七年级下学期5月份月考数学试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期5月份月考数学试题含解析
一、选择题
1.二元一次方程组2
2x y x y +=⎧⎨-=-⎩
的解是( )
A .0
2
x y =⎧⎨
=-⎩
B .0
2
x y =⎧⎨
=⎩
C .2
x y =⎧⎨
=⎩
D .2
0x y =-⎧⎨
=⎩
2.已知关于x 、y 的二元一次方程组356
310x y x ky +=⎧⎨+=⎩
给出下列结论:①当5k =时,此方程
组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何
值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③
B .①③
C .②③
D .①②
3.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )
A .19分
B .20分
C .21分
D .22分
4.若二元一次方程组,
3x y a x y a
-=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,则a 为
( ) A .3 B .5 C .7 D .9
5.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩
==是方程410x y +=的解
的有( ) A .1个
B .2个
C .3个
D .4个
6.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,可列出方程组为( )
A .400
27
40034x y x y -=⎧⎪⎨+=⎪⎩ B .400
34
40027x y x y =+⎧⎪⎨-=⎪⎩ C .40024
4003
7x y x y -=⎧⎪⎨-=⎪⎩ D .40037
4002
4x y x y -=⎧⎪⎨-=⎪⎩ 7.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有( )
A .4种
B .5种
C .6种
D .7种
8.方程组22{?23
x y m
x y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )
A .m >1
B .m <1
C .m >-1
D .m <-1
9.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )
A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩
B .()3
12646
x y x y ⎧+=⎪⎨⎪-=⎩
C .()()3
1264456x y x y ⎧+=⎪⎨⎪-=⎩
D .()()3
1264364
x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩
10.已知方程组222
x y k
x y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )
A .4
B .﹣2
C .﹣4
D .2
二、填空题
11.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 12.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.
13.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.
14.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若
()()()
()222
2
123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.
15.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.
16.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是
快船的静水速度的____倍.
17.已知关于x 、y 的方程组343x y a
x y a +=-⎧-=⎨⎩
,其中31a -≤≤,有以下结论:①当2
a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)
18.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 19.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .
20.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则
1
3
※b =__________. 三、解答题
21.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.
(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?
(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)
(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?
22.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量
单位:元/吨
(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.
(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.
(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.
23.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:
根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.
(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;
(2)求参加活动的总人数;
(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.
24.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ;
(2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线2
6t x hy +=的两个亮点,求方程
()
22
144265t x t h y ⎛⎫+-++= ⎪⎝⎭
中,x y 的最小的正整数解;
(3)已知,m n 是实数, 27n =,若)
P
n 是隐线23x y s -=的一个亮点,求
隐线s 中的最大值和最小值的和. 25.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3
x y z
M x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}1234
1,2,333
M -++-=
=,{}min 1,2,31-=- 请用以上材料解决下列问题:
(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;
②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使
{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存
在,请求出a ,b ,c 的值;若不存在,请说明理由.
26.已知1
2
x y =⎧⎨=⎩是二元一次方程2x y a +=的一个解.
(1)a=__________;
(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x ,y),如果过其中任意两点作直线,你有什么发现? x
0 1
3
y
6
2
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B
解析:B 【解析】
分析:方程组利用加减消元法求出解即可. 详解:22x y x y +⎧⎨
--⎩
=①
=②,
①+②得:2x=0, 解得:x=0,
把x=0代入①得:y=2, 则方程组的解为0
2
x y ⎧⎨⎩==, 故选B .
点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
2.A
解析:A 【分析】
根据二元一次方程组的解法逐个判断即可. 【详解】
当5k =时,方程组为356
3510
x y x y +=⎧⎨
+=⎩,此时方程组无解
∴结论①正确
由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:23
45x y ⎧=⎪⎪⎨⎪=⎪⎩
把23
x =
,45y =代入310x ky +=得24
31035k ⨯+=
解得10k =,则结论②正确
解方程组356310x y x ky +=⎧⎨+=⎩得:202315
45x k y k ⎧
=-⎪⎪-⎨⎪=⎪-⎩

k 为整数
x 、y 不能均为整数
∴结论③正确
综上,正确的结论是①②③ 故选:A . 【点睛】
本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.
3.A
解析:A 【分析】
设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案. 【详解】
解:设投中外环得x 分,投中内环得y 分,根据题意得
2321
417x y x y +=⎧⎨
+=⎩
, 解得:35x y =⎧⎨=⎩

32332519x y ∴+=⨯+⨯=分
即小颖得分为19分, 故选A . 【点睛】
本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.
4.C
解析:C 【分析】
先用含a 的代数式表示x 、y ,即解关于x 、y 的方程组,再代入3570x y --=中即可求解. 【详解】
解:解方程组3x y a x y a -=⎧⎨+=⎩,得2x a
y a =⎧⎨=⎩

把x =2a ,y=a 代入方程3570x y --=,得6570a a --=,
解得:a =7. 故选C. 【点睛】
本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a 看成已知,通过解关于x 、y 的方程组,得到x 、y 与a 的关系.
5.B
解析:B 【详解】 解:把①2
2x y ==⎧⎨⎩
代入得左边=10=右边; 把②2
{
1
x y ==代入得左边=9≠10;
把③
2
{
2
x
y
=
=-
代入得左边=6≠10;
把④
1
{
6
x
y
=
=
代入得左边=10=右边;
所以方程4x+y=10的解有①④2个.故选B.
6.C
解析:C
【分析】
由甲、乙两人的年收入之比为3:2,年支出之比为7:4,得到乙的收入为2
3
x,乙的支出
为4
7
y,根据题意找出等量关系,列出方程中选出正确选项即可.
【详解】
设甲的年收入为x元,年支出为y元,
∵甲、乙两人的年收入之比为3:2,年支出之比为7:4,
∴乙的收入为2
3
x,乙的支出为
4
7
y,
根据题意列出方程组得:
400
24
400 37
x y
x y
-=



-=
⎪⎩

故选:C.
【点睛】
本题考查了由实际问题抽象出二元一次方程组的知识,根据题意找出等量关系是解答本题的关键.
7.C
解析:C
【分析】
设可以兑换m张5元的零钱,n张2元的零钱,根据零钱的总和为50元,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出结论.
【详解】
设可以兑换m张5元的零钱,n张2元的零钱,
依题意,得:5m+2n=50,
∴m=10﹣2
5 n.
∵m,n均为非负整数,∴当n=0时,m=10;当n=5时,m=8;
当n=10时,m=6;
当n =15时,m =4; 当n =20时,m =2; 当n =25时,m =0. ∴共有6种兑换方案. 故选:C . 【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
8.B
解析:B 【解析】
解方程组22{23x y m x y +=++=得43
{
123
m
x m
y -=
+=
, ∵x 、y 满足x-y>0,

412330333m m m
-+--=>, ∴3-3m>0, ∴m<1. 故选B.
9.D
解析:D 【解析】
设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为3
4
xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为
3
4
ykm .由两车起初相距126km ,则可得出3
4
(x+y )=126; 又由相遇时小汽车比货车多行6km ,则可得出
3
4
(x-y )=6.可得出方程组3
1264
364
x y x y ⎧+=⎪⎪⎨
⎪-=⎪⎩()(). 故选:D .
点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.
10.D
解析:D 【解析】
试题分析:把两个方程相加可得3x+3y=2+k,两边同除以3可得x+y=2
3
k
+
=2,解得k=4,
因此k的算术平方根为2.
故选D.
二、填空题
11.无数
【分析】
把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】
解:方程3x+8y=27,
解得:,
∵当x、y是正整数时,9-x是8的倍数,
∴x=1,y=
解析:
1
3
x
y
=


=

无数
【分析】
把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】
解:方程3x+8y=27,
解得:
3(9
8
)x y
-=,
∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;
∴二元一次方程3x+8y=27的正整数解只有1个,即
1
3 x
y
=


=


∵当x、y是整数时,9-x是8的倍数,
∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.
故答案是:
1
3
x
y
=


=

;无数.
【点睛】
此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.
12.320
【分析】
设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵
解析:320
【解析】
【分析】
设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量。

【详解】
解:设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵。

根据题意得:
0.8xa+(0.8x-2)(50-a)+36(2x-5)=(50+36)x
整理得:13x+a=140
a=140-13x
因为x,0.8x都是正整数,可得x是5的倍数,又因为0<a<50,a是正整数,
经试算可得x=10,a=10,
所以我校学生一共植树: 0.8xa+(0.8x-2)(50-a)
=0.8×10×10+(0.8×10-2)(50-10)
=320棵
故答案为320.
【点睛】
本题考查了代数式,多元一次方程,和求二元一次方程的特殊解。

题中数量关系比较复杂,难度较大。

13.26、24或22
【解析】
【分析】
通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.
【详解】
解:假设购买小纪念册
解析:26、24或22
【解析】
通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×
5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.
【详解】
解:假设购买小纪念册x 本,购买大纪念册y 本,则x ,y 为整数.
则有题目可得二元一次方程:5x+7y=142,
解得:x ,y 有4组整数解即:271x y =⎧⎨=⎩,206x y =⎧⎨=⎩,1311x y =⎧⎨=⎩
,616x y =⎧⎨=⎩ 即有四种情况即:两种纪念册共买28、26、24或22本.
故答案为28、26、24或22本.
【点睛】
本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.
14.14或19
【解析】
【分析】
由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即
解析:14或19
【解析】
【分析】
由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.
【详解】
解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222
123222281n a a a a ++++++⋯++=,
∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,
∴y 是9的倍数,
∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩
, ∴这列数的个数n =x +y 为14或19,
故答案为:14或19.
本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.
15.311
【分析】
根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.
【详解】
解:设乙的单价为x元/本,则甲为(7+x)元/本
解析:311
【分析】
根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.
【详解】
解:设乙的单价为x元/本,则甲为(7+x)元/本,甲购买了a本,乙买了b本,
∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,
依题意得:
①-②得:7a-7b=2177,
∴a-b=311,
即甲种书籍比乙种书籍多买了311本.
【点睛】
本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 16.5
【解析】
设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,
则:0.5(x+a)+(2x-a)=0.5(y-a),
解得:y=5x
即快艇静水速度是快船的
解析:5
【解析】
设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,
则:0.5(x+a)+(2x-a)=0.5(y-a),
解得:y=5x
即快艇静水速度是快船的静水速度的5倍,
故答案为:5.
【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.
17.①②③
【分析】
解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.
【详解】
解方程组,得,

,,
当时,,,x ,y 的值互为相反数,结论正确;
当时,,,方程两
解析:①②③
【分析】
解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.
【详解】
解方程组343x y a
x y a +=-⎧-=⎨⎩,得{
121x a y a =+=-, 31a -≤≤,
53x ∴-≤≤,04y ≤≤,
①当2a =-时,123x a =+=-,13y a =-=,x ,y 的值互为相反数,结论正确; ②当1a =时,23x y a +=+=,43a -=,方程4x y a +=-两边相等,结论正确; ③当1x ≤时,121a +≤,
解得0a ≤,且31a -≤≤,
30a ∴-≤≤,
114a ∴≤-≤,
14y ∴≤≤结论正确,
故答案为①②③.
【点睛】
本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x 、y 的表达式及x 、y 的取值范围.
18.3750
【解析】
设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走
了xkm ,交换位置后走了ykm .分别以
解析:3750
【解析】
设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为
5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000
k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有
+=50003000+=50003000
kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=
2
1150003000
+=3750(千米). 故答案为:3750. 点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.
19.48
【解析】
设小长方形的长为x cm ,宽为y cm ,根据图形可得
①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=48.
故答案:48.
【方法点睛】本
解析:48
【解析】
设小长方形的长为x cm ,宽为y cm ,根据图形可得3124x y x y +=⎧⎨-=⎩
,①,② ①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×
10-6×2×6=482cm .
故答案:48.
【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 20.【解析】
由题意得:,
解得:a=,b=,
则※b=a+b²+=,
故答案为 .
点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合
解析:61 3
【解析】
由题意得:
227
{
3393 a b
a b
++=
-+-=

解得:a=1
3
,b=
13
3

则1
3
※b=
1
3
a+b²+
1
3
=
11691361
9993
++=,
故答案为61 3
.
点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.
三、解答题
21.(1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.
【分析】
(1)设制作甲x个,乙y个,则需要A,B型号的纸板如下表:
(2)设制作甲m个,乙k个,则需要A,B型号的纸板如下表:
(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.
【详解】
解:(1)设制作甲x 个,乙y 个,则
34160270
x y x y +=⎧⎨+=⎩, 解得:2422
x y =⎧⎨=⎩ , 即制作甲24个,乙22个.
(2)设制作甲m 个,乙k 个,则
23430m k n m k +=⎧⎨+=⎩
, 消去k 得,465
m n =
-, 因为:,m n 为正整数, 所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩
综上,最多可以制作甲,乙纸盒24个.
(3)因为1个丙型大纸盒可以拆成7块B 型纸板,
所以6个丙型大纸盒可以拆成42块B 型纸板,
而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,
设制作甲c 个,乙d 个,则4 4.542c d +=,
因为,c d 为正整数,所以6,4c d ==,
即可以制作甲6个,乙4个.
【点睛】
此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.
22.(155)a b +;23
a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.
【分析】
(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;
(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩
,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;
(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.
【详解】
解:(1)小王家今年3月份用水20吨,要交消费为155a b +,
故答案为:(155)a b +;
(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩
, 解得:23
a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,
可得费用15210360⨯+⨯=(元),
由交水费76.5元可知,小王家用水量超过25吨,
即:超过25吨的用水量(76.560)5 3.3=-÷=吨,
合计本月用水量 3.32528.3=+=吨
(4)设a 上调了x 元,b 上调了y 元,
根据题意得:1569.6x y +=,
52 3.2x y ∴+=,
,x y 为整数角线(没超过1元),
∴当0.6x =时,0.1y =元,
当0.4x =时,0.6y =元,
∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.
【点睛】
本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.
23.(1)购买一等票为 195m ; 购买二等票为162m ;(2)210;(3)180,193.
【分析】
(1)求出教师和家长的总人数,根据一等票和二等票两种情况求出代数式.
(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,根据若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元,可求出解.
(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票,根据票的总费用不低于9000元,可列不等式求解.
【详解】
解:(1)购买一等票为:65•3m =195m ;
购买二等票为:54•3m =162m ,
(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,依题意得: 1956513650{543408820m n m n +=⨯+=,解得:10{180
m n ==, 则2m =20,总人数为:10+20+180=210(人)
经检验,符合题意;
答:参加活动的总人数为210人.
(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票. ∴购买动车票的总费用=40×180+54(x ﹣180)+65(210﹣x )=﹣11x +11130. 依题意,得:﹣11x +11130≥9000… 解得:7193
11x ≤, ∵x 为整数,
∴x 的最大值是193.
【点睛】
本题考查理解题意的能力,关键是根据买一等票和二等票的价格做为等量关系求出人数,然后根据实际买票的总费用列出不等式求出解.
24.(1)B ;(2),x y 的最小整数解为104x y =⎧⎨
=⎩;(3)隐线中s 的最大值和最小值的和为72
【分析】
(1)将A,B,C 三点坐标代入方程,方程成立的点即为所求,
(2)将P,Q 代入方程,组成方程组求解即可,
(3)将P 代入隐线方程,
27n +=组成方程组,求解方程组的解,再由
()2723147s n n n =--=-即可求解.
【详解】
解:(1)将A,B,C 三点坐标代入方程,只有B 点符合,
∴隐线326x y +=的亮点的是B.
(2)将()10,2,1,3P Q ⎛
⎫-- ⎪⎝⎭
代入隐线方程 得:226163h t h -=⎧⎪⎨-=⎪⎩
解得253
t h ⎧=⎨=-⎩ 代入方程得:5626x y -=
,x y ∴的最小整数解为104x y =⎧⎨=⎩
(3
)由题意可得273n n s
==⎪⎩
72n =-
72
n ∴= ()2723147s n n n ∴=--=-
212
s ∴=- s ∴的最大值为14,最小值为212
- 隐线中s 的最大值和最小值的和为2171422-
= 【点睛】
本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.
25.(1)0≤x≤1;(2)①x=1;②a=b=c ;③存在 063a b c =⎧⎪=⎨⎪=⎩
使等式成立 . 【解析】
【分析】
(1)根据题意可得关于x 的不等式组,解不等式组即可求得答案;
(2)①先求出{}21,21M x x x +=+,,继而根据题意可得{}min 2,1,21x x x +=+,由此可得关于x 的不等式组,求解即可得;
②M{a ,b ,c}=3a b c ++,如果min{a ,b ,c}=c ,则a ≥c ,b ≥c ,即3
a b c ++=c ,由此可推导得出a=b=c ,其他情况同理可证,故a=b=c ;
③由②的结果可得关于a 、b 、c 的方程组,由此进行求解即可得.
【详解】
(1)由题意得2224-22x x +≥⎧⎨≥⎩,
解得0≤x≤1;
(2)①{}21221,213
x x M x x x ++++==+, {}{}21,2min 2,1,2M x x x x ,+=+
所以{}min 2,1,21x x x +=+
则有1212x x x +≤⎧⎨+≤⎩ 即11x x ≤⎧⎨≥⎩
所以x=1 ②∵M{a ,b ,c}=3
a b c ++, 如果min{a ,b ,c}=c ,则a ≥c ,b ≥c , 则有
3
a b c ++=c , 即a+b-2c=0,
∴(a-c)+(b-c)=0,
又a-c ≥0,b-c ≥0,
∴a-c=0且b-c=0,
∴a=b=c , 其他情况同理可证,故a=b=c ;
③存在,理由如下:
由题意得:()()273212741a b a b a b c ⎧-+=++⎪⎨-+=+⎪⎩
ⅠⅡ, 由(Ⅰ)得 a+3b=6,即23
a b =-, 因为a ,b ,c 是非负整数 ,所以a=0,3,6 ,b=2,1,0,
即06a b =⎧⎨=⎩
,代入(Ⅱ)得c=3, 或31
a b =⎧⎨=⎩,代入(Ⅱ)得c=114,不符合题意,舍去, 或60a b =⎧⎨
=⎩ ,代入(Ⅱ)得c=92,不符合题意,舍去, 综上所述: 存在063a b c =⎧⎪=⎨⎪=⎩
使等式成立.
【点睛】
本题考查了一元一次不等式组的应用,方程组的应用,读懂题意,正确进行分析得出相应的不等式组或方程组是解题的关键.
26.(1)4;(2)见解析.
【解析】
【分析】
(1)根据代入法,把已知的二元一次方程的解代入方程即可求解a的值;
(2)利用(1)中的a值,得到二元一次方程组,代入求解完成表格,然后描点即可.【详解】
(1)将
1
2
x
y
=


=

代入2x+y=a,解得a=4.
(2)完成表格如下:
x-10123
y6420-2
由图可知,如果过其中任意两点作直线,其他点也在这条直线上.
【点睛】
解题关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.。

相关文档
最新文档