2016年北京中考西城区初三一模数学试卷及答案

合集下载

2016届北京市西城区初三一模数学试卷(解析版)概要1讲解

2016届北京市西城区初三一模数学试卷(解析版)概要1讲解

2016届北京市西城区初三一模数学试卷、单选题(共10小题)考点:科学记数法和近似数、有效数字 答案:C试题解析:科学记数法是一个数表示成 题意得9 186 000=9.186 106.故选 C .1 . 2016年春节假期期间,我市接待旅游总人数达到9 186 000 人次, 000用科学计数法表示应为()3A . 9186 60B . 59.186 106C . 9.186 60D79.186 10比去年同期增长 1.9%.将9 186axio 的n 次幕的形式,其中1w |a|<10 n 为整数,所以根据2.如图,实数:,在数轴上的对应点分别为P , Q ,这四个数中绝对值最大的数对应的点是() A .点B .点T C .点厂D .点-_:考点:实数大小比较 答案:D试题解析:数轴上的数离远点最远的数绝对值最大,由图可得原点在 远,故选DMN 之间,所以Q 点离远点最3. 如图,直线| V.,直线EF 分别与匸,二.交于点二,,门_二「,且与的平分线交于■,若__」1-,则__的度数是()C . 25°D . 20 °E考点:平行线的判定及性质2答案:A试题解析:由题意得 __<-二 一 .?, 故选A4.下列几何体中,主视图和俯视图都为矩形的是()考点:几何体的三视图 答案:B试题解析:由题意可得只有 B 选项的长方体的三视图都为长方形,故选B1 、5.关于:的一元二次方程./ - ■ - H 有两个不相等的实数根,贝U:的取值范围是(),9 A. ‘2,9 B. 4C.:-2D.:4考点:一兀一 二次方程的根的判别式答案:A:' ,故选A 。

2试题解析: 由题意可得A > 0.33- 4x-i > Oi 26.老北京的老行当中有-行叫做 抓彩卖糖”: 商贩将高丽纸裁成许多小条,用矶水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入 小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了 10张质地均匀的纸条, 其中能得到一块糖的纸条有5张,能得到三块糖的纸条有 随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是(3张,能得到五块糖的纸条有 2张.从中)D .D .考点:概率及计算答案:B2试题解析:由题意得10张中三块糖的纸条有3张,所以概率为―,即选B。

2016年北京中考-数学试卷和参考答案

2016年北京中考-数学试卷和参考答案

2016年北京市高级中等学校招生考试数学试卷学校姓名准考证号考生须知1.本试卷共8页,共三道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束后,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。

1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。

将28 000用科学计数法表示应为(A)(B) 28(C)(D)3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A)a(B)(C)(D)4. 内角和为540的多边形是BAO5. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱6. 如果,那么代数的值是(A) 2 (B)-2 (C)(D)7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是A B C D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A) 3月份(B) 4月份(C) 5月份(D) 6月份第8题图第9题图9. 如图,直线,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)(B)(C)(D)10. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。

计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%。

为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180的该市居民家庭按第一档水价交费②年用水量超过240的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150-180之间④该市居民家庭年用水量的平均数不超过180(A)①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11. 如果分式有意义,那么x的取值范围是____。

2016年北京市西城区初三数学一模试题及答案

2016年北京市西城区初三数学一模试题及答案

2016年北京市西城区初三数学一模试题及答案一、选择题(每题3分共30分)1.﹣3的相反数是()A.﹣3 B.C.3 D.﹣2.下列计算中,正确的是()A.a0=1 B.a﹣1=﹣a C.a3?a2=a5 D.2a2+3a3=5a53.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.4.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4) B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.将二次函数y=x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣1 D.y=(x+2)2﹣1 7.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%8.如图,为测量学校旗杆的高度,小东用长为 3.2m的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()m.A.8.8 B.10 C.12 D.149.如图,飞机飞行高度BC为1500m,飞行员看地平面指挥塔A的俯角为α,则飞机与指挥塔A的距离为()m.A.B.1500sinαC.1500cosαD.10.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.将5400 000用科学记数法表示为.12.函数中自变量的取值范围是.13.计算2﹣的结果是.14.把多项式ax2+2a2x+a3分解因式的结果是.15.若扇形的弧长为6πcm,面积为15πcm2,则这个扇形所对的圆心角的度数为°.16.不等式组的解集为.17.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为.18.矩形ABCD中,AB=3,AD=5,点E在BC边上,△ADE是以AD为一腰的等腰三角形,则tan∠CDE=.19.已知,如图,CB是⊙O的切线,切点为B,连接OC,半径OA⊥OC,连接AB交OC于点D,若OD=1,OA=3,则BC=.20.如图,直线DE过等边△ABC的顶点B,连接AD、CE,AD∥CE,∠E=30°,若BE:AD=1:,CE=4时,则BC=.三、解答题(共60分)(21-22题每题7分,23-24题每题8分,25-27题每题10分)+2cos60°.21.先化简,再求代数式:÷(﹣x)的值,其中x=2sin 60°22.图1,图2均为正方形网络,每个小正方形的面积均为1,请在下面的网格中按要求画图,使得每个图形的顶点均在小正方形的顶点上.(1)在图1中作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC 的面积;(2)在图2中画出一个面积是10的等腰直角三角形.23.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1)求本次被调查的学生人数;(2)通过计算补全条形统计图;(3)该校有1000名学生,请估计全校最喜爱足球的人数比最喜爱篮球的人数少多少人?24.在?ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.(1)求证:△BFO≌△DEO;(2)若EF平分∠AEC,试判断四边形AFCE的形状,并证明.25.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?26.已知,△ADB内接于⊙O,DG⊥AB于点G,交⊙O于点C,点E是⊙O上一点,连接AE分别交CD、BD于点H、F.(1)如图1,当AE经过圆心O时,求证:∠AHG=∠ADB;(2)如图2,当AE不经过点O时,连接BC、BH,若∠GBC=∠HBG时,求证:HF=EF;(3)如图3,在(2)的条件下,连接DE,若AB=8,DH=6,求sin∠DAE的值.27.在平面直角坐标系中,抛物线y=x2﹣bx+c与x轴交于点A(8,0)、B(2,0)两点,与y轴交于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PB并延长交y轴于点D,若点P的横坐标为t,CD长为d,求d与t的函数关系式(并求出自变量t的取值范围);(3)如图3,在(2)的条件下,连接AC,过点P作PH⊥x轴,垂足为点H,延长PH交AC于点E,连接DE,射线DP关于DE对称的射线DG交AC于点G,延长DG交抛物线于点F,当点G为AC中点时,求点F的坐标.2016-2017学年黑龙江省哈尔滨市平房区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分共30分)1.﹣3的相反数是()A.﹣3 B.C.3 D.﹣【考点】相反数.【分析】依据相反数的定义回答即可.【解答】解:﹣3的相反数是3.故选:C.2.下列计算中,正确的是()A.a0=1 B.a﹣1=﹣a C.a3?a2=a5 D.2a2+3a3=5a5【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.【分析】直接利用负整数指数幂的性质以及零指数幂的性质和合并同类项法则以及同底数幂的乘法运算法则化简求出答案.【解答】解:A、a0=1(a≠0),故此选项错误;B、a﹣1=(a≠0),故此选项错误;C、a3?a2=a5,正确;D、2a2+3a3,无法计算,故此选项错误;故选:C.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.4.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4) B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】将(﹣2,4)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵点(﹣2,4)在反比例函数y=(k≠0)的图象上,∴k=﹣2×6=﹣8,四个选项中只有D符合.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.将二次函数y=x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣1 D.y=(x+2)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2的顶点坐标为(0,0),再确定平移后顶点坐标,然后写出平移的顶点式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移2个单位,再向上平移1个单位得到点(2,1),所以平移后的抛物线的解析式为y=(x﹣2)2+1.故选A.7.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【考点】一元二次方程的应用.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.8.如图,为测量学校旗杆的高度,小东用长为 3.2m的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()m.A.8.8 B.10 C.12 D.14【考点】相似三角形的应用.【分析】利用相似三角形对应边成比例解题.【解答】解:因为竹竿和旗杆均垂直于地面,所以构成两个相似三角形,若设旗杆高x米,则,∴x=12.故选C.9.如图,飞机飞行高度BC为1500m,飞行员看地平面指挥塔A的俯角为α,则飞机与指挥塔A的距离为()m.A.B.1500sinαC.1500cosαD.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形,可得Rt△ABC中,∠C=90°,BC=1500m,运用三角函数定义解Rt△ABC即可求出AB.【解答】解:由题意得:Rt△ABC中,∠A=∠α,∠C=90°,BC=1500m,∴sinA=sinα=,∴AB==m.故选A.10.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】①根据图象中t=0时,s=120实际意义可得;②根据图象中t=1时,s=0的实际意义可判断;③由④可知小汽车的速度是货车速度的2倍;④由图象t=1.5和t=3的实际意义,得到货车和小汽车的速度,进一步得到 1.5小时后的路程,可判断正误.【解答】解:(1)由图象可知,当t=0时,即货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①错误;(2)当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;(3)由(3)知小汽车的速度为:120÷1.5=80(千米/小时),货车的速度为40(千米/小时),∴小汽车的速度是货车速度的2倍,故③正确;(4)根据图象知,汽车行驶 1.5小时达到终点A地,货车行驶3小时到达终点B地,故货车的速度为:120÷3=40(千米/小时),出发1.5小时货车行驶的路程为: 1.5×40=60(千米),小汽车行驶 1.5小时达到终点A地,即小汽车 1.5小时行驶路程为120千米,故出发1.5小时,小汽车比货车多行驶了60千米,∵故④正确.∴正确的有②③④三个.二、填空题(每题3分,共30分)11.将5400 000用科学记数法表示为 5.4×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:5400 000用科学记数法表示为 5.4×106,故答案为:5.4×106.12.函数中自变量的取值范围是.【考点】函数自变量的取值范围;分式有意义的条件.【分析】该函数由分式组成,故分母不等于0,依次解得自变量的取值范围.【解答】解:2x+1≠0,解得x.故答案为x≠.13.计算2﹣的结果是﹣.【考点】二次根式的加减法.【分析】根据二次根式的乘除,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:原式=﹣3=﹣,故答案为:﹣.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.若扇形的弧长为6πcm,面积为15πcm2,则这个扇形所对的圆心角的度数为216°.【考点】扇形面积的计算;弧长的计算.【分析】首先根据题意求出扇形的半径,然后运用弧长公式求出圆心角,即可解决问题.【解答】解:设这个扇形的半径为λ,弧长为μ,圆心角为α°;由题意得:,μ=6π,解得:λ=5;由题意得:,解得:α=216,故答案为216.16.不等式组的解集为﹣1<x<1.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<1,解②得x>﹣1,则不等式组的解集是:﹣1<x<1.故答案是:﹣1<x<1.17.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为.【考点】列表法与树状图法.【分析】画树状图展示所有9种等可能的结果数,再找出两次摸出的小球都是黑球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球都是黑球的结果数为4,所以两次摸出的小球都是黑球的概率=.故答案为.18.矩形ABCD中,AB=3,AD=5,点E在BC边上,△ADE是以AD为一腰的等腰三角形,则tan∠CDE=或.【考点】矩形的性质;等腰三角形的性质;解直角三角形.【分析】需要分类讨论:AD=AE和AD=DE两种情况,由勾股定理和三角函数即可得出结果.【解答】解:在矩形ABCD中,AB=CD=3,BC=AD=5,∠C=∠B=90°,①当DE=DA=5时,如图1所示:∴CE==4,∴tan∠CDE==;②当AE=AD=5时,BE==4,∴CE=BC﹣BE=1,∴tan∠CDE==;故答案为:或.19.已知,如图,CB是⊙O的切线,切点为B,连接OC,半径OA⊥OC,连接AB交OC于点D,若OD=1,OA=3,则BC=4.【考点】切线的性质;勾股定理;垂径定理.【分析】连接OB,由垂直定义得∠A+∠ADO=90°,由切线的性质可得∠CBO=90°,再由AO=BO,可得∠OAD=∠OBD,进而可证明CB=CD,设BC=x,则CD=x,在Rt△OBC中利用勾股定理可求出x的长,问题得解.【解答】解:连接OB,∵OA⊥OC,∴∠A+∠ADO=90°,∵CB是⊙O的切线,∴∠OBC=90°,∴∠OBD+∠CBD=90°,∵AO=BO,∴∠OAD=∠OBD,∴∠OAD=∠OBD,∴CB=CD,设BC=x,则CD=x,在Rt△OBC中,OB=OA=3,OC=OD+CD=x+1,∵OB2+BC2=OC2,∴32+x2=(x+1)2,解得:x=4,即BC的长为4,故答案为:4.20.如图,直线DE过等边△ABC的顶点B,连接AD、CE,AD∥CE,∠E=30°,若BE:AD=1:,CE=4时,则BC=2.【考点】等边三角形的性质;旋转的性质;相似三角形的判定与性质.【分析】作辅助线,构建全等三角形和直角三角形,由旋转得:∠PCE=60°,∠APC=∠E=30°,根据BE:AD=1:,设AD=x,BE=x,则AP=BE=x,根据三角函数表示PF、PH、AH、GH的长,根据PG=GH+PH列式求x的长,得BE=2,在△BGC中,利用勾股定理求得BC的长.【解答】解:将△CBE绕C逆时针旋转60°到△CAP,BC与AC重合,延长DA交PC于H,过H作HF⊥AP于F,CP交DE于G,∴∠PCE=60°,∵∠E=30°,∴∠CGE=90°,由旋转得:CE=CP,Rt△CGE中,CE=CP=4,∴CG=CE=2,∴GP=PC﹣CG=2,∵AD:BE=:1,设AD=x,BE=x,则AP=BE=x,∵AD∥BE,∴∠ADE=∠E=30°,Rt△DGH中,∠DHG=60°,由旋转得:∠APC=∠E=30°,∴∠HAP=60°﹣30°=30°,∴∠HAP=∠APC=30°,∴AH=PH,AF=PF=x,cos30°=,∴PH==x,∴DH=AD+AH=x+x=x,∴GH=DH=x,∵PG=2=GH+PH,∴2=x+x,x=2,∴BE=x=2,由勾股定理得:EG===6,∴BG=6﹣2=4,在Rt△BGC中,BC===2;故答案为:.三、解答题(共60分)(21-22题每题7分,23-24题每题8分,25-27题每题10分)+2cos60°.21.先化简,再求代数式:÷(﹣x)的值,其中x=2sin 60°【考点】分式的化简求值;特殊角的三角函数值.【分析】先将代数式进行化简,然后求出x的值并代入代数式求解即可.+2cos60°=+1,【解答】解:∵x=2sin 60°∴÷(﹣x)=÷=×==﹣.22.图1,图2均为正方形网络,每个小正方形的面积均为1,请在下面的网格中按要求画图,使得每个图形的顶点均在小正方形的顶点上.(1)在图1中作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC 的面积;(2)在图2中画出一个面积是10的等腰直角三角形.【考点】作图-轴对称变换.【分析】(1)作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC 的面积即可;(2)先求出等腰直角三角形的直角边长,再画出三角形即可.【解答】解:(1)如图1,四边形ABDC即为所求,S四边形ABDC=AD?BC=×6×4=12;(2)如图2,△ABC即为所求..23.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1)求本次被调查的学生人数;(2)通过计算补全条形统计图;(3)该校有1000名学生,请估计全校最喜爱足球的人数比最喜爱篮球的人数少多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总数减去其他各小组的人数即可求得喜欢足球的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.【解答】解:(1)∵10÷25%=40,答:本次被调查的学生人数为40人;(2)40﹣15﹣2﹣10=13,如图所示,(3),答:估计全校最喜爱足球的人数比最喜爱篮球的人数大约少50人.24.在?ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.(1)求证:△BFO≌△DEO;(2)若EF平分∠AEC,试判断四边形AFCE的形状,并证明.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质和平行线性质得出OA=OC,∠OAE=∠OCF,证△AOE≌△COF,推出OE=OF,即可得出四边形是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,AD∥BC,AD=BC,∴∠OBF=∠ODE,在△BFO和△DEO中,,∴△BFO≌△DEO(ASA);(2)解:四边形AFCE是正方形;理由如下:∵△BFO≌△DEO,∴BF=DE,∴CF=AE,∵AD∥BC,∴四边形AFCE是平行四边形,又∵AF⊥BC,∴∠AFC=90°,∴四边形AFCE是矩形,∵EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AEF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,∴四边形AFCE是正方形.25.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设设A款a元,B款b元,根据题意列方程组求解;(2)设让利的羽绒服有x件,总获利不低于3800元,列不等式,求出最大整数解.【解答】解:(1)设A款a元,B款b元,可得:,解得:,答:A款400元,B款300元.(2)设让利的羽绒服有x件,则已售出的有(20﹣x)件600 (20﹣x)+600×60% x﹣400×10﹣300×10≥3800,解得x≤5,答:最多让利5件.26.已知,△ADB内接于⊙O,DG⊥AB于点G,交⊙O于点C,点E是⊙O上一点,连接AE分别交CD、BD于点H、F.(1)如图1,当AE经过圆心O时,求证:∠AHG=∠ADB;(2)如图2,当AE不经过点O时,连接BC、BH,若∠GBC=∠HBG时,求证:HF=EF;(3)如图3,在(2)的条件下,连接DE,若AB=8,DH=6,求sin∠DAE的值.【考点】圆的综合题.【分析】(1)如图1中,连接BE,由DG∥BE,推出∠AEB=∠AHG,由∠ADB=∠AEB,即可推出∠ADB=∠AHG.(2)连接AC、DE,EB、AC、BC.只要证明HG=CG,∠EDB=∠CDB,根据等腰三角形三线合一即可证明.(3)过点O作ON⊥DE,OM⊥AB垂足分别为N、M,连接OD、OE、OA、OB.只要证明△NOE≌△MBO,推出NE=OM=3,OB==5,在RT△OMB中,根据sin∠OBM=,计算即可.【解答】证明:(1)如图1中,连接BE,∵AE是⊙O的直径∴∠ABE=90°,∵DG⊥AB,∴∠ABE=∠AGD=90°,∴DG∥BE,∴∠AEB=∠AHG,∵∠ADB=∠AEB∴∠ADB=∠AHG.(2)连接AC、DE,EB、AC、BC.∠GBC=∠HBG,DG⊥AB∴∠GHB=∠BCH,BH=BC,∴HG=CG,∴AH=AC,∠AHC=∠HCA,∠BAC=∠HAG∵∠AED=∠ACH,∠DHE=∠AHC,∴∠AED=∠DHE,∴DH=DE,∵∠EDB=∠EAB,∠CDB=∠BAC,∴∠EDB=∠CDB,∴HF=EF.(3)过点O作ON⊥DE,OM⊥AB垂足分别为N、M,连接OD、OE、OA、OB.∴BM=AB=4,∵DH=DE=6,HF=EF,∴DF⊥AE,∴∠DAE+∠BDA=90°,∵∠E O D=2∠DAE∠AO B=2∠ADB,∴∠BOA+∠EOD=180°,∵∠DOE=2∠NOE∠AOB=2∠BOM,∴∠NOE+∠BOM=90°∠NOE+∠NEO=90°,∵∠NEO=∠BOM,OE=OB,∴△NOE≌△MBO∴NE=OM=3,∴OB==5,∵∠ADB=∠BOM,∴∠DAF=∠OBM,在RT△OMB中sin∠OBM==∴sin∠DAE=.27.在平面直角坐标系中,抛物线y=x2﹣bx+c与x轴交于点A(8,0)、B(2,0)两点,与y轴交于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PB并延长交y轴于点D,若点P的横坐标为t,CD长为d,求d与t的函数关系式(并求出自变量t的取值范围);(3)如图3,在(2)的条件下,连接AC,过点P作PH⊥x轴,垂足为点H,延长PH交AC于点E,连接DE,射线DP关于DE对称的射线DG交AC于点G,延长DG交抛物线于点F,当点G为AC中点时,求点F的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线解析式;(2)先表示出BH,PH,进而得出∠HBP的正切值,再用等角的同名三角函数即可表示出OD,即可得出结论;(3)先求出直线AC解析式,进而判断出四边形DOMN是矩形,最后用三角函数和对称性求出t,即可得出OD和tan∠GDN=,即可得出结论.【解答】证明:(1)∵抛物线过A(8,0)、B(2,0)两点,∴,∴,∴抛物线的解析式为:y=x2﹣x+4(2)如图2,过点P作PH⊥AB于点H,设点P(t,)∴BH=t﹣2,PH=∴tan∠HBP==,∵∠OBD=∠HBP,∴tan∠OBD=tan∠HBP,∴,∴OD=,∴CD=4﹣OD=∴d=(2<t<8),(3)如图3,设直线AC的解析式为y=kx+b,∴∴,∴直线AC的解析式为,∴点E(t,)∴EH=OD=,∵EH∥OD,∴四边形DOHE是矩形,∴DE∥OH,取AO的中点M,连接GM,交DE于点N,∴GM∥OC,∴GN⊥DE,∴四边形DOMN是矩形,∴OD=NM=,NG=2﹣MN=,∵DN=OM=4tan∠GDN=,∵由对称性得∠PDE=∠GDE=∠HBP tan∠GDN=tan∠HBP,∴,∴t=∴OD=,∴tan∠GDN=,设点F(m,过点F作FK⊥DE交延长线于点K,tan∠GDN=,∴,∴F(10,4),2017年2月10日。

2016-2017年北京市西城区九年级一模数学试卷

2016-2017年北京市西城区九年级一模数学试卷

2017年北京市西城一模考试 数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB =55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°第3题图 第4题图4.右图是某几何体的三视图,该几何体是(A )三棱柱 (B )长方体 (C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -=(B )()2314x -=(C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是(A )80%20x - (B )()80%20x -(C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升 二、填空题(本题共18分,每小题3分)11.分解因式:ax 2-2ax +a =________.12.若函数的图像经过点A (1,2),点B (2,1),写出一个符合条件的函数表达式_________. 13.下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是 .14.如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为_________________.第14题图 第15题15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A'OB',其中点A'与点A 对应,点B'与点B 对应.若点A (-3,0),B (-1,2),则点A'的坐标为_______________,点B'的坐标为________________. 16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:(1O122602 2sin-⎛⎫--⎪⎝⎭18.解不等式组:52<3+47 22x xxx-⎧⎪⎨+≥⎪⎩19.已知x=2y,求代数式222112x xy yy x x y⎛⎫-+-÷⎪⎝⎭的值.20.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE. 求证:∠BCE=∠A+∠ACB.21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点A,与双曲线=kyx交于点B(m,2). (1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD 中,对角线BD 平分∠ABC ,过点A 作AE //BD ,交CD 的延长线于点E ,过点E 作EF ⊥BC ,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形; (2)若∠ABC =45°,BC =2,求EF 的长.24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图B根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=35,求AC的长.26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃ 时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环. 小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y 是时间x 的函数,其中y (单位:℃ )表示水箱中水的温度.x (单位:min )表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min 内14个时间点的温控水箱中水的温度y 随时间x 的变化情况m 的值为 ;(2)①当0≤x ≤4时,写出一个符合表中数据的函数解析式 ; 当4<x ≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy 中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x ≤32时,温度y 随时间x 变化的函数图象:(3) 如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源min .27.在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m + 1)x + m -5的图象与x 轴有两个公共点.(1)求m 的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y的取值范围是-6 ≤ y ≤ 4-n,求n的值;③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 + k,当x < 2时,y随x的增大而减小,求k的取值范围.28.在△ABC中,AB=BC,BD⊥AC于点D.(1)如图1,当∠ABC=90°时,若CE平分∠ACB,交AB于点E,交BD于点F.①求证:△BEF是等腰三角形;②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点A (-1 , 0).图2图1DCB AACB①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ; ②若点C (-5 , 0)是点A 关于y 轴,直线l 2:x =a 的二次对称点,则a 的值为 ; ③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4:x =b 的二次对称点,且点M '在射线(3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:的二次对称点,且点N '在y 轴上,求t 的取值范围.(0)3y x x =≥1y =+图1图2。

北京市西城区2016届九年级下学期第一次中考模拟考试数学试题解析(解析版)

北京市西城区2016届九年级下学期第一次中考模拟考试数学试题解析(解析版)

北京市西城区2016届九年级下学期第一次中考模拟考试数学试题一、选择题(本题共30分,每小题3分)1.64的立方根是( )A. ±8B. ±4C. 8D. 4【答案】D【解析】试题分析:根据34=64,则64的立方根为4.考点:立方根的计算.2.2014年11月北京主办了第二十二届APEC (亚太经合组织)领导人会议,“亚太经合组织”联通太平洋两岸,从地理概念上逐渐变成了一个拥有280000000人口的经济合作体,把“280000000”用科学记数法表示正确的是( )A .82810.⨯B .92810.⨯C .82810⨯D .72810⨯【答案】A【解析】试题分析:科学计数法是指a ×10n ,且1≤a <10,n 为原数的整数位数减一.考点:科学计数法.3.如右图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A B C D【答案】D【解析】试题分析:根据三视图的法则可得,这个立体图形的俯视图为D.考点:三视图.4.一名射击爱好者5次射击的中靶环数依次为:6,7,9,8,9,这5个数据的中位数是( )A .6B .7C .8D .9【答案】C【解析】试题分析:将这些数字从小到大排列起来则为6,7,8,9,9,则中位数为8.考点:中位数的计算.5.下列图形中,是中心对称图形的是( )A .B .C .D .【答案】A【解析】试题分析:中心对称图形是指将图形围绕一点旋转180°之后能与原图形完全重合.根据定义可得A 为中心对称图形.考点:中心对称图形.6.在函数y =中,自变量x 的取值范围是( )A .3x >B .3x ≥C .3x <D . 3x ≤【答案】B【解析】试题分析:二次根式的被开方数为非负数,则x -3≥0,解得:x ≥3.考点:二次根式的性质.7.一个不透明的口袋中,装有4个红球,3个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为( )A .18B .38C .21D .34【答案】C【解析】试题分析:摸到红球的概率=红球的数量÷球的总数量.考点:概率的计算.8.如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC ,则弦AB 的长为( )A .4B .6C .8D .10 A BCO【答案】C【解析】试题分析:连接OB ,则OB=5,根据Rt △OBC 的勾股定理得出BC=4,则AB=2BC=8.考点:垂径定理.9.若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( )A .30°B .60°C .90°D .120°【答案】B【解析】试题分析:根据外角可得这个多边形为六边形,则正多边形的中心角的度数为60°.考点:正多边形的性质.10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=6,BD=8,动点P 从点B 出发,沿着B-A-D 在菱形ABCD的边上运动,运动到点D 停止,点'P 是点P 关于BD 的对称点,'PP 交BD 于点M ,若BM=x ,'OPP △的面积为y ,则y 与x 之间的函数图象大致为( )M O P'PDB ACx y x y x y xyO O O OD A B C 483333848448【答案】D【解析】试题分析:根据题意可得:当x=0,x=4和x=8时,y=0,则排除A 和C ,当0<x <4和4<x <8时为抛物线,则选择D.考点:二次函数的性质.二、填空题(本题共18分,每小题3分)11.若2(2)0m ++= 则m n -= .【答案】-3考点:非负数的性质.12.质量检测部门对甲、乙两工厂生产的同样产品抽样调查,计算出甲厂的样本方差为0.99,乙厂的样本方差为1.22.由此可以推断出生产此类产品,质量比较稳定的是 厂.【答案】甲【解析】试题分析:方差越小,则说明成绩越稳定.考点:方差的作用.13.在综合实践课上,小明同学设计了如图测河塘宽AB 的方案:在河塘外选一点O ,连结AO ,BO ,测得18AO =m ,21BO =m ,延长AO ,BO 分别到D ,C 两点,使6OC =m ,7OD =m ,又测得5CD =m ,则河塘宽AB= m .DCB AO【答案】15【解析】 试题分析:根据题意可得:13OC OD AO BO ==,∠DOC=∠BOA ,则△OCD ∽△OAB ,则13CD AB =,则AB=15m. 考点:三角形相似的应用14.写出一个当自变量0x 时,y 随x 的增大而增大的反比例函数表达式 _____.【答案】y=-1x(答案不唯一) 【解析】试题分析:对于反比例函数,当k <0时,在每个象限内,y 随x 的增大而增大.考点:反比例函数的增减性.15.居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为 元.【答案】1446元.【解析】试题分析:本题需要将3000度点分成两部分进行计算,得出最后的答案.2880×0.48+(3000-2880)×0.53=1382.4+63.6=1446元考点:分段计算.16.规定:在平面直角坐标系xOy 中,“把某一图形先沿x 轴翻折,再沿y 轴翻折”为一次变化.如图,已知正方形ABCD ,顶点A(1,3),C(3,1).若正方形ABCD 经过一次上述变化,则点A 变化后的坐标为 ,如此这样,对正方形ABCD 连续做2015次这样的变化,则点D 变化后的坐标为 .yxA BC D O 1133【答案】(-1,-3);(-3,-3)【解析】试题分析:一次变换实际上就是做了中心对称,两次变换后回到原来的位置.则一次变换后A 的坐标为(-1,-3);经过2015次变换后点D 的坐标为(-3,-3)考点:规律题.三、解答题(本题共30分,每小题5分)17.计算:1012015452-⎛⎫+-︒ ⎪⎝⎭. 【答案】3【解析】试题分析:首先根据幂和二次根式、三角函数的计算法则求出各式的值,然后进行实数的加减法计算. 试题解析:原式==21+-=3考点:实数的计算.18.解不等式组:()4156,30.x x x ⎧->-⎨+>⎩【答案】-3<x <2【解析】试题分析:首先分别求出每个不等式的解,然后求出不等式组的解.试题解析:解不等式①得x <2 解不等式②得x >-3∴原不等式的解集为-3<x <2考点:不等式组的解法.19.如图,C ,D 为线段AB 上两点,且AC=BD ,AE ∥BF .AE=BF .求证:∠E=∠F .FA BCD E【答案】证明过程见解析【解析】试题分析:根据AC=BD 得出AD=BC ,根据平行线得出∠A=∠B ,结合AE=BF 得出△EAD 和△FBC 全等,从而得出答案.试题解析:∵AC=BD , ∴AD=BC .∵AE ∥BF , ∴∠A=∠B .又∵AE=BF ,∴△EAD ≌△FBC ,∴∠E=∠F .考点:三角形全等.20.已知3b a =-,求代数式22112aba b a ab b ⎛⎫⋅- ⎪-+⎝⎭的值. 【答案】-13【解析】 试题分析:首先将括号里面的分式进行通分,将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后利用整体代入的思想进行求解.试题解析:原式=()2abb a aba b -=⋅-1b a =- ∵3b a =-,∴3b a -=-, ∴原式1b a =-13=-. 考点:分式的化简求值. 21.已知关于x 的一元二次方程2320kx x --=有两个不相等的实数根.(1)、求k 的取值范围;(2)、若k 为小于2的整数,且方程的根都是整数,求k 的值.【答案】(1)、98k >-且0k ≠;(2)、k=-1. 【解析】试题分析:(1)、根据根的判别式和一元二次方程的定义求出k 的取值范围;(2)、根据取值范围得出k 的值,然后分别进行计算得出k 的值.试题解析:(1)、△=9+8k ∵方程2320kx x --=有两个不相等的实数根,∴9+80,0.k k >⎧⎨≠⎩ ∴98k >-且0k ≠ (2)、∵k 为不大于2的整数, ∴1k =-,1k =∴当1k =-时,方程2320x x ---=的根-1,-2都是整数;当1k =时,方程2320x x --= 综上所述,1k =-.考点:(1)、解一元二次方程;(2)、根的判别式.22.列方程或方程组解应用题:在练习100米跑步时,小丽为了帮助好朋友小云提高成绩,让小云先跑7.5秒后自己再跑,结果两人同时到达终点,这次练习中小丽的平均速度是小云的1.6倍,求小云这次练习中跑100米所用的时间.【答案】20秒.【解析】试题分析:首先设小云的时间为x 秒,则小丽的时间为(x -7.5)秒,根据题意列出分式方程进行求解,最后将得出的解进行验根得出答案.试题解析:设小云这次练习跑100米的时间为x 秒,则小丽的时间为(x -7.5)秒. 依题意,得1001001.67.5x x ⨯=-. 解得20x =. 经检验:20x =是所列方程的根,且符合实际意义答:小云这次练习跑100米的时间为20秒.考点:分式方程的应用.四、解答题(本题共20分,每小题5分)23.如图,平行四边形ABCD 中,点E 是AD 边上一点,且 CE ⊥BD 于点F ,将△DEC 沿从D 到A 的方向平移,使点D 与点A 重合,点E 平移后的点记为G .(1)、画出△DEC 平移后的三角形; (2)、若BC=BD=6,CE=3,求AG 的长.DCEB A F【答案】(1)、答案见解析;(2)考点:(1)、三角形全等;(2)、勾股定理;(3)、图像的平移.24.为了提倡“绿色”出行,顺义区启动了公租自行车项目,为了解我区居民公租自行车的使用情况,某校的社团把使用情况分为A (经常租用)、B (偶尔租用)、C (不使用)三种情况.先后在2015年1月底和3月底做了两次调查,并根据调查结果绘制成了如下两幅不完整的统计图:根据以上信息解答下列问题:(1)在扇形统计图中,A(经常租用)所占的百分比是;(2)求两次共抽样调查了多少人;并补全折线统计图;(3)根据调查的结果,请你谈谈从2015年1月底到2015年3月底,我区居民使用公租自行车的变化情况.【答案】(1)、20%;(2)、100人;答案见解析;(3)、常使用公租自行车的人数明显增多,从不使用的人数明显减少,说明大家越来越认识公租自行车的好处.【解析】试题分析:(1)、根据扇形统计图得出A所占的百分比;(2)、根据B的人数和比例求出总人数,然后画出图形;(3)、根据图形得出结论,只要符合题意即可.试题解析:(1)、20%;(2)、(24+32)÷56%=100(人)两次调查公租自行车使用情况折线统计图2015年3月底2015年1月底使用情况A B C20841216人数242832(3)、经常使用公租自行车的人数明显增多,从不使用的人数明显减少,说明大家越来越认识公租自行车的好处.考点:统计图.25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是BC 的中点,过点D 作⊙O 的切线,与AB ,AC 的延长线分别交于点E ,F ,连结AD .(1)求证:AF ⊥EF ; (2)若1tan 2CAD ∠=,AB=5,求线段BE 的长. EF DABCO【答案】(1)、证明过程见解析;(2)、53【解析】试题分析:(1)、连接OD 根据切线得出OD ⊥EF ,根据OA=OD 得出∠1=∠3,根据弧的中点得出∠1=∠2,则∠2=∠3,说明OD ∥AF ,得到切线;(2)、连接BD ,根据tan ∠CAD 的值得出tan ∠1的值,根据Rt △ADB 得出BD 和AD 的长度,根据平行得出△EDO 与△EFA 相似,设BE=x ,根据相似比得出x 的值. 试题解析:(1)、连结OD . ∵直线EF 与⊙O 相切于点D , ∴OD ⊥EF .∵OA = OD ,∴∠1=∠3.∵点D 为BC 的中点, ∴∠1=∠2,∴∠2=∠3,∴OD ∥AF ,∴AF ⊥EF .(2)、连结BD .∵1tan 2CAD ∠=, ∴1tan 12∠=在Rt △ADB 中,AB=5,∴AD=, 在Rt △AFD 中,可得DF=2,AF=4,∵OD ∥AF ,∴△EDO ∽△EFA ,∴OD OEAF AE=,又∵OD=2.5,设BE=x , ∴2.5 2.545x x +=+,∴53x =,即BE=53. 321OCBADF E EFDABCO123考点:(1)、圆的基本性质;(2)、三角形相似.26.阅读、操作与探究:小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:如图1,Rt △ABC 中,BC ,AC ,AB 的长分别为3,4,5,先以点B 为圆心,线段BA 的长为半径画弧,交CB 的延长线于点D ,再过D ,A 两点分别作AC ,CD 的平行线,交于点E .得到矩形ACDE ,则矩形ACDE 的邻边比为 .请仿照小亮的方法解决下列问题:(1)如图2,已知Rt △FGH 中,GH :GF :FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;(2)若已知直角三角形的三边比为()()()2221:2+2:2+21n n n n n ++(n 为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为 .图2图1HGFEDAB C【答案】(1)、1:2;2:3;(2)、n:(n+1). 【解析】试题分析:(1)、根据题意中的画法得出矩形的邻边之比;根据题意画出图形得出比值;(2)、根据直角三角形的三边长进行化简,得出比值. 试题解析:(1)、1:2;NMFG H 图22:3; (2)、()1n n +:考点:(1)、规律题;(2)、作图;(3)、操作与探究.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线21212y ax x a =+-+与y 轴交于C 点,与x 轴交于A ,B 两点(点A 在点B 左侧),且点A 的横坐标为-1. (1)求a 的值;(2)设抛物线的顶点P 关于原点的对称点为'P ,求点'P 的坐标;(3)将抛物线在A ,B 两点之间的部分(包括A , B 两点),先向下平移3个单位,再向左平移m (0m >)个单位,平移后的图象记为图象G ,若图象G 与直线'PP 无交点,求m 的取值范围.xyO22-2-2【答案】 (1)、a=-2;(2)、P ′(-1,-4);(3)、m >154【解析】试题分析:(1)、将点A 的坐标代入解析式求出a 的值;(2)、根据a 的值得出函数解析式,然后求出顶点坐标,根据原点对称的性质求出点P ′的坐标;(3)、根据题意得出直线PP ′的解析式,图象向下平移3个单位后,得出A ′和B ′的坐标,若图象G 与直线PP ′无交点,则B ′要左移到M 及左边,将y=3代入一次函数得出点M 的坐标,然后求出m 的取值范围. 试题解析:(1)、∵A (-1,0)在抛物线21212y ax x a =+-+上,∴12102a x a --+=,∴解得2a =- (2)、∴抛物线表达式为223y x x =-++. ∴抛物线223y x x =-++的顶点P 的坐标为(1,4). ∵点P 关于原点的对称点为'P ,∴'P 的坐标为(-1,-4). (3)、直线'PP 的表达式为4y x =,图象向下平移3个单位后,'A 的坐标为(-1,-3),'B 的坐标为(3,-3),若图象G 与直线'PP 无交点,则'B 要左移到M 及左边,令3y =-代入'PP ,则34x =-,M 的坐标为3,34⎛⎫-- ⎪⎝⎭xyMA'B'OP C B A P'∴315344B'M=⎛⎫--=⎪⎝⎭,∴154m >.考点:二次函数的综合应用.28.如图,△ABC 中,AB=AC ,点P 是三角形右外一点,且∠APB=∠ABC .(1)如图1,若∠BAC=60°,点P 恰巧在∠ABC 的平分线上,PA=2,求PB 的长; (2)如图2,若∠BAC=60°,探究PA ,PB ,PC 的数量关系,并证明; (3)如图3,若∠BAC=120°,请直接写出PA ,PB ,PC 的数量关系.图3图1图2ABCPABCPABC P【答案】(1)、BP=4;(2)、PA+PC=PB ,证明过程见解析;(3)PA+PC=PB 【解析】试题分析:(1)、根据题意得出△ABC 为等边三角形,根据点P 在∠ABC 的平分线上,则∠ABP=30°,根据∠PAB=90°得出BP=2AP ;(2)、在在BP 上截取PD ,使PD=PA ,连结AD ,证明△ABD 和△ACP 全等,从而得出PC=BD ,得出所求的答案;(3)、根据同样的方法得出线段之间的关系.试题解析:(1)、∵AB=AC ,∠BAC=60°,∴△ABC 是等边三角形,∠APB=∠ABC ,∴∠APB=60°, 又∵点P 恰巧在∠ABC 的平分线上,∴∠ABP=30°∴∠PAB=90°.∴BP=2AP ,∵AP=2,∴BP=4. (2)、结论:PA+PC=PB .在BP 上截取PD ,使PD=PA ,连结AD .12DABPC∵∠APB =60°,∴△ADP 是等边三角形,∴∠DAP =60°,∴∠1=∠2,PA=PD ,又∵AB=AC ,∴△ABD ≌△ACP ,∴PC=BD ,∴PA+PC=PB . (3)PA+PC=PB .12FDABCP考点:三角形全等.29.已知:如图1,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),根据对称性△AMB 恒为等腰三角形,我们规定:当△AMB 为直角三角形时,就称△AMB 为该抛物线的“完美三角形”.(1)①如图2,求出抛物线2y x =的“完美三角形”斜边AB 的长;②抛物线21y x +=与2y x =的“完美三角形”的斜边长的数量关系是 ; (2)若抛物线24y ax +=的“完美三角形”的斜边长为4,求a 的值;(3)若抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,且225y mx x+n =+-的最大值为-1,求m ,n 的值.xyxyxyy =x 2备用图1O图2(M )ABO 图1MBAO【答案】(1)、AB=2;相等;(2)、a=±12;(3)、34m =-,∴83n =. 【解析】试题分析:(1)、过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,设出点B 的坐标为(n ,-n),根据二次函数得出n 的值,然后得出AB 的值;(2)、根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B 的坐标,得出a 的值;(3)、根据最大值得出mn -4m -1=0,根据抛物线的完美三角形的斜边长为n 得出点B 的坐标,然后代入抛物线求出m 和n 的值.试题解析:(1)、①过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,AB ∥x 轴, 易证MN=BN ,设B 点坐标为(n ,-n ),代入抛物线2y x =,得2n n =, ∴1n =,0n =(舍去),∴抛物线2y x =的“完美三角形”的斜边2AB = ②相等;(2)、∵抛物线2y ax =与抛物线24y ax =+的形状相同, ∴抛物线2y ax =与抛物线24y ax =+的“完美三角形”全等,∵抛物线24y ax +=的“完美三角形”斜边的长为4,∴抛物线2y ax =的“完美三角形”斜边的长为4, ∴B 点坐标为(2,2)或(2,-2),∴12a=±. (3)、∵225y mx x+n =+-的最大值为-1,∴()45414m n m--=-,∴410mn m --=,∵抛物线225y mx x+n =+-的“完美三角形”斜边长为n , ∴抛物线2y mx =的“完美三角形”斜边长为n ,∴B 点坐标为,22n n ⎛⎫- ⎪⎝⎭,∴代入抛物线2y mx =,得222n n m ⎛⎫⋅=- ⎪⎝⎭,∴2mn =-(不合题意舍去), ∴34m =-,∴83n =考点:(1)、二次函数的综合应用;(2)、直角三角形的性质.。

西城区2015-2016学年度第一学期期末九年级数学试题参考答案

西城区2015-2016学年度第一学期期末九年级数学试题参考答案
∴方程 2x 2 4x k 0 有两个相等的实数根. ∴ (4) 2 4 2k 0 . ……………………………………………………1 分 解得 k 2 . …………………………………………………………………2 分 (2)∵抛物线C 1: y 1 2x 2 4x 2 2(x 1) 2,顶点坐标为(1,0),
即可,如:
15. (x 4)2 102 x2 . 16.直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线.
三、解答题(本题共 72 分,第 17﹣26 题,每小题 5 分,第 27 题 7 分,第 28 题 7 分,第
29 题 8 分)
17.解:原式= 4
3 2
设 AD=x,
第 3 页(共 9 页)
∵在 Rt△ADC 中,tan∠ACD=
AD ,∠ACD=58°, DC
∴DC=
x tan 58o .
………………………………………………………………3 分
∵DB= DC+ CB=AD,CB=90,

x tan 58o
+90=x.
……………………………………………………………4 分

∵ x 9 不符合题意,舍去,
∴ x 2 . ……………………………………………………………………………4

第 2 页(共 9 页)
答:人行通道的宽度是 2 米. ……………………………………………………5 分 22.解:(1)∵抛物线C 1: y 1 2x 2 4x k 与 x 轴有且只有一个公共点,
∵PD⊥AB 于点 D,
北京市西城区 2015— 2016 学年度第一学期期末试卷
九年级数学参考答案及评分标准 2016.1

2016年西城初三一模数学试卷与答案(适合打印)

2016年西城初三一模数学试卷与答案(适合打印)

一、选择题1.2016年春用科学计数法2.如图,实对应的点是 2题 3.如图,直于P ,若A .35°4.下列几何5.关于x 的A .92k <6.老北京的最少一块,多即现出白道儿一个商贩准备得到五块糖A .1107.李阿姨是步),将记录A .1.2,1.38.在数学实尺中,AOB ∠则此圆的直径A .17(本题共3-分春节假期期间法表示应为实数3−,x ( )A . 直线AB CD &120∠=°,则B .30何体中,主视 A 的一元二次方老行当中有一多的是三块或儿,按照上面备了10张质的纸条有2张 是一名健步走录结果绘制成3实践活动课中90B =°,将径约为(B .14西城区分,每小题间,我市接待( )A .,3,y 在数点MD ,直线EF 则2∠的度数是0°视图和俯视图 方程2132x +B .94k=一行叫做“抓或五块,再将面的白道儿数质地均匀的纸张.从中随机B .310走运动的爱好了如图所示B .1.4,1.3 中,小辉利用点O 放在圆 ) 4AC区2016.43分)下面各待旅游总人数9186×103 数轴上的对应B .点 3题 分别与AB是( )C .25°图都为矩形的B 0x k +=有两抓彩卖糖”:将纸条混合一数给糖. 纸条,其中能机抽取一张纸 好者,她用手机的统计图.在用自己制作的周上,分别确C .12EF4.26初三各题均有四个数达到9 186 B .9.186应点分别为点N,CD 交于点D .20°是() C 两个不相等的C .92k ≥商贩将高丽一起.游戏时得到一块糖纸条,恰好是C .15机软件记录了在每天所走的C .1.4,1.35一把“直角角确定OA ,OBBDP三一模数学个选项,其中000人次,比6×105 C M ,N ,C .点 6点E ,F ,F的实数根,则D 丽纸裁成许多叫儿童随意抽的纸条有5张是能得到三块 D 了某个月(3的步数这组数5D .1.3角尺”测量、B 与圆的交点D .10学试卷中只有一个..是比去年同期增.9.186×106 P ,Q ,这四P题 FP EF ⊥, D则k 的取值范.94k >小条,用矾水抽取一张,然张,能得到三块糖的纸条的.1230天)每天健数据中,众数和3,1.3、计算一些圆点C ,D ,读得是符合题意的增长1.9%.将 D .9.1四个数中绝对D .点且与BEF ∠范围是( 水在上面写上然后放入小水三块糖的纸条的概率是( 健步走的步骤和中位数分别圆的直径.如得数据OC 的. 将9 186 00086×107 对值最大的数QF 的平分线交) 上糖的块数,水罐中浸湿,条有3张,能 ) 骤(单位:万别是( )如图,直角角8=,OD =0数交能万 角9,9.某滑雪场平雪道一端D ,B 在同A .300米10.如图,在周,点Q 在图像大致是二、填空题11.分解因式12.在平面直13.已知函数一个符合上述14.已知:(1)求作(2)若: 147题 场举办冰雪嘉A 处的俯角同一直线上,在等边三角形线段AB 上,( )(本题共18式:3ab −直角坐标系x 数满足下列两述条件的函数O ,如图所示O :的内接正O 的半径为题嘉年华活动,为30°,另一则雪道AB B .1502米 形ABC 中,,且满足AQ 分,每小题4ab =_______xOy 中,将两个条件:①数的表达式_示.正方形(要求4,则它的内接采用直升机航一端B 处的俯的长度为(2AB =.动2Q AP +=题3分) _________.点()2,3−绕①当0x >时___________求尺规作图,接正方形的边A 8题 航拍技术拍摄俯角为45°. ) C .900米动点P 从点.设点P 运动绕原点O 旋转时,y 随x 的_____. 保留作图痕迹边长为_____15题摄活动盛况.若直升机镜D A 出发,沿三动的时间为转180D ,所得的增大而增大迹,不写作法___________ 9题如图,通过头C 处的高.(三角形边界按x ,AQ 的长得到的对应点大;②它的图法); _.1过直升机的镜度CD 为30300+)米按顺指针方向长为y ,则点的坐标为__象经过点(1,16题镜头C 观测水00米,点A 向匀速运动一y 与x 的函数_________.),2,请写出水,一数 出15.阅读下面如图,C 是方形ODEF 小云发现连接请回答:___________16.有这样一要求每一行从的位置时,三、解答题解答应写出文17.计算:18.已知a19.如图,在AB 平分E ∠20.解不等式面材料:是以点O 为圆F ,且点I ,接已知点得到小云所作___________一个数字游戏从左到右的数x 代表的数字(本题共72文字说明,演2sin 45+D230a −−=在ABC +中EAD .式组(+2352x ⎧⎪⎨+⎪⎩心,AB 为直F 在OC 上到两条线段,的两条线_______.戏,将1,数字逐渐增大字是 ,分,第17演算步骤或证(3π−−,求代数式,AB AC =)121x x x −≥−>−直径的半圆上上,点H ,便可证明I 段分别是2,3,4,5,大,每一列从此时按游戏—26题,每小证明过程.)02016−+()32a a −C ,AD 是B 4上一点,且C E 在半圆上IGFD =.__________6,7,8,从上到下的数戏规则填写空小题5分,第213−⎛⎞⎜⎟⎝⎠()2b a b −−+BC 边上的中CO AB ⊥,上,求证:IG _和_______9这九个数字数字也逐渐增空格,所有可第27题7分,)()a b −的值线,AE B ⊥在OC 两侧G FD =. _____,证明字分别填在如增大.当数字可能出现的结,第28题7值. BE 于点E ,侧分别作矩形IG FD=如图所示的九字3和4固定结果共有_____分,第29且12BE B =形OGHI 和正D 的依据九个空格中,定在图中所示____种. 题8分) BC .求证:正是示21.如图,在ABCD .中,过点A 作AE DC ⊥交DC 的延长线于点E ,过点D 作DF EA &交BA 的延长线于点F .(1)求证:四边形AEDF 是矩形;(2)连接BD ,若2AB AE ==,25tan FAD ∠=,求BD 的长.22.在平面直角坐标系xOy 中,直线314y x =+与x 轴交于点A ,且与双曲线k y x =的一个交点为8,3B m ⎛⎞⎜⎟⎝⎠. (1)求点A 的坐标和双曲线ky x=的表达式; (2)若BC y &轴,且点C 到直线314y x =+的距离为2,求点C 的纵坐标.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:1.如果选择在乐园内,会比住在乐园外少用一天的时间就能体验完他们感兴趣的项目; 2.一家三口住在乐园内的日均支出是住在乐园外的日均支出的1.5倍; 3.无论是住在乐园内还是乐园外,一家三口这次旅行的总费用都是9810元. 请问:如果小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩多少天?24.如图,在ABC +中,AB 是O :的直径,AC 与O :交于点D .点E 在p BD上,连接DE ,AE ,连接CE 并延长交AB 于点F ,AED ACF ∠=∠.D(1)求证:CF AB ⊥;(2)若4CD =,CB =,4cos 5ACF ∠=,求EF 的长.25.阅读下列材料:据报导,2014年北京市环境空气中PM 2.5年平均浓度为85.9微克/立方米,PM 2.5一级优天数达到93天,较2013年大辅度增加了22天.PM 2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京市环境空气中PM 2.5年平均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题.市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM 2.5一级优的天数增加了13天.2015年本市PM 2.5重污染天数占全年总天数的11.5%,其中在11—12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天. 根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为____________天;PM 2.5年平均浓度的国家标准限值是______________微克/立方米;(结果保留整数) (2)选择统计表或统计图,将2013—2015年PM 2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11—12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天”,他由此推断“2015年全年的PM 2.5重污染天数比2014年要多”,你同意他的结论吗?并说明你的理由.AB26.有这样一的四边形叫做小南根据学下面是小南(1)由筝形关于筝形的角请将下面证已知:如图求证:_____证明:由以上证明可(2)连接筝形,写出筝形(3)筝形的条对角线的并加以说明一个问题:如做筝形.请探习四边形的经的探究过程:形的定义可知角的性质,通明此猜想的过,在筝形AB___________可得,筝形的筝形的两条对形的其他性质的定义是判定四边形是筝形.如图,在四边探究筝形的性经验,对筝形:知,筝形的边通过测量,折过程补充完整BCD 中,A ___________ 的角的性质是对角线,探究质(一条即可定一个四边形形”是否成立边形ABCD 中性质与判定方形的性质和判边的性质是:折纸的方法,整;B AD =,C ___. 是:筝形有一究发现筝形的可):______形为筝形的方立,如果成立中,AB A =方法.判定方法进行筝形的两组邻猜想:筝形CB CD = 一组对角相等另一条性质____________法之一.试判立,请给出证AD ,CB =行了探究.邻边分别相等形有一组对角等.:筝形的一条___________判断命题“一证明:如果不成CD ,我们把等. 角相等. 条对角线平分___________一组对角相等成立,请举出把这种两组邻分另一条对角________. 等,一条对角出一个反例,邻边分别相等角线.结合图角线平分另一画出图形,等图一27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,.(1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE +的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.28.在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM +的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM +的形状,并加以证明;(3)点P ′与点P 关于直线AB 对称,且点P ′在线段BC 上,连接AP ′,若点Q 恰好在直线AP ′上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果)图1 图2 图3NAC DC29.在平面直形W 的“阳(1)如图①在(11,4P ②线段11A B 都会有11A B 为 (2)如图l y =:(3)如图是坐标平面最小值.直角坐标系x 阳光点”;如1,已知点A ),()21,2P AB &;1A 上的点成为 ;2,已知+上,3,M :的半内的两个动点xOy 中,对于如果线段OP ()13,,(1B ,()32,3P 1B 上的所有点为关于线段A 点(C ,且E :上的半径是3,点点,且M :于点P 和图形与图形W 有)1,,连接A ,()42,1P 这点都是关于线B 的“阳光点,C :与的所有点都是M 到原点的上的所有点形W ,如果线有公共点,则AB 这四个点中,线段AB 的“点”.若11A B y 轴相切于是关于C :的的距离为5.都是关于N Δ线段OP与图称点P 为关关于线段A “阴影点”,的长为4,且点D .若的“阴影点”点N 是:NQT 的“阴图形W 无公共关于图形W 的AB 的“阳光且当线段且点1A 在B E :的半径,求圆心M 上到原点距阴影点”,直共点,则称点的“阴影点”点”是 11A B 向上或向1的上方,则为32,圆E 的横坐标的距离最近的点直接写出NQ Δ点P 为关于图.; 向下平移时,则点1A 的坐标心E 在直的取值范围;点,点Q 和QT 的周长的图标线 T 的。

2016年北京市中考数学试卷(含答案解析)

2016年北京市中考数学试卷(含答案解析)

2016年北京市中考数学试卷一、选择题(本题共30分,每小题3分)1.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125° D.135°2.(3分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103 C.2.8×104D.0.28×1053.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b4.(3分)内角和为540°的多边形是()A. B.C.D.5.(3分)如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱6.(3分)如果a+b=2,那么代数(a﹣)•的值是()A.2 B.﹣2 C.D.﹣7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C. D.8.(3分)在1﹣7月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份9.(3分)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A 的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O410.(3分)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A.①③B.①④C.②③D.②④二、填空题(本题共18分,每小题3分)11.(3分)如果分式有意义,那么x的取值范围是.12.(3分)如图中的四边形均为矩形,根据图形,写出一个正确的等式.13.(3分)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:估计该种幼树在此条件下移植成活的概率为.14.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.15.(3分)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.16.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程17.(5分)计算:(3﹣π)0+4sin45°﹣+|1﹣|.18.(5分)解不等式组:.19.(5分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20.(5分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.(5分)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C 位于点D上方时,写出n的取值范围.22.(5分)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3)根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.(5分)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由.25.(5分)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26.(5分)已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x 轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28.(7分)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).29.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.2016年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125° D.135°【分析】由图形可直接得出.【解答】解:由图形所示,∠AOB的度数为55°,故选B.【点评】本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.2.(3分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103 C.2.8×104D.0.28×105【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:28000=1.1×104.故选:C.【点评】此题考查科学记数n法的表示方法,表示时关键要正确确定a的值以及n的值.3.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【分析】利用数轴上a,b所在的位置,进而得出a以及﹣b的取值范围,进而比较得出答案.【解答】解:A、如图所示:﹣3<a<﹣2,故此选项错误;B、如图所示:﹣3<a<﹣2,故此选项错误;C、如图所示:1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错误;D、由选项C可得,此选项正确.故选:D.【点评】此题主要考查了实数与数轴,正确得出a以及﹣b的取值范围是解题关键.4.(3分)内角和为540°的多边形是()A. B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.(3分)如果a+b=2,那么代数(a﹣)•的值是()A.2 B.﹣2 C.D.﹣【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:∵a+b=2,∴原式=•=a+b=2故选:A.【点评】此题考查了分式的化简求值,将原式进行正确的化简是解本题的关键.7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C. D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(3分)在1﹣7月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份【分析】根据图象中的信息即可得到结论.【解答】解:由图象中的信息可知,3月份的利润=7.5﹣5=2.5元,4月份的利润=6﹣3=3元,5月份的利润=4.5﹣2=2.5元,6月份的利润=3﹣1.2=1.8元,故出售该种水果每斤利润最大的月份是4月份,故选B.【点评】本题考查了象形统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价﹣进价是解题的关键.9.(3分)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A 的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O4【分析】先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.【解答】解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),∴,解得,∴直线AB为y=﹣x﹣2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知,沿CD方向为x轴正方向,沿CE方向为y轴正方向,故将点A沿着CD方向平移4个单位,再沿着EC方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.【点评】本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b决定了直线与y轴的交点位置.10.(3分)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A.①③B.①④C.②③D.②④【分析】利用条形统计图结合中位数的定义分别分析得出答案.【解答】解:①由条形统计图可得:年用水量不超过180m3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),×100%=80%,故年用水量不超过180m3的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m3的该市居民家庭有(0.15+0.15+0.05)=0.35(万),∴×100%=7%≠5%,故年用水量超过240m3的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120﹣150之间,故此选项错误;④由①得,该市居民家庭年用水量的平均数不超过180,正确,故选:B.【点评】此题主要考查了频数分布直方图以及中位数的定义,正确利用条形统计图获取正确信息是解题关键.二、填空题(本题共18分,每小题3分)11.(3分)如果分式有意义,那么x的取值范围是x≠1.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故答案为:x≠1.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.12.(3分)如图中的四边形均为矩形,根据图形,写出一个正确的等式am+bm+cm=m(a+b+c).【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.【解答】解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).【点评】此题主要考查了提取公因式法分解因式,正确利用矩形面积求出是解题关键.13.(3分)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:估计该种幼树在此条件下移植成活的概率为0.881.【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.881.故答案为:0.881;【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为3m.【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知,,即可得到结论.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m.答:路灯的高为3m.【点评】本题考查了中心投影,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.15.(3分)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为505.【分析】根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10.【解答】解:1~100的总和为:=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505.【点评】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.16.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.【点评】本题考查作图﹣基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程17.(5分)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣+|1﹣|的值是多少即可.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.18.(5分)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【分析】由平行四边形的性质得出AB∥CD,得出内错角相等∠E=∠BAE,再由角平分线证出∠E=∠DAE,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.【点评】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出∠E=∠DAE是解决问题的关键.20.(5分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.【点评】本题考查了根的判别式、解一元一次不等式以及用因式分解法解一元二次方程,解题的关键是:(1)根据根的个数结合根的判别式得出关于m的一元一次不等式;(2)选取m的值.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.21.(5分)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C 位于点D上方时,写出n的取值范围.【分析】(1)先求出点B坐标,再利用待定系数法即可解决问题.(2)由图象可知直线l1在直线l2上方即可,由此即可写出n的范围.【解答】解:(1)∵点B在直线l2上,∴4=2m,∴m=2,点B(2,4)设直线l1的表达式为y=kx+b,由题意,解得,∴直线l1的表达式为y=x+3.(2)由图象可知n<2.【点评】本题考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.22.(5分)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3)根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.【分析】首先根据题意分析家庭平均人数,进而利用加权平均数求出答案,再利用已知这300户家庭的平均人数均为3.4分析即可.【解答】解:小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:(2×3+3×11+4)÷15=2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.【点评】此题主要考查了抽样调查的可靠性以及加权平均数,正确理解抽样调查的随机性是解题关键.23.(5分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【分析】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【点评】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.24.(5分)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,。

2016年北京中考西城区初三一模数学试卷及答案

2016年北京中考西城区初三一模数学试卷及答案

北京市西城区2016年初三一模试卷数学 2016.4一、选择题(共10道小题,每小题3分,共30分)1.2016年春节假期期间,我市接待旅游总人数达到9186000人次,比去年同期增长1.9%.将9186000用科学计数法表示应为() A .9186×103B .9.186×105C .9.186×106D .9.186×1072.如图,实数3-,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最大的数对应的点是() A .点MB .点NC .点PD .点Q3.如图,直线CD AB //,直线EF 分别与AB ,CD 交于点E ,F ,FP EF ⊥,且与BEF ∠的平分线交于P ,若120∠=︒,则2∠的度数是()A .35°B .30°C .25°D .20°4.下列几何体中,主视图和俯视图都为矩形的是()ABCD5.关于x 的一元二次方程21302x x k ++=有两个不相等的实数根,则k 的取值范围是() A .92k <B .94k =C .92k ≥D .94k >6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是()A .110B .310C .15D .127.李阿姨是一名健步走运动爱好者,她用手机软件记录了某月(30天)每天健步走的步骤(单位:万步),将记录结果绘制成了突入所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A .1.2,1.3B .1.4,1.3C .1.4,1.35D .1.3,1.3ABCDE F128.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径.如图,直角角尺中,90AOB ∠=︒,将点O 放在圆周上,分别确定OA ,OB 与圆的交点C ,D ,读得数据8OC =,9OD =,则此圆的直径约为()A .17B .14C .12D .109.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C 观测水平雪道一端A 处的俯角为30°,另一端B 处的俯角为45°.若直升机镜头C 处的高度CD 为300米,点A ,D ,B 在同一直线上,则雪道AB 的长度为()A .300米B .1502米C .900米D .(300)米10.如图,在等边三角形ABC 中,2AB =.动点P 从点A 出发,沿三角形边界按顺时针方向匀速运动一周,点Q 在线段AB 上,且满足2AQ AP +=.设点P 运动的时间为x ,AQ 的长为y ,则y 与x 的函数图像大致是()A .B .C .D .二、填空题(本题共18分,每小题3分)11.分解因式:34ab ab -=_______________.12.在平面直角坐标系xOy 中,将点()2,3-绕原点O 旋转180o,所得到的对应点的坐标为________.13.已知函数满足下列两个条件:①当0x >时,y 随x 的增大而增大;②它的图象经过点()1,2,请写出 一个符合上述条件的函数的表达式_______________. 14.已知⊙O ,如图所示.(1)求作⊙O 的内接正方形(要求尺规作图....,保留作图痕迹,不写作法); (2)若⊙O 的半径为4,则它的内接正方形的边长为________.ABOCD15.阅读下面材料:如图,C 是以点O 为圆心,AB 为直径的半圆上一点,且CO AB ⊥,在OC 两侧分别作矩形OGHI 和正方形ODEF ,且点I ,F 在OC 上,点H ,E 在半圆上,求证:IG FD =.小云发现连接已知点得到两条线段,便可证明IG FD =.请回答:小云所作的两条线段分别是__________和___________, 证明IG FD =的依据是________________________________________.16.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_________种.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()212sin 45320163π-⎛⎫--+ ⎪⎝⎭o18.已知:230a a --=,求代数式()()()232a a b a b a b ---+-的值.19.如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,AE BE ⊥于点E ,且12BE BC =. 求证:AB 平分EAD ∠.20.解不等式组()+21243512x x x x -≥-⎧⎪⎨+>-⎪⎩ABCDE21.如图,在□ABCD 中,过点A 作AE DC ⊥交DC 的延长线于点E ,过点D 作EA DF //交BA 的延长线于点F .(1)求证:四边形AEDF 是矩形;(2)连接BD ,若2AB AE ==,25tan FAD ∠=,求BD 的长.22.在平面直角坐标系xOy 中,直线314y x =+与x 轴交于点A ,且与双曲线ky x =的一个交点为8,3B m ⎛⎫⎪⎝⎭. (1)求点A 的坐标和双曲线ky x=的表达式; (2)若y BC //轴,且点C 到直线314y x =+的距离为2,求点C 的纵坐标.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:ABCDFE24.如图,在ABC ∆中,AB 是⊙O 的直径,AC 与⊙O 交于点D .点E 在⋂BD 上,连接DE ,AE ,连接CE 并延长交AB 于点F ,AED ACF ∠=∠. (1)求证:CF AB ⊥;(2)若4CD =,CB =4cos 5ACF ∠=,求EF 的长.25.阅读下列材料:据报导,2014年北京市环境空气中PM 2.5年平均浓度为85.9微克/立方米,PM 2.5一级优天数达到93天,较2013年大辅度增加了22天.PM 2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京市环境空气中PM 2.5年平均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题.市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM 2.5一级优的天数增加了13天.2015年本市PM 2.5重污染天数占全年总天数的11.5%,其中在11-12月中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天. 根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为____________天;PM 2.5年平均浓度的国家标准限值是______________微克/立方米;(结果保留整数)(2)选择统计表或.统计图,将2013—2015年PM 2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11—12月当中发生重污染22天,占11月和12月天数的36%与去年同期相比增加15天”,他由此推断“2015年全年的PM 2.5重污染天数比2014年要多”,你同意他的结论吗?并说明你的理由.26.有这样一个问题:如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究. 下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整;已知:如图,在筝形ABCD 中,AB AD =,CB CD = 求证:___________________________.A证明由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):___________________________________________________________________.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,.(1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE ∆的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.28.在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM ∆的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM ∆的形状,并加以证明;(3)点P '与点P 关于直线AB 对称,且点P '在线段BC 上,连接AP ',若点Q 恰好在直线AP '上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果)NA DC图1图2 备用图29.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”.(1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段的“阳光点”是______________;②线段AB B A //11;11A B 上的所有点都是关于线段AB 当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB “阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为___________________;(2)如图2,已知点()13C ,,⊙C 与y 轴相切于点D .若⊙E 的半径为32,圆心E 在直线l y =+:E 上的所有点都是关于⊙C 的“阴影点”,求点E 的横坐标的取值范围;(3)如图3,⊙M 的半径是3,点M 到原点的距离为5.点N 是⊙M 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且⊙M 上的所有点都是关于NQT ∆的“阴影点”,直接写出NQT ∆的周长的最小值.图2图311xx1图。

初中数学北京市西城区初三一模数学考试卷及答案

初中数学北京市西城区初三一模数学考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:的相反数是A.6 B.C.D.试题2:国家体育场“鸟巢”建筑面积达258 000平方米,258 000用科学记数法表示应为A.2.58×103B.25.8×104C.2.58×105D.258×103试题3:正五边形各内角的度数为A.72° B.108°C.120° D.144°试题4:抛掷两枚质地均匀的硬币,两枚硬币落地后,正面都朝上的概率是A. B.C. D.试题5:如图,过上一点作的切线,交直径的延长线于点D. 若∠D=40°,则∠A的度数为A.20°B.25°C.30°D.40°试题6:某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是A.众数是9 B.中位数是9 C.平均数是9 D.锻炼时间不低于9小时的有14人试题7:由个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则的最大值是A.16 B.18 C.19 D.20试题8:对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,}=.若关于x的函数y = min{,}的图象关于直线对称,则a、t的值可能是A.3,6 B.2,C.2,6 D.,6试题9:函数中,自变量x的取值范围是.试题10:分解因式:= .试题11:如图,正方形ABCD的面积为3,点E是DC边上一点,DE=1,将线段AE绕点A旋转,使点E落在直线BC上,落点记为F,则FC的长为 .试题12:如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B与点C重合,折痕与AB、BC的交点分别为D、E. (1) DE的长为;(2) 将折叠后的图形沿直线AE剪开,原纸片被剪成三块,其中最小一块的面积等于.试题13:计算:.试题14:解不等式组并求它的所有的非负整数解.试题15:如图,在△ABC中,AB=CB,∠ABC=90º,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE 、DE、DC.(1) 求证:△ABE≌△CBD ;(2) 若∠CAE=30º,求∠BCD的度数.试题16:已知,其中a不为0,求的值.试题17:平面直角坐标系xOy中,反比例函数y=x/k 的图象经过点,过点A作AB⊥x轴于点B,△AOB的面积为1.(1) 求m和k的值;(2) 若过点A的直线与y轴交于点C,且∠ACO=45°,直接写出点C的坐标.试题18:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场. 现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.试题19:为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款户数的比为1 : 5.捐款户数分组统计图2捐款户数分组统计图1捐款户数分组统计表户数组别捐款额(x)元A 1≤x<100 aB 100≤x<200 10C 200≤x<300D 300≤x<400E x≥400请结合以上信息解答下列问题.(1) a=,本次调查样本的容量是;(2) 先求出C组的户数,再补全“捐款户数分组统计图1”;(3) 若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?试题20:如图,梯形ABCD中,AD∥BC,,BC=2,,.(1) 求∠BDC的度数;(2) 求AB的长.试题21:如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.(1) 求点O到BD的距离及∠OBD的度数;(2) 若DE=2BE,求的值和CD的长.试题22:阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1) 图2中∠BPC的度数为;(2) 如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.图1图2图3试题23:已知关于x的一元二次方程的一个实数根为 2.(1) 用含p的代数式表示q;(2) 求证:抛物线与x轴有两个交点;(3) 设抛物线的顶点为M,与y轴的交点为E,抛物线顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值.试题24:已知:在如图1所示的锐角三角形ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.(1) 求证:BF∥AC;(2) 若AC边的中点为M ,求证:;(3) 当AB=BC时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论.图1图2试题25:平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点A的坐标为(1, 0),OB=OC,抛物线的顶点为D.(1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;(3) Q为线段BD上一点,点A 关于∠AQB 的平分线的对称点为,若,求点Q的坐标和此时△的面积.试题1答案:A试题2答案:C试题3答案:B试题4答案:C试题5答案:B试题6答案:D试题7答案:B试题8答案:C试题9答案:x≥-2试题10答案:试题11答案:试题12答案:4,4试题13答案:解:原式=…………………………………………………………4分=.…………………………………………………………………… 5分试题14答案:解:由①得.……………………………………………………………………1分由②得x≤.……………………………………………………………………3分∴原不等式组的解集是-2< x≤.………………………………………………4分∴它的非负整数解为0,1,2.………………………………………………… 5分试题15答案:(1)证明:如图1.∵∠ABC=90º,D为AB延长线上一点,∴∠ABE=∠CBD=90º . …………………………………………………1分在△ABE和△CBD中,∴△ABE≌△CBD.…………………… 2分(2)解:∵AB=CB,∠ABC=90º,∴∠CAB=45°. …….…………………… 3分又∵∠CAE=30º,∴∠BAE =15°. ……………………………………………………………4分∵△ABE≌△CBD,∴∠BCD=∠BAE =15°. ……………………………………………………5分试题16答案:解:原式= =. ..….….….….….……………………3分∵2a+b=0,∴.……………………………………………………………………… 4分∴原式=.∵a不为0,∴原式=. ..….….….….……………………………………………………… 5分试题17答案:解:(1)∵反比例函数的图象经过点,∴,且m>0.∵AB⊥x轴于点B,△AOB的面积为1,∴.解得. ……………………………………………………………… 1分∴点A的坐标为. ………………………………………………… 2分∴. …………………………………………………………… 3分(2)点C的坐标为(0,3)或(0,-1). ……………………………………………… 5分试题18答案:解:设甲工厂每天能加工件新产品,则乙工厂每天能加工1.5件新产品.依题意得. ……………………………………………………2分解得. …………………………………………………………………… 3分经检验,是原方程的解,并且符合题意.…………………………… 4分∴.答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ……………5分试题19答案:解:(1)2,50;…………………………………2分(2),C组的户数为20. … 3分补图见图2.…………………………4分(3)∵,∴根据以上信息估计,全社区捐款不少于300元的户数是180.……………………………… 5分试题20答案:解:(1)∵梯形ABCD 中,AD∥BC,,,∴,.在Rt △ABD中,∵,,∴.∴.…… 2分(2)作于点E,于点F.(如图3)在Rt△BCE中,∵BC=2,,∴,.∵,∴.∴.…………………………………………… 3分∵,∴.…………………………… 4分∵AD∥BC,,,∴.…………………………………………………… 5分试题21答案:解:(1)作于点F,连结OD.(如图4)∵∠BAD=60°,∴∠BOD=2∠BAD =120°.又∵OB=OD,∴.∵AC为⊙O的直径,AC=4,∴OB= OD= 2.在Rt△BOF中,∵∠OFB=90°,OB=2,,∴,即点O到BD的距离等于1.(2)∵OB= OD,于点F,∴BF=DF.由DE=2BE,设BE=2x,则DE=4x,BD=6x,EF=x,BF=3x.∵,∴,EF=.在Rt△OEF中,,∵,∴,.…………………………………… 4分∴.∴.∴.∴.…………………………………………………5分试题22答案:解:(1)135°;………………………………………………………………………… 2分(2)120°;………………………………………………………………………… 3分.……………………………………………………………………… 5分试题23答案:解:(1)∵关于x的一元二次方程的一个实数根为 2,∴.……………………………………………………1分整理,得.…………………………………………………… 2分(2)∵,无论p取任何实数,都有≥0,∴无论p取任何实数,都有.∴.………………………………………………………………… 3分∴抛物线与x轴有两个交点.…………………………4分(3)∵抛物线与抛物线的对称轴相同,都为直线,且开口大小相同,抛物线可由抛物线沿y轴方向向上平移一个单位得到,(如图5所示,省略了x轴、y轴)∴EF∥MN,EF=MN=1.∴四边形FEMN是平行四边形.………………5分由题意得.解得.………………………………………7分试题24答案:证明:(1)如图6.∵点B关于直线CH的对称点为D,CH⊥AB于点H,直线DE交直线CH于点F,∴BF=DF,DH=BH.∴∠1=∠2.又∵∠EDA=∠A,∠EDA=∠1,∴∠A=∠2.∴BF∥AC.(2)取FD的中点N,连结HM、HN.∵H是BD的中点,N是FD的中点,∴HN∥BF.由(1)得BF∥AC,∴HN∥AC,即HN∥EM.∵在Rt△ACH中,∠AHC=90°,AC边的中点为M,∴.∴∠A=∠3.∴∠EDA=∠3.∴NE∥HM.∴四边形ENHM是平行四边形∴HN=EM.∵在Rt△DFH中,∠DHF=90°,DF的中点为N,∴,即.∴.………………………………………………………… 4分(3)当AB=BC时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE相等的线段是EF和CE.(只猜想结论不给分)证明:连结CD.(如图8)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴,AB=CD.①∵∠EDA=∠A,∴,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴.∵,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.………………………………………5分∴BE= CE.……………………………………………………………… 6分由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC 可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.……………………………………………………………… 7分∴BE=EF=CE.(阅卷说明:在第3问中,若仅证出BE=EF或BE=CE只得2分)试题25答案:解:(1)∵,∴抛物线的对称轴为直线.∵抛物线与x轴交于点A、点B,点A的坐标为,∴点B的坐标为,OB=3.…………… 1分可得该抛物线的解析式为.∵OB=OC,抛物线与y轴的正半轴交于点C,∴OC=3,点C的坐标为.将点C的坐标代入该解析式,解得a=1.……2分∴此抛物线的解析式为.(如图9)(2)作△ABC的外接圆☉E,设抛物线的对称轴与x轴的交点为点F,设☉E与抛物线的对称轴位于x轴上方的部分的交点为点,点关于x轴的对称点为点,点、点均为所求点.(如图10)可知圆心E必在AB边的垂直平分线即抛物线的对称轴直线上.∵、都是弧AB所对的圆周角,∴,且射线FE上的其它点P都不满足.由(1)可知∠OBC=45°,AB=2,OF=2.可得圆心E也在BC边的垂直平分线即直线上.∴点E的坐标为.………………………………………………… 4分∴由勾股定理得.∴.∴点的坐标为.…………………………………………… 5分由对称性得点的坐标为.……………………………… 6分∴符合题意的点P的坐标为、.(3)∵点B、D的坐标分别为、,可得直线BD的解析式为,直线BD与x轴所夹的锐角为45°.∵点A关于∠AQB的平分线的对称点为,(如图11)若设与∠AQB的平分线的交点为M,则有,,,Q,B,三点在一条直线上.∵,∴作⊥x轴于点N.∵点Q在线段BD上,Q,B,三点在一条直线上,∴,.∴点的坐标为.∵点Q在线段BD上,∴设点Q的坐标为,其中.∵,∴由勾股定理得.解得.经检验,在的范围内.∴点Q的坐标为.…………………………………………… 7分此时.… 8分。

西城区初三一模数学试题及答案.doc

西城区初三一模数学试题及答案.doc

参考答案一、选择题ACAB CCDB二、填空题 9.2(3)y x - 10.8 11.①③ 12.5;5n三、解答题13.12-14.-3<x ≤1;3x =不是其解 15.2y x =-+;1AOP S =16.略17.由根的判别式得22b a =,代入原式化简得2 18.(1)300;60;99;132;9 (2)72°19.抢险车20km/时,吉普车30km/时。

注意分式方程要检验20.(1)BN=5;(2)163(25)922S =+⨯=21.(1)连接BO ,证明略;(2)易证△ABO 为正三角形,于是∠E=∠C=30°,所以△BFE ∽△AFC由cos ∠BFA=23BF AF =设△AOC 面积为S ,因此有239()824S ==,解得S=18 22.(1)1:2;121 (2)正三角形、正六边形 (3)如图A 3A 2A 1A23.略24.(1)30°;60°(2)2182y x =-+;(3)5个;222(3,)33;222(3,)33-;416(3,)33- 25.(1)如图,PEFC ABD过点E 作EF ⊥AE ,使EF=BD ,构造全等三角形,易证△DCA ≌△AEF (SAS )从而△AFD 是等腰直角三角形 再利用四边形EFDB 是平行四边形得EB ∥FD ,于是∠APE=∠ADF=45° (2)如图FPEDCAB方法同(1),构造相似,判断含30°的直角三角形,从而得∠APE 是30°注:本试卷答案仅为参考答案,系本人仓促间所作,错漏之处请批评指正。

另外本人对23题存有异议,故答案暂略。

西城区初三一模数学试题及答案

西城区初三一模数学试题及答案

西城区初三一模数学试题及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998参考答案一、选择题ACAB CCDB二、填空题9.2(3)y x -11.①③;5n三、解答题 13.12-14.-3<x ≤1;x =15.2y x =-+;1AOP S =16.略17.由根的判别式得22b a =,代入原式化简得218.(1)300;60;99;132;9(2)72° 19.抢险车20km/时,吉普车30km/时。

注意分式方程要检验20.(1)BN=5;(2)163(25)922S =+⨯=21.(1)连接BO ,证明略;(2)易证△ABO 为正三角形,于是∠E=∠C=30°,所以△BFE ∽△AFC由cos ∠BFA=23BF AF = 设△AOC 面积为S ,因此有239()824S ==,解得S=18 22.(1)1:2;121(2)正三角形、正六边形 (3)如图23.略 24.(1)30°;60°(2)2182y x =-+;(3)5个;22)3;22()3;16()3 25.(1)如图,EF CD过点E 作EF ⊥AE ,使EF=BD ,构造全等三角形,易证△DCA ≌△AEF (SAS )从而△AFD 是等腰直角三角形再利用四边形EFDB 是平行四边形得EB ∥FD ,于是∠APE=∠ADF=45° (2)如图F C方法同(1),构造相似,判断含30°的直角三角形,从而得∠APE是30°注:本试卷答案仅为参考答案,系本人仓促间所作,错漏之处请批评指正。

另外本人对23题存有异议,故答案暂略。

北京市各区2016年中考数学一模汇编抛物线

北京市各区2016年中考数学一模汇编抛物线

309教育网
309教育资源库 北京市2016年各区中考一模汇编
抛物线
1.【2016西城一模,第27题】
在平面直角坐标系xOy 中,抛物线2
1C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,.
(1)求抛物线1C 的表达式;
(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE ∆的面积为214
. ①求m 的值;
②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴
只有一个公共点,结合函数的图象,求n 的取值范围.
2.【2016丰台一模,第27题】 已知抛物线21(2)262
y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .
(1)求m 的值;
(2)求A ,B ,C 三点的坐标;
(3)过点C 作直线l ∥x 轴,将该抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余
部分保持不变,得到一个新的图象,记为G .请你结合图象回答: 当直线b x y +21=
与图象G 只有一个公共点时,求b 的取值范围.
3.【2016平谷一模,第26题】
我们知道对于x 轴上的任意两点1(,0)A x ,
AB =12x x -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1北京市西城区2016年初三一模试卷 数学 2016.4一、选择题(共10道小题,每小题3分,共30分)1.2016年春节假期期间,我市接待旅游总人数达到9186000人次,比去年同期增长1.9%.将9186000有科学计数法表示应为()A .9186×103B .9.186×105C .9.186×106D .9.186×1072.如图,实数3-,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最大的数对应的点是()A .点MB .点NC .点PD .点Q3.如图,直线AB CD P ,直线EF 分别与AB ,CD 交于点E ,F ,FP EF ⊥,且与BEF ∠的平分线交于P ,若120∠=︒,则2∠的度数是()A .35°B .30°C .25°D .20°4.下列几何体中,主视图和俯视图都为矩形的是()ABCD5.关于x 的一元二次方程21302x x k ++=有两个不相等的实数根,则k 的取值范围是() A .92k <B .94k =C .92k ≥D .94k >6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是()A .110B .310C .15D .127.李阿姨是一名健步走运动爱好者,她用手机软件记录了某月(30天)每天健步走的步骤(单位:万步),将记录结果绘制成了突入所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A .1.2,1.3B .1.4,1.3C .1.4,1.35D .1.3,1.328.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径.如图,直角角尺中,90AOB ∠=︒,将点O 放在圆周上,分别确定OA ,OB 与圆的交点C ,D ,读得数据8OC =,9OD =,则此圆的直径约为()A .17B .14C .12D .109.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C 观测水平雪道一端A 处的俯角为30°,另一端B 处的俯角为45°.若直升机镜头C 处的高度CD 为300米,点A ,D ,B 在同一直线上,则雪道AB 的长度为()A .300米B .1502米C .900米D .(300)米10.如图,在等边三角形ABC 中,2AB =.动点P 从点A 出发,沿三角形边界按顺指针方向匀速运动一周,点Q 在线段AB 上,且满足2AQ AP +=.设点P 运动的时间为x ,AQ 的长为y ,则y 与x 的函数图像大致是()3A .B .C .D .二、填空题(本题共18分,每小题3分) 11.分解因式:34ab ab -=_______________.12.在平面直角坐标系xOy 中,将点()2,3-绕原点O 旋转180o ,所得到的对应点的坐标为__________. 13.已知函数满足下列两个条件:①当0x >时,y 随x 的增大而增大;②它的图象经过点()1,2,请写出一个符合上述条件的函数的表达式_______________. 14.已知O e ,如图所示.(1)求作O e 的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2)若O e 的半径为4,则它的内接正方形的边长为_______________.15.阅读下面材料:如图,C 是以点O 为圆心,AB 为直径的半圆上一点,且CO AB ⊥,在OC 两侧分别作矩形OGHI 和正方形ODEF ,且点I ,F 在OC 上,点H ,E 在半圆上,求证:IG FD =.小云发现连接已知点得到两条线段,便可证明IG FD =.请回答:小云所作的两条线段分别是__________和___________,证明IG FD =的依据是___________________________.16.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是,此时按游戏规则填写空格,所有可能出现的结果共有__________________种.4三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()212sin 45320163π-⎛⎫--+ ⎪⎝⎭o18.已知:230a a --=,求代数式()()()232a a b a b a b ---+-的值.19.如图,在ABC V 中,AB AC =,AD 是BC 边上的中线,AE BE ⊥于点E ,且12BE BC =.求证:AB 平分EAD ∠.20.解不等式组()+21243512x x x x -≥-⎧⎪⎨+>-⎪⎩21.如图,在ABCD Y 中,过点A 作AE DC ⊥交DC 的延长线于点E ,过点D 作DF EA P 交BA 的延长线于点F .(1)求证:四边形AEDF 是矩形;(2)连接BD ,若2AB AE ==,25tan FAD ∠=,求BD 的长.D522.在平面直角坐标系xOy 中,直线314y x =+与x 轴交于点A ,且与双曲线ky x=的一个交点为8,3B m ⎛⎫⎪⎝⎭. (1)求点A 的坐标和双曲线ky x=的表达式; (2)若y BC //轴,且点C 到直线314y x =+的距离为2,求点C 的纵坐标.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游24.如图,在ABC V 中,AB 是O e 的直径,AC 与O e 交于点D .点E 在»BD上,连接DE ,AE ,连接CE 并延长交AB 于点F ,AED ACF ∠=∠. (1)求证:CF AB ⊥;(2)若4CD =,CB =4cos 5ACF ∠=,求EF 的长. B25.阅读下列材料:据报导,2014年北京市环境空气中PM 2.5年平均浓度为85.9微克/立方米,PM 2.5一级优天数达到93天,较2013年大辅度增加了22天.PM 2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京市环境空气中PM 2.5年平均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题.市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM 2.5一级优的天数增加了13天.2015年本市PM 2.5重污染天数占全年总天数的11.5%,其中在11-12月中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题:6(1)2014年本市空气质量达标天数为____________天;PM 2.5年平均浓度的国家标准限值是______________微克/立方米;(结果保留整数)(2)选择统计表或.统计图,将2013—2015年PM 2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11—12月当中发生重污染22天,占11月和12月天数的36%与去年同期相比增加15天”,他由此推断“2015年全年的PM 2.5重污染天数比2014年要多”,你同意他的结论吗?并说明你的理由.26.有这样一个问题:如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究. 下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整;已知:如图,在筝形ABCD 中,AB AD =,CB CD = 求证:___________________________. 证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):___________________________________________________________________.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,.(1)求抛物线1C 的表达式;7(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE V 的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.28.在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM V 的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM V 的形状,并加以证明;(3)点P '与点P 关于直线AB 对称,且点P '在线段BC 上,连接AP ',若点Q 恰好在直线AP '上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果)NA DC图1图2图3829.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是; ②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为___________________;(2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E在直线l y =+:E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围; (3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT ∆的“阴影点”,直接写出NQT ∆的周长的最小值.xx11图1图2图3910111213141516。

相关文档
最新文档