初中数学第八章 二元一次方程组知识点及练习题及解析(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学第八章二元一次方程组知识点及练习题及解析(1) 一、选择题
1.已知关于x,y的两个方程组
48
312
ax by
x y
-=-


+=


35180
516
ax by
x y
+=


+=

具有相同的解,则
a,b的值是()
A.
=20
2
a
b
-


=

B.
=20
2
a
b


=-

C.
=20
2
a
b


=

D.
=20
2
a
b
-


=-

2.已知
2
2
x
y
=-


=

是方程kx+2y=﹣2的解,则k的值为()
A.﹣3 B.3 C.5 D.﹣5
3.若关于x、y的二元一次方程组
32
34
x y a
x y a
+=+


+=-

的解满足x+y>2,则a的取值范围为
()
A.a<−2 B.a>−2 C.a<2 D.a>2
4.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()
A.
22
56
x y
x y
+=


=

B.
22
65
x y
x y
+=


=

C.
22
310
x y
x y
+=


=

D.
22
103
x y
x y
+=


=

5.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()
A.
83
74
y x
y x
-=


-=

B.
83
74
y x
y x
-=


-=-

C .8374y x y x -=-⎧⎨-=-⎩
D .83
74y x y x -=⎧⎨-=⎩
6.用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;用一块B 型钢板可制成1块C 型钢板、4块D 型钢板.某工厂现需14块C 型钢板、36块D 型钢板,设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,则下列方程组正确的是( )
A .214
3436x y x y +=⎧⎨+=⎩
B .3214
436x y x y +=⎧⎨+=⎩
C .2314
436x y x y +=⎧⎨+=⎩
D .2144336x y x y +=⎧⎨+=⎩
7.已知10a b +=,6a b -=,则22a b -的值是( )
A .12
B .60
C .60-
D .12-
8.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律, A 2019的坐标为( )
A .(﹣1008,0)
B .(﹣1006,0)
C .(2,﹣504)
D .(2,-506)
9.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x 和分成的组数y ,可列方程组为( )
A .7385y x y x =-⎧⎨=+⎩
B .73
85y x y x =+⎧⎨+=⎩
C .7385x y
x y +=⎧⎨-=⎩
D .73
85y x y x =+⎧⎨
=+⎩
10.若二元一次方程3x ﹣y =﹣7,x+3y =1,y =kx+9有公共解,则k 的取值为( )
A .3
B .﹣3
C .﹣4
D .4
二、填空题
11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.
12.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的
1
2用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920
,同时将餐饮区、百货
区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了1
12
,则百货区新增的摊位数量与该夜市总摊位数量之比是______.
13.某公园的门票价格如表:
现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b (a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.
14.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.
15.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 16.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____. 17.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A 、B 、C 三种饼干搭配而成,每袋礼包的成本均为A 、B 、
C 三种饼干成本之和.每袋甲类礼包有5包A 种饼干、2包B 种饼干、8包C 种饼干;每袋丙类礼包有7包A 种饼干、1包B 种饼干、4包C 种饼干.已知甲每袋成本是该袋中A 种饼
干成本的3倍,利润率为30%,每袋乙的成本是其售价的
56,利润是每袋甲利润的49
;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为
4:6:5,则当天该网店销售总利润率为__________.
18.方程组11
111
21132x y x z y z ⎧+=⎪⎪
⎪+=⎨⎪⎪+=⎪⎩
的解为______.
19.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一
共有____道普通题.
20.已知关于x 、y 的方程组343x y a
x y a +=-⎧-=⎨⎩
,其中31a -≤≤,有以下结论:①当2
a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)
三、解答题
21.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以
(123)6F =.
(1)计算:(134)F ;
(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,
19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求s
t
的值.
22.[阅读材料]
善于思考的小明在解方程组253(1)
4115(2)x y x y +=⎧⎨+=⎩
时,采用了一种“整体代换”的解法:
解:将方程(2)变形:4105x y y ++=,
即()2255(3)x y y ++=,
把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,
将1y =-代入(1)得4x =, 所以原方程组的解为4
1x y =⎧⎨=-⎩
. [解决问题]
(1)模仿小明的“整体代换”法解方程组325
9419x y x y -=⎧⎨-=⎩

(2)已知x ,y 满足方程组2222
321250425
x xy y x xy y ⎧-+=⎨++=⎩,求22
4x y +的值. 23.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:
18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;1
23
x y z =⎧⎪
=⎨⎪=⎩
是方程组3206x y z x y z ++=⎧⎨
++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”;
(2)关于x,y,k的方程组
15
51070
x y k
x y k
++=


++=

有“好解“吗?若有,请求出对应的“好
解”;若没有,请说明理由;
(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.
24.在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.
(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;
(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).
①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;
②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.
25.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?
26.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:
(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?
(2)请你帮个体商贩张杰设计共有多少种租车方案?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,代入剩下的方程计算即可求出a 与b 的值. 【详解】
联立得:312
516x y x y +=⎧⎨+=⎩

解得:2
6x y =⎧⎨=⎩

将26x y =⎧⎨=⎩代入得:124
530a b a b -=-⎧⎨+=⎩,
解得:202a b =⎧⎨=⎩

故选:C . 【点睛】
本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.
2.B
解析:B 【分析】
把22x y =-⎧⎨=⎩代入是方程kx +2y =﹣2得到关于k 的方程求解即可. 【详解】
解:把2
2x y =-⎧⎨
=⎩
代入方程得:﹣2k +4=﹣2, 解得:k =3, 故选B . 【点睛】
本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
3.A
解析:A 【分析】
先解根据关于x ,y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩

②①+②得4x+4y=2-3a ,
234
a
x y -+=
;然后将其代入x +y >2,再来解关于a 的不等式即可. 【详解】
解:3234x y a x y a +=+⎧⎨
+=-⎩


①+②得 4x+4y=2-3a
234
a
x y -+=
∴由x+y>2,得 2324a
-> 即a<-2 故选A 【点睛】 本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质: (1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.
4.A
解析:A 【分析】
设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x 、y 的二元一次方程组,此题得解. 【详解】
设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,
根据题意得:22
56x y x y +=⎧⎨=⎩

故选:A . 【点睛】
此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
5.B
解析:B 【分析】
设该物品的价格是x 钱,共同购买该商品的由y 人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组. 【详解】
设该物品的价格是x 钱,共同购买该商品的由y 人,
依题意可得83
74y x y x -=⎧⎨-=-⎩
故选:B 【点睛】
本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.
6.A
解析:A 【分析】
根据“用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;一块B 型钢板可制成1块C 型钢板、4块D 型钢板及A 、B 型钢板的总数”可得 【详解】
设恰好用A 型钢板x 块,B 型钢板y 块, 根据题意,得:214
3436x y x y +=⎧⎨+=⎩

故选:A . 【点睛】
本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.
7.B
解析:B 【分析】
先利用加减消元法解方程组10
6a b a b +=⎧⎨-=⎩
可得a 、b 的值,再代入求值即可得.
【详解】
由题意得:10
6
a b a b +=⎧⎨
-=⎩,
解得8
2
a b =⎧⎨
=⎩, 则22222864460a b -==-=-, 故选:B . 【点睛】
本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.
8.A
解析:A 【分析】
用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题. 【详解】
依题意列出前面几个n A 的坐标如下表
对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标3
2
n +; 当n 除以4余2时,n A 的纵坐标为
n
2
,横坐标1; 当n 除以4余3时,n A 的纵坐标为0,横坐标3
2
n --; 当n 除以4,整除时,n A 的纵坐标为
2
n
,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为
20193
10082
--
=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】
本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.
9.A
解析:A 【解析】
分析:根据题意确定等量关系为:若每组7人,则余3人;若每组8人,则少5人,列方程组求解即可.
详解:根据题意可得:73
85y x y x =-⎧⎨
=+⎩
. 故选:A.
点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是确定问题的等量关系.
10.D
解析:D 【分析】
由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y =kx+9中,即可求得k 的值. 【详解】
解:解方程组37
31x y x y -=-⎧⎨+=⎩得:
21x y =-⎧⎨=⎩
, 代入9y kx =+得:129k =-+,
解得:4k =. 故选:D . 【点睛】
本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法.
二、填空题 11.6 【分析】
设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程
0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】 解:设8
解析:6 【分析】
设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得3
202
x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】
解:设80分的邮票购买x 张,120分的邮票购买y 张, 0.8x+1.2y=16, 解得3
202
x y =-
, ∵x 、y 都是正整数,
∴当y=2、4、6、8、10、12时, x=17、14、11、8、5、2, ∴共有6种购买方案, 故答案为:6. 【点睛】
此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题.
12.【分析】
由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n 和m 的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式,
解析:3:20
【分析】
由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n ,再假设新增摊位数量为m ,则餐饮区新增摊位数量为12
m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了
112
建立关系式,进行代入分析即可得出答案.
【详解】 解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元),
6月份的管理费为:1(1)60065012
n n +⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为
12m , 由餐饮区的摊位数量占到了夜市总摊位数量的920
,可得: 91(12)5202
n m n m +⨯=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,
且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,
由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),
当百货区新增3n ,杂项区新增n 时,满足条件,
所以百货区新增的摊位数量与该夜市总摊位数量之比是
3:(128)3:203:20n n n n n +==.
故答案为:3:20.
【点睛】
本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112
建立关系式,进行代入分析是解答本题的关键. 13.40
【分析】
根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.
【详解】
解:∵ ,,
∴1≤b≤50,51<a≤100,
若a+
解析:40
【分析】
根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.
【详解】
解:∵12903
99
1313
=,
12903
117
1111
=,
∴1≤b≤50,51<a≤100,若a+b≤100时,
由题意可得:
13111290 11()990
b a
a b
+=


+=



60
150
a
b
=-


=

(不合题意舍去),
若a+b>100时,
由题意可得
13111290 9(990
b a
a b
+=


+=
⎩)


70
40 a
b
=


=


故可70,40.
【点睛】
本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.14.【分析】
先把原方程化为的形式,再分别令a,b的系数为0,即可求出答案.【详解】
解:由已知得:

两式相加得:,即,
把代入得到,,
故此方程组的解为:.
故答案为:.
【点睛】
本题主要考
解析:01x y =⎧⎨=-⎩
【分析】
先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.
【详解】
解:由已知得:(1)(1)0a x y b x y ---++=
∴1010x y x y --=⎧⎨++=⎩
两式相加得:20x =,即0x =,
把0x =代入10x y --=得到,1y =-,
故此方程组的解为:01x y =⎧⎨=-⎩
. 故答案为:01
x y =⎧⎨
=-⎩. 【点睛】 本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.
15.五
【分析】
设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.
【详解】
设甲种型号
解析:五
【分析】
设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.
【详解】
设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据题意得:
1280×(1+25%)x +(2199-199)×0.85y +(2399-499)z =20600
整理得:16x+17y+19z=206
∴16(x+y+z)+y+3z=16×12+14
∵x、y、z为非负整数,且x、y、z最多一个为0,
∴0≤x≤12,0≤y≤12,0≤z≤10,
∴14≤y+3z≤42.
设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.
∴14≤14+16k≤42,
∴0≤k<2.
∵k为整数,
∴k=0或1.
(1)当k=0时,x+y+z=12,y+3z=14,
∴0≤z≤4.
①当z=0时,y=14>12,舍去;
②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;
③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;
④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;
⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30
∵y=30-3z,
∴0≤30-3z≤12,
解得:6≤z≤10,
当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;
当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;
当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;
当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;
当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.
综上所述:共有
11
1
x
y
z
=


=

⎪=


2
8
2
x
y
z
=


=

⎪=


4
5
3
x
y
z
=


=

⎪=


6
2
4
x
y
z
=


=

⎪=


1
10
x
y
z
=


=

⎪=

五种方案.
故答案为:五.
【点睛】
本题考查了三元一次方程的应用.分类讨论是解答本题的关键.
16.536
【分析】
由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1
解析:536
【分析】
由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,分三种情况讨论:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c ﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10,求出a、b、c的值,即可得出最大三位数.
【详解】
∵|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,
∴(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)≥30.
∵a、b、c是整数,(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,
∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;
②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;
③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.
∴要使三位数最大,首先要保证a尽可能大.
当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;
当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;
∴a=5.
当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.
解得:0≤b≤3,1≤c≤6,
∴由a、b、c组成的最大三位数为536.
故答案为:536.
【点睛】
本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.
17.25%
【分析】
设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z ,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为
解析:25%
【分析】
设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.
【详解】
解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:
5x+2y+8z=15x,
∴5x=y+4z,
由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;
∵每袋乙的成本是其售价的5
6
,利润是每袋甲利润
4
9

可知每袋乙礼包的利润是:4.5x×4
9
=2x,
则乙礼包的售价为12x,成本为10x;
由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,∵每袋丙礼包利润率为:25%,
∴丙礼包的售价为15x,成本为12x;
∵甲、乙、丙三种礼包袋数之比为4:6:5,
∴19.54612515415610512
100%25% 415610512
x x x x x x
x x x
⨯+⨯+⨯-⨯-⨯-⨯
⨯=
⨯+⨯+⨯

∴总利润率是25%,
故答案为:25%.
【点睛】
本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.
18.【分析】
先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.
【详解】
解:由方程组,可得:,
所以④,
由可得:,由可得:,由可得
综上所述方程组的解是.
【点睛】
解析:
4
3
4
4
5 x
y
z

=⎪

=⎨

⎪=⎩
【分析】
先将三个方程依次标号,然后相加可得1119
4
x y z
++=④,由④-①,④-②,④-③即可得
出答案.【详解】
解:由方程组
11
1
11
2 113
2 x y
x z
y z

+=⎪


+=



+=





,++
①②③可得:
1119
2
2
x y z
⎛⎫
++=

⎝⎭

所以
1119
4
x y z
++=④,
由-
④①可得:
154
,
45
z
z
=∴=,由-
④②可得:
11
,4
4
y
y
=∴=,由-
④③可得
13
,
4
x
=
4
3
x
∴=
综上所述方程组的解是
4
3
4
4
5
x
y
z

=


=


⎪=

.
【点睛】
本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.
19.16
【解析】
【分析】
根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解. 【详解】
解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:
3b+2a-(x-a)=1
解析:16
【解析】
【分析】
根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.
【详解】
解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:
(2)×3-(1)得x=16,
∴该次数学竞赛中一共有16道普通题.
本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 20.①②③
【分析】
解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.
【详解】
解方程组,得,

,,
当时,,,x ,y 的值互为相反数,结论正确;
当时,,,方程两
解析:①②③
【分析】
解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.
【详解】
解方程组343x y a
x y a +=-⎧-=⎨⎩,得{
121x a y a =+=-, 31a -≤≤,
53x ∴-≤≤,04y ≤≤,
①当2a =-时,123x a =+=-,13y a =-=,x ,y 的值互为相反数,结论正确; ②当1a =时,23x y a +=+=,43a -=,方程4x y a +=-两边相等,结论正确; ③当1x ≤时,121a +≤,
解得0a ≤,且31a -≤≤,
30a ∴-≤≤,
114a ∴≤-≤,
14y ∴≤≤结论正确,
故答案为①②③.
【点睛】
本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x 、y 的表达式及x 、y 的取值范围.
三、解答题
21.(1)(134)8F =;(2)325361
s t =.
(1)由题意直接根据()F n 的定义把“相异数”任意两个数位上的数字对调后得到的三个不同的新三位数进行代入计算即可;
(2)根据题意由“相异数”的定义进行分析,并根据()F n 的定义求出()F s 和()F t ,进而依据()()20F s F t +=建立不定方程进行分析即可求解.
【详解】
解:(1)(134)(314431143)1118F =++÷=;
(2)∵s ,t 都是“相异数”,10025s x =+,360t y =+,
∴()(2051052010052)1117F s x x x x =+++++÷=+,
()(6301006330610)1119F t y y y y =+++++÷=+.
∵()()20F s F t +=,
∴791620x y x y +++=++=,
∴4x y +=,
∵19x ≤≤,19y ≤≤,且x ,y 都是正整数,
13x y =⎧⎨=⎩,22x y =⎧⎨=⎩
,31x y =⎧⎨=⎩ ∵s 是“相异数”,
∴2x ≠,5x ≠.
∵t 是“相异数”,
∴3y ≠,6y ≠.
∴31x y =⎧⎨=⎩
是符合条件的解 ∴100325325s =⨯+=,3601361t =+= ∴
325361
s t =. 【点睛】 本题属于材料阅读题,考查代数以及二元一次方程中不定方程的应用,读懂题干所给的定义和分析解决二元一次方程是解题的关键.
22.(1)原方程组的解为32
x y =⎧⎨=⎩;(2)22420x y += 【分析】
(1)根据题意,利用整体的思想进行解方程组,即可得到答案;
(2)根据题意,利用整体的思想进行解方程组,即可得到答案.
【详解】
解:()13259419x y x y -=⎧⎨-=⎩
①②
将方程②变形得:()332219x y y -+=③
把方程①代入③得:35219y ⨯+=,
所以2,y =
将2y =代入①得3x =,
所以原方程组的解为32x y =⎧⎨=⎩
; ()22222321250425x xy y x xy y ⎧-+=⎨++=⎩①②
, 把方程①变形,得到22
3(4)550x xy y xy ++-=③,
然后把②代入③,得325550xy ⨯-=,
∴5xy =,
∴22425520x y +=-=;
【点睛】
本题考查了方程组的“整体代入”的解法.整体代入法,就是变形组中的一个方程,使该方程左边变形为另一个方程的左边的倍数加一个未知数的形式,整体代入,求出一个未知数,再代入求出另一个未知数. 23.(1)x 1 y 3=⎧⎨=⎩,x 3y 2=⎧⎨=⎩
,x 5y 1=⎧⎨=⎩;(2)x 3 y 7=⎧⎨=⎩;(3)63,73,83 【分析】
(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;
(2)解方程组求得554{5594k
x k y +=
-=,,根据“好解”的定义得5519k -<<,在范围内列举正整数代入求解;
(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k 的取值范围,在范围内列举正整数代入求解.
【详解】
解:(1)由x+2y=7,得y=7x 2
-(x.y 为正整数). ∵x 0
{7x 02
->>, 即0<x <7,
∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;
∴方程x+2y=7的“好解”有
x1
{
y3
=
=

x3
{
y2
=
=

x5
{
y1
=
=

(2)由
x y k15
{
x5y10k70
++=
++=
,解得
55
4
{
559
4
k
x
k
y
+
=
-
=


55k
4
{
559k
4
+
-


,即-1<k<
55
9

∴当k=3时,x=5,y=7,
∴方程组
x y k15
{
x5y10k70
++=
++=
有“好解“,
∴“好解”为
x3 {
y7
=
=

(3)由
33x23y2019
{
x y m
+=
+=
,解得
201923m
x
10
{
33m2019
y
10
-
=
-
=


201923m
10
{
33m2019
10
-
-


,即
2019
33
<m<
2019
23

∴当m=63时,x=57,y=6;
m=73时,x=38,y=39;
m=83时,x=11,y=72;
∴所有m的值为63,73,83.
【点睛】
本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.
24.(1)C的坐标为(0,4),点D的坐标为(1,2);(2)①点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在△PEF 的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E(,4)、F(﹣,4).
【解析】
【分析】
(1)由点A和点C在y轴上确定出向右平移3个单位,再根据△ACD的面积求出向上平移的单位,然后写出点C、D的坐标即可.
(2)①根据线段EF平行于线段OM且等于线段OM,得出2a+1=﹣2b+3,|a﹣b|=1,解
答即可;
②首先根据题意求出点P的坐标为(,2),设点E在F的左边,由EF∥x轴得出a+b=1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P 的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:
,解得:,或;分别代入点E(a,2a+1)、F(b,﹣
2b+3)即可.
【详解】
解:(1)∵A(﹣3,0),点C在y轴的正半轴上,
∴向右平移3个单位,
设向上平移x个单位,
∵S△ACO=OA×OC=6,
∴×3x=6,
解得:x=4,
∴点C的坐标为(0,4),
﹣2+3=1,﹣2+4=2,
故点D的坐标为(1,2).
(2)①存在;理由如下:
∵线段EF平行于线段OM且等于线段OM,
∴2a+1=﹣2b+3,|a﹣b|=1,
解得:a=1,b=0或a=0,b=1,
即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);
②存在,理由如下:如图2所示:
当点E、F重合时,,
解得:,
∴2a+1=2,
∴点P的坐标为(,2),
设点E在F的左边,
∵EF∥x轴,
∴2a+1=﹣2b+3,
∴a+b=1,
∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,
即(b﹣a)|2a﹣1|=4,
当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:
,此方程组无解;
当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:

解得:,或;
分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);
综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E (,4)、F(﹣,4).
【点睛】
本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.25.应购买小笔记本50本,大笔记本8本,钢笔4支
【解析】
【分析】
根据题意结合奖品的价格得出5x+7y+10z=346,y=2z ,再利用共花费346元,分别得出x ,y ,z 的取值范围,进而得出z 的取值范围,分别分析得出所有的可能.
【详解】
解:设购买小笔记本x 本,大笔记本y 本,钢笔z 支,
则有5x+7y+10z=346,y=2z .
易知0<x ≤69,0<y ≤49,0<z ≤34, ∴5x+14z+10z=346,5x+24z=346,即346245
z x -=
. ∵x ,y ,z 均为正整数,346-24z ≥0,即0<z ≤14
∴z 只能取14,9和4. ①当z 为14时,346242,228.445z x y z x y z -=
===++= 。

②当z 为9时,3462426,218.535z x y z x y z -=
===++= . ③当z 为4时,3462450,28.625z x y z x y z -====++=.
综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支
【点睛】
此题主要考查了三元一次不定方程,根据题意得出x ,y ,z 的取值范围是解题关键.
26.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.
【解析】
【分析】
(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;
(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.
【详解】
解:(1)设甲、乙两种车分别运载x 吨,y 吨;
23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩
; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;
(2)设租甲、乙两种车分别m 辆,n 辆,
由题意得:3m+2n=21.
19m n =⎧⎨=⎩
,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;
方案二:甲车3辆,乙车6辆;
方案三:甲车5辆,乙车3辆
方案四:甲车7辆,乙车0辆.
答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车。

相关文档
最新文档