北京市丰台区高二物理上学期精选试卷检测题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市丰台区高二物理上学期精选试卷检测题
一、第九章 静电场及其应用选择题易错题培优(难)
1.如图,真空中x 轴上关于O 点对称的M 、N 两点分别固定两异种点电荷,其电荷量分别为1Q +、2Q -,且12Q Q >。

取无穷远处电势为零,则( )
A .只有MN 区间的电场方向向右
B .在N 点右侧附近存在电场强度为零的点
C .在ON 之间存在电势为零的点
D .MO 之间的电势差小于ON 之间的电势差 【答案】BC 【解析】 【分析】 【详解】
AB .1Q +在N 点右侧产生的场强水平向右,2Q -在N 点右侧产生的场强水平向左,又因为
12Q Q >,根据2Q
E k
r
=在N 点右侧附近存在电场强度为零的点,该点左右两侧场强方向相反,所以不仅只有MN 区间的电场方向向右,选项A 错误,B 正确;
C .1Q +、2Q -为两异种点电荷,在ON 之间存在电势为零的点,选项C 正确;
D .因为12Q Q >,MO 之间的电场强度大,所以MO 之间的电势差大于ON 之间的电势差,选项D 错误。

故选BC 。

2.如图所示,在圆心为O 、半径为R 的圆周上等间距分布着三个电荷量均为q 的点电荷
a 、
b 、
c ,其中a 、b 带正电,c 带负电。

已知静电力常量为k ,下列说法正确的是
( )
A .a 受到的库仑力大小为2233kq
R
B .c 23kq
C .a 、b 在O 点产生的场强为
2
R
,方向由O 指向c D .a 、b 、c 在O 点产生的场强为22kq
R
,方向由O 指向c 【答案】BD 【解析】 【分析】 【详解】
AB .根据几何关系得ab 间、bc 间、ac 间的距离
r =
根据库仑力的公式得a 、b 、c 间的库仑力大小
22
223q q F k k r R
==
a 受到的两个力夹角为120︒,所以a 受到的库仑力为
2
23a q F F k R
==
c 受到的两个力夹角为60︒,所以c 受到的库仑力为
2
2
3c F R
== 选项A 错误,B 正确;
C .a 、b 在O 点产生的场强大小相等,根据电场强度定义有
02
q E k
R = a 、b 带正电,故a 在O 点产生的场强方向是由a 指向O ,b 在O 点产生的场强方向是由
b 指向O ,由矢量合成得a 、b 在O 点产生的场强大小
2q E k R
=
方向由O →c ,选项C 错误;
D .同理c 在O 点产生的场强大小为
02q
E k R
=
方向由O →c
运用矢量合成法则得a 、b 、c 在O 点产生的场强
22q
E k R
'=
方向O →c 。

选项D 正确。

故选BD 。

3.有固定绝缘光滑挡板如图所示,A、B为带电小球(可以近似看成点电荷),当用水平向左的力F作用于B时,A、B均处于静止状态.现若稍改变F的大小,使B向左移动一段小距离(不与挡板接触),当A、B重新处于平衡状态时与之前相比()
A.A、B间距离变小
B.水平推力力F减小
C.系统重力势能增加
D.系统的电势能将减小
【答案】BCD
【解析】
【详解】
A.对A受力分析,如图;由于可知,当B向左移动一段小距离时,斜面对A的支持力减小,库仑力减小,根据库仑定律可知,AB间距离变大,选项A错误;
B.对AB 整体,力F等于斜面对A的支持力N的水平分量,因为N减小,可知F减小,选项B正确;
C.因为AB距离增加,则竖直距离变大,则系统重力势能增加,选项C正确;
D.因为AB距离增加,电场力做正功,则电势能减小,选项D正确;
故选BCD.
t=时,甲静止,乙以4.如图()a所示,光滑绝缘水平面上有甲、乙两个点电荷.0
6m/s的初速度向甲运动.此后,它们仅在静电力的作用下沿同一直线运动(整个运动过程中没有接触),它们运动的v t-图像分别如图()b中甲、乙两曲线所示.则由图线可知( )
A .两电荷的电性一定相反
B .甲、乙两个点电荷的质量之比为2:1
C .在20t ~时间内,两电荷的静电力先减小后增大
D .在30t ~时间内,甲的动能一直增大,乙的动能先减小后增大 【答案】BD 【解析】 【详解】
A .由图象0-t 1段看出,甲从静止开始与乙同向运动,说明甲受到了乙的排斥力作用,则知两电荷的电性一定相同,故A 错误.
B .由图示图象可知:v 甲0=0m/s ,v 乙0=6m/s ,v 甲1=v 乙1=2m/s ,两点电荷组成的系统动量守恒,以向左为正方向,由动量守恒定律得:
+=+m v m v m v m v 甲甲0乙乙0甲甲1乙乙1
代入数据解得:
m 甲:m 乙=2:1
故B 正确;
C .0~t 1时间内两电荷间距离逐渐减小,在t 1~t 2时间内两电荷间距离逐渐增大,由库仑定律得知,两电荷间的相互静电力先增大后减小,故C 错误.
D .由图象看出,0~t 3时间内,甲的速度一直增大,则其动能也一直增大,乙的速度先沿原方向减小,后反向增大,则其动能先减小后增大,故D 正确.
5.如图所示,某电场的电场线分布关于 y 轴(沿竖直方向)对称,O 、M 、N 是 y 轴上的三 个点,且 OM=MN 。

P 点在 y 轴右侧,MP ⊥ON 。


A .M 点场强大于 N 点场强
B .M 点电势与 P 点的电势相等
C .将正电荷由 O 点移动到 P 点,电场力做负功
D .在 O 点静止释放一带正电粒子,该粒子将沿 y 轴正方向做直线运动
【答案】AD
【解析】
【详解】
A、从图像上可以看出,M点的电场线比N点的电场线密集,所以M 点场强大于 N 点场强,故A对;
B、沿着电场线电势在降低,由于电场不是匀强电场,所以M和P点不在同一条等势线上,所以M 点电势与 P 点的电势不相等,故B错;
C、结合图像可知:O点的电势高于P点的电势,正电荷从高电势运动到低电势,电场力
做正功,故C错;
D、在 O 点静止释放一带正电粒子,根据电场线的分布可知,正电荷一直受到向上的电场力,力与速度在一条直线上,故粒子做直线运动,故D对;
故选AD
6.如右图,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,.电荷量相等、符号相反的两个电荷分别置于M、N两点,这时O点电场强度的大小为E1;若将N点处的点电荷移至P点,则O点的场强大小变为E2.E1与E2之比为( )
A.1:2 B.2:1 C.D.
【答案】B
【解析】
【分析】
【详解】
试题分析:由得:;若将N点处的点电荷移至P点,则O点的场强大小变为E2,知两点电荷在O点的场强夹角为1200,由矢量的合成知,得:,B对
7.如图所示,A、B、C为放置在光滑水平面上的三个带电小球(可视为点电荷),其中B 与C之间用长为L的绝缘轻质细杆相连,现把A、B、C按一定的位置摆放,可使三个小球都保持静止状态。

已知小球B的带电量为-q,小球C的带电量为+4q,则以下判断正确的是()
A.小球A的带电量可以为任何值
B .轻质细杆一定处于被拉伸状态
C .小球A 与B 之间的距离一定为
4
L D .若将A 向右平移一小段距离,释放后A 一定向左运动 【答案】A 【解析】 【分析】 【详解】
AC .小球A 受力平衡,设小球AB 之间的距离为x ,根据平衡条件有
()
A A 224q q q q
k
k x L x ⋅=+ 解得
x L =
所以小球A 的电荷量可以为任意值,可以带正电,也可以带负电,A 正确,C 错误; B .对小球B ,小球A 和小球C 对其静电力的合力为
A 22
4q q q q F k
k x L ⋅=- 由于不知道小球A 的带电量,所以无法确定小球A 和小球C 对小球B 的静电力的合力是否为零,故无法判断轻杆是否被拉伸,B 错误;
D .小球A 在原来的位置是平衡的,若将A 向右平移一小段距离,小球B 和小球C 对其的静电力均增加,且小球B 对其的静电力增加的更快,但由于小球A 的电性不确定,所以释放后A 的运动方向也不确定,D 错误。

故选A 。

8.如图所示,真空中有两个点电荷Q 1和Q 2,Q 1=+9q ,Q 2=-q ,分别固定在x 轴上x =0处和x =6cm 处,下列说法正确的是( )
A .在x =3cm 处,电场强度为0
B .在区间上有两处电场强度为0
C .在x >9cm 区域各个位置的电场方向均沿x 轴正方向
D .将试探电荷从x =2cm 移到x =4cm 处,电势能增加 【答案】C 【解析】 【详解】
A .某点的电场强度是正电荷Q 1和负电荷Q 2在该处产生的电场的叠加,是合场强。

根据点电荷的场强公式E =
2
kq
r ,所以要使电场强度为零,那么正电荷Q 1和负电荷Q 2在该处产生的场强必须大小相等、方向相反。

因为它们电性相反,在中间的电场方向都向右。

设距离
Q 2为x 0处的电场强度矢量合为0,则:
12
2200
(6)kQ kQ x x =+ 可得:x 0=3cm ,故A 错误;
B .由选项A 的分析可知,合场强为0的点不会在Q 1的左边,因为Q 1的电荷量大于Q 2,也不会在Q 1Q 2之间,因为它们电性相反,在中间的电场方向都向右。

所以,只能在Q 2右边。

即在x 坐标轴上电场强度为零的点只有一个。

故B 错误; C.设距离Q 2为x 0处的电场强度矢量合为0,则:
122200
(6)kQ kQ x x =+ 可得:x 0=3cm ,结合矢量合成可知,在x >9cm 区域各个位置的电场方向均沿x 轴正方向。

故C 正确;
D.由上分析,可知,在0<x <6cm 的区域,场强沿x 轴正方向,将试探电荷+q 从x =2cm 处移至x =4cm 处,电势能减小。

故D 错误。

9.用长为1.4m 的轻质柔软绝缘细线,拴一质量为1.0×10-
2kg 、电荷量为2.0×10-8C 的小
球,细线的上端固定于O 点.现加一水平向右的匀强电场,平衡时细线与铅垂线成370,如图所示.现向左拉小球使细线水平且拉直,静止释放,则(sin370=0.6)
A .该匀强电场的场强为3.75×107N/C
B .平衡时细线的拉力为0.17N
C .经过0.5s ,小球的速度大小为6.25m/s
D .小球第一次通过O 点正下方时,速度大小为7m/s 【答案】C 【解析】 【分析】 【详解】
AB .小球在平衡位置时,由受力分析可知:qE=mgtan370,解得
268
1.010100.75/ 3.7510/
2.010E N C N C --⨯⨯⨯==⨯⨯,细线的拉力:T=20
1.01010
0.125cos370.8
mg T N N ⨯⨯===-,选项AB 错误; C .小球向左被拉到细线水平且拉直的位置,释放后将沿着电场力和重力的合力方向做匀加速运动,其方向与竖直方向成370角,加速度大小为
2220.125/12.5/1.010T a m s m s m =
==⨯-,则经过0.5s ,小球的速度大小为v=at=6.25m/s ,选项C 正确; D .小球从水平位置到最低点的过程中,若无能量损失,则由动能定理:
2
12
mgL qEL mv +=
,带入数据解得v=7m/s ;因小球从水平位置先沿直线运动,然后当细绳被拉直后做圆周运动到达最低点,在绳子被拉直的瞬间有能量的损失,可知到达最低点时的速度小于7m/s ,选项D 错误.
10.如图所示,三个带电小球A 、B 、C 可视为点电荷,所带电荷分别为+Q 、-Q 、+q ;A 、B 固定在绝缘水平桌面上,C 带有小孔,穿在摩擦因数处处相同的粗糙的绝缘直杆上,绝缘杆竖直放置在A 、B 连线的中点处,将C 从杆上某一位置由静止释放,下落至桌面时速度恰好为零。

C 沿杆下滑时带电量保持不变,那么C 在下落过程中,以下判断正确的是( )
A .电场力做正功
B .小球
C 所受摩擦力先减小后增大 C .小球C 下落一半高度时速度一定最大
D .摩擦产生的内能等于小球重力势能减少量
【答案】D 【解析】 【分析】 【详解】
A .A
B 为等量异种点电荷,故产生的电场在AB 连线垂直平分线上,从垂足向两侧场强逐渐减小且中垂线为等势面,小球在下滑过程中沿等势面运动,电场力不做功,故A 错误; B .小球
C 在下滑的过程中,由于场强增大,电场力也将逐渐增大,滑动摩擦力为
f F qE μμ==
故受到的摩擦力一直增大,故B 错误;
C .小球C 的速度先增加后减小,开始时重力大于摩擦力,C 的加速度向下;后来重力小于摩擦力,加速度向上,C 做减速运动;当摩擦力等于重力时加速度为零,此时速度最大,但是此位置不一定在下落的高度一半的位置,故C 错误;
D .小球在下滑过程中沿等势面运动,电场力不做功,初末状态的动能相同,摩擦产生的内能等于小球重力势能减少量,故D 正确; 故选D 。

【点睛】
等量异种点电荷连线的中垂线是等势面,从垂足向两侧场强逐渐减小。

11.如图所示,三个质量均为m 的带电小球(球A 、球B 和球C )被三根不可伸长的绝缘
细绳(绳①、绳②和绳③)系于O 点,三球平衡时绳②处于竖直方向,且悬点O 、球A 、球B 和球C 所在位置正好组成一个边长为a 的正方形。

已知球A 、球B 和球C 均带正电,
电荷量分别为1q 、2q 和3q ,若2
12kq mg a
=,静电力常量为k ,重力加速度为g ,则下列说
法正确的是( )
A .1q 和3q 可以不相等
B .绳①和绳②的拉力之比为1:2
C .绳②的拉力为2mg
D .122:1q q =: 【答案】B 【解析】 【分析】 【详解】
A .因②竖直,可知两边电荷AC 对
B 的库仑力相等,因距离相等可知A
C 带电量必然相等,选项A 错误;
BC .因为2
12kq mg a
=,且13q q =,则
132
1
2(2)
CA F mg a =
= 对A 受力分析可知绳①的拉力
1132
cos 45cos 4524
T mg mg mg =
+= 对ABC 整体受力分析可得
212cos 453T T mg +=
解得
23
2
T mg =

122T T =:选项B 正确,C 错误;
D.对球B,设A对B以及C对B的库仑力均为F,则
22cos45
T mg F
=+
解得
2mg
F=

12 22 4
q q mg k F
a
==
结合
2
1
2
kq
mg
a
=可得
12
22:1
q q=
:
选项D错误。

故选B。

12.如图所示,用两根长度均为l的绝缘轻绳将正电的小球悬挂在水平的天花板下,小球的质量为m,轻绳与天花板的夹角均为θ=30°,小球正下方距离也为l的A处有一绝缘支架上同样有一个带电小球,此时轻绳的张力均为0,现在将支架水平向右移动到B处,B 处位置为与竖直方向的夹角为θ处,小球处于静止状态,则()
A.A处的带电小球带负电
B.A处与B处库仑力大小之比为23
C.支架处于B处,左边绳子张力为
3 mg
D.支架处于B处,右边绳子张力为
3 mg+
【答案】C
【解析】
【分析】
【详解】
A当绝缘支架上的带电小球在A位置时,轻绳的张力均为0,说明上方小球受力平衡,受
力分析可知其只受重力和库仑力,因此A 处的带电小球带正电,故选项A 错误; B.根据库仑定律可得
2
Qq F k
r = 因此在A 处与B 处库仑力大小之比等于带点小球距离平方的倒数比,即
2
22
1A B F r F r = 因为θ=30°,所以
:4:3A B F F =
故选项B 错误;
CD. 支架处于B 处,两球间的库仑力为
3344
B A F F mg =
= 设左、右绳的张力分别为F 1和F 2,则由正交分解可得
123
sin 30cos33040cos mg F F +=
123
cos30sin 30304
cos F F
mg mg ++=
解得
1F mg =-
2F mg = 故选项C 正确,选项D 错误。

故选C 。

二、第十章 静电场中的能量选择题易错题培优(难)
13.一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳分为左右两部分,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称,已知一均匀带电球壳内部任一点的电场强度为零;取无穷远处电势为零,点电荷q 在距离其为r 处的电势为φ=k
q
r
(q 的正负对应φ的正负)。

假设左侧部分在M 点的电场强度为E 1,电势为φ1;右侧部分在M 点的电场强度为E 2,电势为φ2;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4.下列说法正确的是( )
A .若左右两部分的表面积相等,有12E E >,12ϕϕ>
B .若左右两部分的表面积相等,有12E E <,12ϕϕ<
C .不论左右两部分的表面积是否相等,总有12E E >,34E E =
D .只有左右两部分的表面积相等,才有12
E E >,34E E = 【答案】C 【解析】 【详解】
A 、设想将右侧半球补充完整,右侧半球在M 点的电场强度向右,因完整均匀带电球壳内部任一点的电场强度为零,可推知左侧半球在M 点的电场强度方向向左,根据对称性和矢量叠加原则可知,E 1方向水平向左,E 2方向水平向右,左侧部分在M 点产生的场强比右侧电荷在M 点产生的场强大,E 1>E 2,根据几何关系可知,分割后的右侧部分各点到M 点的距离均大于左侧部分各点到M 点的距离,根据k q
r
ϕ=,且球面带负电,q 为负,得:φ1<φ2,故AB 错误;
C 、E 1>E 2与左右两个部分的表面积是否相等无关,完整的均匀带电球壳内部任一点的电场强度为零,根据对称性可知,左右半球壳在M 、N 点的电场强度大小都相等,故左半球壳在M 、N 点的电场强度大小相等,方向相同,故C 正确,
D 错误。

14.两电荷量分别为q 1和q 2的点电荷放在x 轴上的O 、M 两点,两点电荷连线上各点电势φ随x 变化的关系如图所示,其中P 、N 两点的电势为零,NF 段中Q 点电势最高,则( )
A .P 点的电场强度大小为零
B .q 1和q 2为等量异种电荷
C .NQ 间场强方向沿x 轴正方向
D .将一负电荷从N 点移到F 点,电势能先减小后增大 【答案】D 【解析】 【详解】
A .φ-x 图线的斜率等于电场强度,故可知P 点的电场强度大小不为零,A 错误;
B .如果1q 和2q 为等量异种电荷,点连线中垂线是等势面,故连线的中点是零电势点;由于OP PM >,故12q q >,故B 错误;
C .沿着电场线的方向,电势降低,由于从N 到Q 电势升高,故是逆着电场线,即NQ 间场强方向沿x 轴正方向;
D .由于从N 到F ,电势先增加后减小,将一负电荷从N 点移到F 点,根据公式
P E q ϕ=
电势能先减小后增大,故D 正确。

故选D 。

【点睛】
电势为零处,电场强度不一定为零。

电荷在电场中与电势的乘积为电势能。

电场力做功的正负决定电势能的增加与否。

15.如图所示,在纸面内有一直角三角形ABC ,P 1为AB 的中点, P 2为AP 1的中点,BC =2 cm ,∠A = 30°.纸面内有一匀强电场,电子在A 点的电势能为-5 eV ,在C 点的电势能为19 eV ,在P 2点的电势能为3 eV .下列说法正确的是
A .A 点的电势为-5 V
B .B 点的电势为-19 V
C .该电场的电场强度方向由B 点指向A 点
D .该电场的电场强度大小为800 V/m 【答案】D 【解析】 【分析】 【详解】 A .由公式p
E q
ϕ=
可知,
pA A 5eV
5V E q
e
ϕ-=
=
=- 故A 错误.
B .A 到P 2的电势差为
2A 5(3)V 8V P U ϕϕ=-=--=
B A 4548V 27V U ϕϕ=-=-⨯=-
故B 错误.
C .A 点到B 点电势均匀降落,设P 1与B 的中点为P 3,该点电势为:
3
A 3538V 19V P U ϕϕ=-=-⨯=-
C p 19eV
19V C E q
e
ϕ=
=
=-- P 3点与C 为等势点,连接两点的直线为等势线,如图虚线P 3C 所示.由几何关系知,P 3C 与
AB 垂直,所以AB 为电场线,又因为电场线方向由电势高指向电势低,所以该电场的电场强度方向是由A 点指向B 点,故C 错误.
D .P 3与C 为等势点,该电场的电场强度方向是由A 点指向B 点,所以场强为:
28
V/cm 800V/m 1
U E AP =
== 故D 正确.
16.如图所示,虚线AB 和CD 分别为椭圆的长轴和短轴,相交于O 点,两个等量异号点电荷分别位于椭圆的两个焦点M 、N 上.下列说法中正确的是( )
A .O 点的电场强度为零
B .A 、B 两点的电场强度相同
C .将电荷+q 沿曲线CA
D 从C 移到D 的过程中,电势能先减少后增加 D .将电荷+q 沿曲线CBD 从C 移到D 的过程中,电势能先增加后减少 【答案】B 【解析】 【详解】
AB.由等量异种电荷的电场线分布情况可知,A 、B 两点的电场强度相同, O 点的电场强度不为零,故A 错误;B 正确;
CD. 由等量异种电荷的等势面分布情况可知,
A C D
B φφφφ>=>
正电荷在电势高的地方电势能大,所以将电荷+q 沿曲线CAD 从C 移到D 的过程中,电势能先增大后减少,将电荷+q 沿曲线CBD 从C 移到D 的过程中,电势能先减少后增大,故CD 错误。

17.有一电场强度方向沿x 轴的电场,其电势ϕ随x 的分布满足0sin 0.5(V)x ϕϕπ=,如图所示。

一质量为m ,带电荷量为+q 的粒子仅在电场力作用下,以初速度v 0从原点O 处进入电场并沿x 轴正方向运动,则下列关于该粒子运动的说法中不正确...
的是
A .粒子从x =1处运动到x =3处的过程中电势能逐渐减小
B .若v 00q m ϕ0
6q m
ϕC .欲使粒子能够到达x =4处,则粒子从x =02q m
ϕ0
D .若0
065q v m
ϕ=0.5处,但不能运动到4处
【答案】B 【解析】 【分析】
仅有电场力做功,电势能和动能相互转化;根据正电荷在电势高处电势能大,在电势低处电势能小,判断电势能的变化。

粒子如能运动到1处,就能到达4处。

粒子运动到1处电势能最大,动能最小,由能量守恒定律求解最小速度。

【详解】
A .从1到3处电势逐渐减小,正电荷电势能逐渐减小,故A 正确;
B .粒子在运动过程中,仅有电场力做功,说明电势能和动能相互转化,粒子在1处电势能最大,动能最小,从0到1的过程中,应用能量守恒定律:
220011
(0)22
mv q mv ϕ=-+ 解得:0
2q v m
ϕ=
B 错误;
C .根据上述分析,电势能和动能相互转化,粒子能运动到1处就一定能到达4处,所以粒子从0到1处根据能量守恒定律:
2
0112
q mv ϕ=
解得:0
12q v m
ϕ=
,故C 正确; D .根据0sin 0.5(V)x ϕϕπ=粒子在0.5处的电势为102
(V)ϕϕ=,从0到0.5处根据能量守恒定律:
22020211(
0)22
q mv mv ϕ-+= 可知:0
22q v m
ϕ0<<,所以粒子能到达0.5处,但不能运动到4处,故D 正确。

【点睛】
根据电势ϕ随x 的分布图线和粒子的电性,结合能量守恒定律判断电势能和动能的变化。

18.两个质量相同的小球用不可伸长的细线连结,置于场强为E 的匀强电场中,小球1和2均带正电,电量分别为和


).将细线拉直并使之与电场方向平行,如图
所示.若将两小球同时从静止状态释放,则释放后细线中的张力T 为(不计重力及两小球
间的库仑力)
A .T=(-)E
B .T=(-)E
C .T=(+)E
D .T=(
+
)E
【答案】A 【解析】 【分析】 【详解】
将两个小球看做一个整体,整体在水平方向上只受到向右的电场力,故根据牛顿第二定律可得
,对小球2分析,受到向右的电场力,绳子的拉力,由于
,球1
受到向右的电场力大于球2向右的电场力,所以绳子的拉力向右,根据牛顿第二定律有
,联立解得
,故A 正确;
【点睛】
解决本题关键在于把牛顿第二定律和电场力知识结合起来,在研究对象上能学会整体法和
隔离法的应用,分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用隔离法可以较简单的分析问题
19.如图所示,在真空中A 、B 两点分别固定等量异种点电荷-Q 和+Q ,O 是A 、B 连线的中点,acbd 是以O 为中心的正方形,m 、n 、p 分别为ad 、db 、bc 的中点,下列说法正确的是
A .m 、n 两点的电场强度相同
B .电势的高低关系n p ϕϕ=
C .正电荷由a 运动到b ,其电势能增加
D .负电荷由a 运动到c ,电场力做负功 【答案】BC 【解析】 【详解】
A .由等量异种电荷的电场的特点知,m 、n 两点的电场的方向不同,故A 错误;
B .n 、p 两点关于A 、B 连线上下对称,电势相等,故B 正确;
C .正电荷由a 运动到b ,电场力做负功,电势能增大,故C 正确;
D .负电荷由a 运动到c ,电场力做正功,故D 错误。

20.在竖直平面内有水平向右、电场强度为E =1×104 N/C 的匀强电场,在场中有一个半径为R =2 m 的光滑圆环,环内有两根光滑的弦AB 和AC ,A 点所在的半径与竖直直径BC 成
37︒角,质量为0.04 kg 的带电小球由静止从A 点释放,沿弦AB 和AC 到达圆周的时间相
同.现去掉弦AB 和AC ,给小球一个初速度让小球恰能在竖直平面沿环内做圆周运动,取小球圆周运动的最低点为电势能和重力势能的零点,(cos370.8︒=,g =10 m/s 2)下列说法正确的是( )
A .小球所带电量为q =3.6×10-5 C
B.小球做圆周过程中动能最小值是0.5 J
C.小球做圆周运动从B到A的过程中机械能逐渐减小
D.小球做圆周运动的过程中对环的最大压力是3.0N
【答案】BCD
【解析】
【分析】
【详解】
解法一:
A.如图所示,令弦AC与直径BC的夹角为∠1,弦AB与水面夹角为∠2,由几何知识可得,
37
1=18.5
2

∠=︒,21=18.5
∠=∠︒
对沿弦AB带电小球进行受力分析,小球沿着弦AB向上运动,则小球电场力向右,故小球带正电,小球受到水平向右电场力,竖直向下的重力,垂直弦AB向上的支持力,则沿弦AB上有:
1
cos18.5sin18.5
qE mg ma
︒-︒=…………①
同理对沿弦AC的小球受力分析,沿弦AB方向有:
2
sin18.5cos18.5
qE mg ma
︒+︒=…………②
设小球从A点释放,沿弦AB和AC到达圆周的时间为t,则:
2
1
1
2sin18.5
2
R a t
︒=…………③
2
2
1
2cos18.5
2
R a t
︒=…………④
由③/④可得,
1
2
sin18.5
=
cos18.5
a
a

︒…………⑤
联立①②⑤可得,
cos18.5sin18.5sin18.5
sin18.5cos18.5cos18.5
qE mg
qE mg
︒-︒︒
=
︒+︒︒
…………⑥
化简可得,
22
(cos18.5sin18.5)2sin18.5cos18.5
qE mg
︒-︒=︒︒…………⑦
即cos37sin 37qE mg ︒=︒…………⑧ 则54
tan 370.04100.75
C 310C 110
mg q E -︒⨯⨯=
==⨯⨯…………⑨ 故A 错误.
B .小球恰能在竖直平面沿环内做圆周运动,小球受到水平方向的电场力,竖直向下的重力和沿半径指向圆心的支持力,电场力和重力的合力为:
()()
22
10.5N F qE mg =
+=,方向与竖直方向夹角为37°…………⑩
延长半径AO 交圆与D 点.小球在A 点可以不受轨道的弹力,重力和电场力的合力提供向心力,此时小球速度最小:
2
min 1mv F R
=…………⑪ 可得小球的最小动能
2k min 111
0.5J 22
E mv
F R =
== …………⑫ 故B 正确.
C .小球从做圆周运动从B 到A 的过程中电场力做负功,则小球机械能减小,故C 正确.
D .由B 得分析可知,小球在D 点时,对圆环的压力最大,设此时圆环对小球的支持力为
2
max 21mv F F R
-=…………⑬ 从A 到D ,由动能定理可得:
22max min 11
2sin 37+2cos3722
qE R mg R mv mv ⋅︒⋅︒=
-…………⑭ 联立⑬⑭可得,23N F =
由牛顿第三定律可得,小球对圆环的最大压力为:
22'3N F F ==
故D 正确. 解法二:
A. 由题知,小球在复合场中运动,由静止从A 点释放,沿弦AB 和AC 到达圆周的时间相同,则A 点可以认为是等效圆周的最高点,沿直径与之对应圆周上的点可以认为是等效圆周的最低点,对小球进行受力分析,小球应带正电,如图所示,可得
mg tan37︒=qE
解得小球的带电量为
54
3
0.4tan 37
4310C 10
mg q E ︒
-⨯
=
==⨯ 故A 错误;
B. 小球做圆周过程中由于重力和电场力都是恒力,所以它们的合力也是恒力,小球的动能、重力势能和电势能之和保持不变,在圆上各点中,小球在等效最高点A 的势能(重力势能和电势能之和)最大,则其动能最小,由于小球恰能在竖直平面沿环内做圆周运动,根据牛顿第二定律,在A 点其合力作为小球做圆周运动的向心力
cos37mg ︒
=m 2
A
v R
小球做圆周过程中动能最小值
E kmin =
1
2mv A 2=2cos37mgR ︒=0.0410220.8
⨯⨯⨯J=0.5J 故B 正确;
C.由于总能量保持不变,小球从B 到A 过程中电场力做负功,电势能增大,小球的机械能逐渐减小,故C 正确;
D.将重力与电场力等效成新的“重力场”,新“重力场”方向与竖直方向成37︒,等效重力
‘=
cos37mg G ︒,等效重力加速度为cos37g
g ︒
=',小球恰好能做圆周运动,在等效最高点A
点速度为A v g R =
'v ,由动能定理得
22
A 11·222
G R mv mv -'=
在等效最低点,由牛顿第二定律
2
N v F G m R
-='
联立解得小球在等效最低点受到的支持力
N 3.0N F =
根据牛顿第三定律知,小球做圆周运动的过程中对环的最大压力大小也为3.0N ,故D 正确.。

相关文档
最新文档