人教版2024年高考数学一轮复习高考频点《第08讲 函数与方程知识点必背》
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第08讲 函数与方程知识点必背
1、函数的零点 对于一般函数(),y f x x D =∈,我们把使()0f x =成立的实数x 叫做函数(),y f x x D =∈的零点.注意函数的零点不是点,是一个数.
2、函数的零点与方程的根之间的联系
函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标.即方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.
3、零点存在性定理
如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.
注:上述定理只能判断出零点存在,不能确定零点个数.
4、二分法
对于在区间上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.求方程()0f x =的近似解就是求函数()f x 零点的近似值.
5、高频考点技巧
①若连续不断的函数()f x 是定义域上的单调函数,则()f x 至多有一个零点; ②连续不断的函数,其相邻两个零点之间的所有函数值保持同号; ③函数()()()F x f x g x =-有零点⇔方程()0F x =有实数根⇔函数1()y f x =与2()y g x =的图象有交点;
④函数()()F x f x a =-有零点⇔方程()0F x =有实数根⇔函数1()y f x =与2y a =的图象有交点⇔{|()}a y y f x ∈=,其中a 为常数.。