的一面出现奇数点,则()
A.A与B是对立事件B.A与B是互斥而非对立事件
C.B与C是互斥而非对立事件D.B与C是对立事件
6. 采用系统抽样方法从人中抽取32人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为()A.B.C.D.
7. 已知某地、、三个村的人口户数及贫困情况分别如图(1)和图(2)所示,为了解该地三个村的贫困原因,当地政府决定采用分层抽样的方法抽取的户数进行调查,则样本容量和抽取村贫困户的户数分别是()
A.,B.,
C.,D.,
8. 已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:
321 421 292 925 274 632 800 478 598
663 531 297 396
021 506 318 230 113 507 965
据此估计,小张三次射击恰有两次命中十环的概率为()
A.0.25 B.0.30 C.0.35 D.0.40
9. 一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.57.2,3.6 B.57.2,56.4
C.62.8,63.6 D.62.8,3.6
10. 设表示a,b,c三者中的最小者,若函数
,则当时,的值域是()A.[1,32] B.[1,14] C.[2,14] D.[1,16]
11. 已知函数f(x)=log
(x2﹣2ax)在[4,5]上为增函数,则a的取值范围
a
是()
A.(1,4)B.(1,4] C.(1,2)D.(1,2]
12. 已知函数,若的零点个数为4个时,实数a的取值范围为()
A.B.C.D.
二、填空题
13. 如图,矩形的长为,宽为,在矩形内随机地撒颗黄豆,数得落在阴影部分的黄豆为颗,则我们可以估计出阴影部分的面积约为
________.
14. 一个样本a,3,5,7的平均数是b,且a,b是方程x2-5x+4=0的两根,则这个样本的方差是_____.
15. 一只蚂蚁在边长分别为6,8,10的△ABC区域内随机爬行,则其恰在到顶点A或顶点B或顶点C的距离小于1的地方的概率为___
16. 下列说法:
①函数的单调增区间是;
②若函数定义域为且满足,则它的图象关于轴对称;
③函数的值域为;
④函数的图象和直线的公共点个数是,则的值可能是;
⑤若函数在上有零点,则实数的取值范围是
.
其中正确的序号是_________.
三、解答题
17. 某学校高二年级举办了一次数学史知识竞赛活动,共有名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
(1)填出频率分布表中的空格;
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于分的同学能获奖,请估计在参加的名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的
值.
18. .口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(Ⅰ)求甲赢且编号的和为6的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?试说明理由.
19. 某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格
单价
9 9.2 9.4 9.6 9.8 10
元
销量
100 94 93 90 85 78
件
(1)若销量与单价服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润.
附:对于一组数据,,……,
其回归直线的斜率的最小二乘估计值为;
本题参考数值:.
20. 某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:
(1)求分数内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试成绩的中位数;
(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.