九年级上册数学 几何模型压轴题达标检测卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学几何模型压轴题达标检测卷(Word版含解析)
一、初三数学旋转易错题压轴题(难)
1.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.
(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;
②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.
(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=22.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.
【答案】(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=5
3

【解析】
【分析】
(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;
②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G 在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;
(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD =∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.
【详解】
解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,
∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,
∵∠ADC=90°,
∴∠ADC+∠ADG=90°
∴F、D、G共线,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠DAG+∠DAF=45°,
即∠EAF=∠GAF=45°,
在△EAF和△GAF中,

AF AF
EAF GAF
AE AG
=


∠=∠

⎪=


∴△EAF≌△GAF(SAS),
∴EF=GF,
∵BE=DG,
∴EF=GF=DF+DG=BE+DF,
故答案为:EF=BE+DF;
②成立,
理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,
则AE=AG,∠B=∠ADG,∠BAE=∠DAG,
∵∠B+∠ADC=180°,
∴∠ADC+∠ADG=180°,
∴C、D、G在一条直线上,
与①同理得,∠EAF=∠GAF=45°,
在△EAF和△GAF中,

AF AF
EAF GAF
AE AG
=


∠=∠

⎪=


∴△EAF≌△GAF(SAS),
∴EF=GF,
∵BE=DG,
∴EF=GF=BE+DF;
(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,
∴∠ABC=∠C=45°,
由勾股定理得:BC22
AB AC
+4,
如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,
则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,
∵∠DAE=45°,
∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,
在△FAD和△EAD中
AD AD
FAD EAD AF AE
=


∠=∠

⎪=


∴△FAD≌△EAD(SAS),
∴DF=DE,
设DE=x,则DF=x,
∵BC=4,
∴BF=CE=4﹣1﹣x=3﹣x,
∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,
由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,
解得:x=5
3

即DE=5
3

【点睛】
本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.
2.阅读下面材料:
小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,
∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,
∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.
【答案】(1)∠B+∠D=180°(或互补);(2)∴
【解析】
试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即
∠B+∠D=180°.
(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED
得到DE=EG,由勾股定理即可求得DE的长.
(1)∠B+∠D=180°(或互补).
(2)∵ AB=AC,
∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.
则∠B=∠ACG,BD=CG,AD=AG.
∵在△ABC中,∠BAC=90°,
∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.
∴ EC2+CG2=EG2.
在△AEG与△AED中,
∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.
又∵AD=AG,AE=AE,
∴△AEG≌△AED .
∴DE=EG.
又∵CG=BD,
∴ BD2+EC2=DE2.
∴.
考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.
3.(1)观察猜想
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;
(2)拓展探究
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.
【答案】(1)BG=AE.
(2)成立.
如图②,
连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.
正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如图②,连接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]
因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋转过程中,当AE为最大值时,AF=.
4.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
(1)如图①,当点D落在BC边上时,求点D的坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H.
①求证△ADB≌△AOB;
②求点H的坐标.
(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
【答案】(1)D(1,3);(2)①详见解析;②H(17
5
,3);(3)
30334
-
≤S≤30334
+

【解析】
【分析】
(1)如图①,在Rt△ACD中求出CD即可解决问题;
(2)①根据HL证明即可;
②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;
【详解】
(1)如图①中,
∵A(5,0),B(0,3),
∴OA=5,OB=3,
∵四边形AOBC是矩形,
∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
∵矩形ADEF是由矩形AOBC旋转得到,
∴AD=AO=5,
在Rt△ADC中,CD22
AD AC
-,
∴BD=BC-CD=1,
∴D(1,3).
(2)①如图②中,
由四边形ADEF是矩形,得到∠ADE=90°,
∵点D在线段BE上,
∴∠ADB=90°,
由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
∴Rt△ADB≌Rt△AOB(HL).
②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,
∴∠CBA=∠OAB,
∴∠BAD=∠CBA,
∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
在Rt△AHC中,∵AH2=HC2+AC2,
∴m2=32+(5-m)2,
∴m=17
5

∴BH=17
5

∴H(17
5
,3).
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值
=1
2
•DE•DK=
1
2
×3×(5-
34)=30334
-,
当点D在BA的延长线上时,△D′E′K的面积最大,最大面积
=1
2
×D′E′×KD′=
1
2
×3×(
3430334
+
综上所述,
303344-≤S ≤303344
+. 【点睛】 本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
5.请认真阅读下面的数学小探究系列,完成所提出的问题:
()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为
21.(2
a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE ()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.
【答案】(1)详见解析;(2)BCD 的面积为212
a ,理由详见解析;(3)BCD 的面积为
214
a . 【解析】
【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;
()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;
()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2
=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由
三角形的面积公式就可以得出结论.
【详解】
()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,
BED ACB 90∠∠∴==,
由旋转知,AB AD =,ABD 90∠=, ABC DBE 90∠∠∴+=, A ABC 90∠∠+=,
A DBE ∠∠∴=,
在ABC 和BDE 中,
ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ABC ∴≌()BDE AAS
BC DE a ∴==,
BCD 1S BC DE 2
=⋅, 2BCD 1S a 2
∴=; ()2BCD 的面积为21a 2
, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,
BED ACB 90∠∠∴==,
线段AB 绕点B 顺时针旋转90得到线段BE ,
AB BD ∴=,ABD 90∠=,
ABC DBE 90∠∠∴+=,
A ABC 90∠∠+=,
A
DBE ∠∠∴=,
在ABC 和BDE 中,
ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS ,
BC DE a ∴==,
BCD 1S BC DE 2
=⋅, 2BCD 1S a 2
∴=; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,
AFB E 90∠∠∴==,11BF BC a 22==, FAB ABF 90∠∠∴+=, ABD 90∠=,
ABF DBE 90∠∠∴+=, FAB EBD ∠∠∴=,
线段BD 是由线段AB 旋转得到的,
AB BD ∴=,
在AFB 和BED 中,
AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩
, AFB ∴≌()BED AAS ,
1BF DE a 2∴==
, 2BCD 1111S BC DE a a a 2224
=⋅=⋅⋅=, BCD ∴的面积为21a 4
. 【点睛】
本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.
6.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=42,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
【答案】(1)2
1
4
2
y x
=-+;(2)2<m<223)m=6或m17﹣3.
【解析】
【分析】
(1)由题意抛物线的顶点C(0,4),A(20),设抛物线的解析式为24
y ax
=+,把A(220)代入可得a=
1
2
-,由此即可解决问题;
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为
()2
1
24
2
y x m
=--,由
()
2
2
1
4
2
1
24
2
y x
y x m

=-+
⎪⎪

⎪=--
⎪⎩
,消去y得到22
2280
x mx m
-+-=,由题
意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有
()
22
2
(2)4280
20
280
m m
m
m
⎧--->
⎪⎪
>

⎪->
⎪⎩
,解不等式组即可解决问题;
(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知
P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出
PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得
M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.
【详解】
(1)由题意抛物线的顶点C (0,4),A
(0),设抛物线的解析式为
24y ax =+,把A
(0)代入可得a =12
-
, ∴抛物线C 的函数表达式为2142y x =-+. (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为
()21242
y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩
, 消去y 得到222280x mx m -+-= ,
由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有
()
222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩
, 解得2<m

∴满足条件的m 的取值范围为2<m

(3)结论:四边形PMP ′N 能成为正方形.
理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .
由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得
PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142
y x =-+上,∴()212242
m m -=-
++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.
情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),
把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242
m m -=--+,解得m =6或0(舍弃),
∴m =6时,四边形PMP ′N 是正方形.
综上所述:m =6或m 17﹣3时,四边形PMP ′N 是正方形.
7.(操作发现)
(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB 交于点D ,在三角板斜边上取一点F ,使CF=CD ,线段AB 上取点E ,使∠DCE=30°,连接AF ,EF .
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
①∠EAF的度数;
②线段AE,ED,DB之间的数量关系.
【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2
【解析】
试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出
∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.
试题解析:解:(1)①∵△ABC是等边三角形,
∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
在△ACF和△BCD中,
∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;
②DE=EF.理由如下:
∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
(2)①∵△ABC是等腰直角三角形,
∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,
∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴
∠EAF=∠BAC+∠CAF=90°;
②AE2+DB2=DE2,理由如下:
∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,
AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.
8.(问题提出)
如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF
(类比探究)
(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由
(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.
【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.
【解析】
【分析】
(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.
【详解】
(1)证明:DE=CE=CF,△BCE
由旋转60°得△ACF,
∴∠ECF=60°,BE=AF,CE=CF,
∴△CEF是等边三角形,
∴EF=CE,
∴DE=EF,∠CAF=∠BAC=60°,
∴∠EAF=∠BAC+∠CAF=120°,
∵∠DBE=120°,
∴∠EAF=∠DBE,
又∵A,E,C,F四点共圆,
∴∠AEF=∠ACF,
又∵ED=DC,
∴∠D=∠BCE,∠BCE=∠ACF,
∴∠D=∠AEF,
∴△EDB≌FEA,
∴BD=AF,AB=AE+BF,
∴AB=BD+AF.
类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,
∴△CEF是等边三角形,
∴EF=CE,
∴DE=EF,∠EFC=∠BAC=60°,
∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,
∴∠FCG=∠FEA,
又∠FCG=∠EAD
∠D=∠EAD,
∴∠D=∠FEA,
由旋转知∠CBE=∠CAF=120°,
∴∠DBE=∠FAE=60°
∴△DEB≌△EFA,
∴BD=AE, EB=AF,
∴BD=FA+AB.
即AB=BD-AF.
(2)AF=BD+AB(或AB=AF-BD)
如图③,

ED=EC=CF,
∵△BCE 绕点C 顺时针旋转60°至△ACF ,
∴∠ECF=60°,BE=AF ,EC=CF ,BC=AC ,
∴△CEF 是等边三角形,
∴EF=EC ,
又∵ED=EC ,
∴ED=EF ,
∵AB=AC ,BC=AC ,
∴△ABC 是等边三角形,
∴∠ABC=60°,
又∵∠CBE=∠CAF ,
∴∠CAF=60°,
∴∠EAF=180°-∠CAF-∠BAC
=180°-60°-60°
=60°
∴∠DBE=∠EAF ;
∵ED=EC ,
∴∠ECD=∠EDC ,
∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC ,
又∵∠EDC=∠EBC+∠BED ,
∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC ,
∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,
∴∠BDE=∠AEF ,
在△EDB 和△FEA 中,
DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△EDB ≌△FEA (AAS ),
∴BD=AE ,EB=AF ,
∵BE=AB+AE ,
∴AF=AB+BD ,
即AB ,DB ,AF 之间的数量关系是:
AF=AB+BD .
考点:旋转变化,等边三角形,三角形全等,
二、初三数学 圆易错题压轴题(难)
9.如图①,一个Rt △DEF 直角边DE 落在AB 上,点D 与点B 重合,过A 点作二射线AC 与斜边EF 平行,己知AB=12,DE=4,DF=3,点P 从A 点出发,沿射线AC 方向以每秒2个单位的速度运动,Q 为AP 中点,设运动时间为t 秒(t >0)•
(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;
(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:
①当D、M、Q三点在同一直线上时,求运动时间t;
②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.
【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.
【解析】
试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;
②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.
试题解析:(1)四边形EFPQ是菱形.
理由:过点Q作QH⊥AB于H,如图①,
∵t=5,∴AP=2×5=10.
∵点Q是AP的中点,
∴AQ=PQ=5.
∵∠EDF=90°,DE=4,DF=3,
∴EF==5,
∴PQ=EF=5.
∵AC∥EF,
∴四边形EFPQ是平行四边形,且∠A=∠FEB.
又∵∠QHA=∠FDE=90°,
∴△AHQ∽△EDF,
∴.
∵AQ=EF=5,
∴AH=ED=4.
∵AE=12-4=8,
∴HE=8-4=4,
∴AH=EH,
∴AQ=EQ,
∴PQ=EQ,
∴平行四边形EFPQ是菱形;
(2)①当D、M、Q三点在同一直线上时,如图②,
此时AQ=t,EM=EF=,AD=12-t,DE=4.
∵EF∥AC,
∴△DEM∽△DAQ,
∴,
∴,
解得t=;
②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,
过点Q作QH⊥AB于H,如图③,
则有∠HQD=∠HDQ=45°,
∴QH=DH.
∵△AHQ∽△EDF(已证),
∴,
∴,
∴QH=,AH=,
∴DH=QH=.
∵AB=AH+HD+BD=12,DB=t,
∴++t=12,
∴t=5;
Ⅱ.当点Q在∠FDB的角平分线上时,
过点Q作QH⊥AB于H,如图④,
同理可得DH=QH=,AH=.
∵AB=AD+DB=AH-DH+DB=12,DB=t,
∴-+t=12,
∴t=10.
综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.
考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.
10.已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,
(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;
(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:
(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.
【答案】(1)1502AOD α∠=︒-;(2)7AD =
3)33133122or 【解析】
【分析】
(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.
(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.
(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.
【详解】
(1)如图1:连接OB 、OC.
∵BC=AO
∴OB=OC=BC
∴△OBC 是等边三角形
∴∠BOC=60°
∵点D 是BC 的中点 ∴∠BOD=
1302
BOC ∠=︒ ∵OA=OC
∴OAC OCA ∠=∠=α
∴∠AOD=180°-α-α-30︒=150°-2α
(2)如图2:连接OB、OC、OD.
由(1)可得:△OBC是等边三角形,∠BOD=1
30 2
BOC
∠=︒
∵OB=2,
∴OD=OB∙cos30︒=3
∵B为AC的中点,
∴∠AOB=∠BOC=60°
∴∠AOD=90°
根据勾股定理得:AD=227
AO OD
+=
(3)①如图3.圆O与圆D相内切时:
连接OB、OC,过O点作OF⊥AE
∵BC是直径,D是BC的中点
∴以BC为直径的圆的圆心为D点
由(2)可得:3D的半径为1∴31
设AF=x 在Rt △AFO 和Rt △DOF 中,
2222OA AF OD DF -=-
即()2222331x x -=-+- 解得:331x 4
+= ∴AE=3312AF +=
②如图4.圆O 与圆D 相外切时:
连接OB 、OC ,过O 点作OF ⊥AE
∵BC 是直径,D 是BC 的中点
∴以BC 为直径的圆的圆心为D 点
由(2)可得:3D 的半径为1
∴31
在Rt △AFO 和Rt △DOF 中,
2222OA AF OD DF -=-
即()2222331x x -=-
解得:331x 4
-= ∴AE=3312AF -=
【点睛】
本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.
11.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.
(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);
①求此抛物线的函数解析式;
②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;
(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.
【答案】(1)①y=x2-x-4;②△BDM的面积有最大值为36;(2)证明见解析.
【解析】
试题分析:(1)①只需运用待定系数法就可解决问题;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.根据勾股定理的逆定理可得∠ACB=90°,从而可得AB为直径,根据垂径定理可得OD=OC,即可得到D(0,4),然后运用待定系数法可求得直线BD的解
析式为y=-x+4,设M(x,x2-x-4),则E(x,-x+4),从而得到ME=-x2+x+8,运用
割补法可得S△BDM=S△DEM+S△BEM=-(x-2)2+36,然后根据二次函数的最值性就可求出△BDM 的面积的最大值;
(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得
∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b取何值,点D的坐标均不改变.
试题解析:(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,
解得.
∴抛物线的解析式为y=x2-x-4;
②过点M作ME∥y轴,交BD于点E,连接BC,如图1.
∵A(-2,0),B(8,0),C(0,-4),
∴OA=2,OB=8,OC=4,
∴AB=10,AC=2,BC=4,
∴AB2=AC2+BC2,
∴∠ACB=90°,
∴AB为直径.
∵CD⊥AB,
∴OD=OC,
∴D(0,4).
设直线BD的解析式为y=mx+n.
∵B(8,0),D(0,4),
∴,
解得,
∴直线BD的解析式为y=-x+4.
设M(x,x2-x-4),则E(x,-x+4),
∴ME=(-x+4)-(x2-x-4)=-x2+x+8,
∴S△BDM=S△DEM+S△BEM
=ME(x E-x D)+ME(x B-x E)=ME(x B-x D)
=(-x2+x+8)×8=-x2+4x+32=-(x-2)2+36.
∵0<x<8,
∴当x=2时,△BDM的面积有最大值为36;
(2)连接AD、BC,如图2.
若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,
则C(0,-4),OC=4.
设点A(x1,0),B(x2,0),
则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.
∵A、D、B、C四点共圆,
∴∠ADC=∠ABC,∠DAB=∠DCB,
∴△ADO∽△CBO,
∴,
∴OC•OD=OA•OB=4,
∴4OD=4,
∴OD=1,
∴D(0,1),
∴无论b取何值,点D的坐标均不改变.
考点:圆的综合题
12.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD
(1)如图1,求证:AB=AD;
(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.
【答案】(1)见解析;(2)见解析;(3)70
【解析】
【分析】
(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明
△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通
过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=5
2
CD,CD2=
40
3
,由勾股定理可求
解.
【详解】
证明:(1)如图1,连接OA,OB,OD,
∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB
∴AD AB
∴AD=AB;
(2)如图2,连接AE,
∵AE AE
∴∠ABE=∠ADE
在△ABE和△ADF中
AB AD
ABE ADF
BE DF
∴△ABE≌△ADF(SAS)
∴∠BAE=∠DAC
∴BE CD
∴BE=DC
∵BE=DF
∴DF=DC;
(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,
∵DE=BC,BE=CD,
∴四边形BCDE是平行四边形,
∴∠EBC=∠EDC,
∵四边形BEDC是圆内接四边形,
∴∠EBC+∠EDC=180°,
∴∠EDC =∠EBC =90°,
∴EC 是直径,
∴∠FGC =∠EDC =90°
∴∠FDN+∠MDC =90°,且∠MDC+∠MCD =90°,
∴∠FDN =∠MCD ,且∠FND =∠CMD =90°,DF =DC ,
∴△FDN ≌△DCM (AAS )
∴FN =DM ,CM =DN ,
∵EG =GH =5,
∴∠GEH =∠GHE ,且∠GHE =∠DHC ,∠GEH =∠GDC ,
∴∠HDC =∠CHD ,
∴CH =CD ,且CM ⊥DH ,
∴DM =MH =FN ,
∵S △DFG =9, ∴
12DG×FN =9, ∴12
×(5+2FN )×FN =9, ∴FN =2,
∴DM =2,DH =4,
∵∠GEC =∠GDC ,∠EGC =∠DMC ,
∴△EGC ∽△DMC , ∴52
EC
EG CD DM , ∴EC =
52
CD ,且HC =CD , ∴EH =32CD , ∵∠EGD =∠ECD ,∠GEC =∠GDC , ∴△GEH ∽△CHD , ∴EG
EH CH DH
, ∴352
4CD CD
, ∴2403
CD , ∵EC 2﹣CD 2=DE 2,

222254CD CD DE , ∴22140
43DE ,
∴DE =70
∴BC =70
【点睛】
本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点.
13.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .
(1)如图1,求证:DAB DBC ∠=∠;
(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,
BM AM AD =+,求证:BN CN =;
(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点
P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,
12ON OQ =,10PQ OQ +=求CF 的长.
【答案】(1)详见解析;(2)详见解析;(3)10=CF
【解析】
【分析】
(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;
(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;
(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然
后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据610PQ OQ +=,即可分别求出a 和CF .
【详解】
解:(1)延长BO 交O 于G ,连接CG
∵BD 是O 的切线
∴∠OBD=90° ∴∠DBC +∠CBG=90°
∵BG 为直径
∴∠BCG=90°
∴∠CBG +∠G=90°
∴∠DBC=∠G
∵四边形ABGC 为
O 的内接四边形
∴∠DAB=∠G
∴∠DAB=∠DBC
(2)在MB 上截取一点H ,使AM=MH ,连接DH
∴DM 垂直平分AH
∴DH=AD
∴∠DHA=∠DAH
∵BM AM AD =+,=+BM MH BH
∴AD=BH
∴DH=BH
∴∠HDB=∠HBD
∴∠DHA=∠HDB +∠HBD=2∠HBD
由(1)知∠DAB=∠DBC
∴∠DHA=∠DAB=∠DBC
∴∠DBC =2∠HBD
∵∠DBC =∠HBD +∠ABC
∴∠HBD=∠ABC ,∠DBC=2∠ABC
∴∠DAB=2∠ABC
∵∠DAB=∠ABC +∠C
∴∠ABC=∠C
∴AB=AC
∴点A 在BC 的垂直平分线上
∵点O 也在BC 的垂直平分线上
∴AO 垂直平分BC
∴BN CN =
(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,
∵90DCF CDB ∠+∠=︒
∴∠DMC=90°
∵∠OBD=90°
∴∠DMC=∠OBD
∴CF ∥OB
∴∠BGE=∠ECF ,∠CFN=∠BON ,
∴tan ∠BGE=tan ∠ECF=2
由(2)知OA 垂直平分BC
∴∠CNF=∠BNO=90°,BN=CN
∴△CFN ≌△BON
∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r
∵12
ON OQ = ∴OQ=2a
∵CF ∥OB
∴△QGO ∽△QCF ∴
=OG QO CF QF 即2122
==++OG a r a a a ∴OG=12
r 过点O 作OE ′⊥BG ,交PE 于E ′
∴OE ′=OG ·tan ∠BGE=r=OE
∴点E ′与点E 重合
∴∠EOG=90°
∴∠BOE=90°
∵PB 和PE 是圆O 的切线
∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r
∴四边形OBPE 为正方形
∴∠BOE=90°,PE=OB=r
∴∠BCE=12
∠BOE==45° ∴△NQC 为等腰直角三角形
∴NC=NQ=3a ,
∴BC=2NC=6a
在Rt △CFN 中,
=
∵PQ OQ ⊥
∴PQ ∥BC
∴∠PQE=∠BCG
∵PE ∥BG
∴∠PEQ=∠BGC
∴△PQE ∽△BCG ∴
=PQ PE BC BG
即12
6=+PQ r r a r 解得:PQ=4a
∵610PQ OQ +=,
∴4a +2a=610
解得:a=10
∴CF=1010⨯=10
【点睛】
此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.
14.如图,PA ,PB 分别与
O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.
(1)如图1,求证://PF AD ;
(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;
(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5
ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)
257 【解析】
【分析】
(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到
2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;
(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得
APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;
(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,
即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==.延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得
257
PH =
. 【详解】 (1)连接OA 、OB
∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,
∴OA AP ⊥,OB BP ⊥,
∴90OAP OBP ∠=∠=︒,
∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,
∵AB AB =,
∴2AOB ADB ∠=∠,
∴2180P ADB ∠+∠=︒,
∵2180P PEB ∠+∠=︒,
∴ADB PEB ∠=∠,
∴//PF AD
(2)过点P 做PK PF ⊥交EB 延长线于点K
∵90APB ∠=︒,
∴21809090PEB ∠=︒-︒=︒,
∴45PEB ∠=︒,
∵PA 、PB 为圆O 的切线,
∴PA PB =,
∵PK PE ⊥,45PEK ∠=︒,
∴PE PK = ,
∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,。

相关文档
最新文档