苏科版2019-2020学年度第一学期九年级数学期末复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版2019-2020学年度第一学期九年级数学期末复习
一选择题(每题3分共24分)
1.下列图形中,是轴对称图形而不是是中心对称图形的有( )
A
B
C D
2.某地区周一至周六每天的平均气温为:2,1-,3,5,6,5,(单位℃)则这组数据的极差是( )℃
A .7
B .6
C .5
D .0
3.估计20的算术平方根的大小在( )
A .2与3之间
B .3与4之间
C .4与5之间
D .5与6之间 4.如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分
D .CD 平分∠ACB
5.两圆的半径分别为2和5,圆心距为7,则这两圆的位置关( ) A .外离
B .外切
C .相交
D .内切
6.把抛物线2
y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ) A .B . C . D .2
(1)3y x =-++
7. 定义:如果一元二次方程2
0(0)a x b x c a ++=≠满足0a b c ++=,那么我们称这个方程为“和谐”方程;如果一元二次方程20(0)a x b x c a ++=≠满足0a b c -+=那么我们称这个方程为“美好”方程,
如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( ) A.方程有两个相等的实数根 B .方程有一根等于0
C.方程两根之和等于0
D .方程两根之积等于0
8. 下图是由10 把相同的折扇组成的“蝶恋花”(图 l )和梅花图案(图 2 )(图中的折扇无重叠), 则梅花图案中的五角星的五个锐角均为 ( )
A . 48º
B . 42º
C . 45º D. 36º
A
B
C
D
二填空:(每题3分共30分)
9. 函数y =
自变量x 的取值范围是 . 10. 如图,⊙O 是正方形 ABCD 的外接圆,点 P 在⊙O 上,则∠APB=______° 11. 写出一个开口向上且图像与x 轴有两个交点的二次函数解析式_________________
12. 某县2012年农民人均年收入为7 800元,计划到2014年农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程为_________________
13. 如图,在平行四边形ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=4,则平行四边形ABCD 的边长BC=______
14. 2
1,23=_______.
x x --则的值 15. 如图是二次函数y=ax 2
+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,方程ax 2
+bx+c =0的解是 .
第10题图 第13题图 第15题图
16.如图,扇形的半径为R ,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为2则R=__________.
17. 如图,菱形ABCD 的边长为2㎝,∠ADC=120°,弧BD 是以A 为圆心AB 长为半径的弧,弧CD 是以点B 为圆心BC 长为半径的弧。

则图中阴影部分的面积为___㎝² 18. 如图,抛物线y=2
ax c --与双曲线y=x
k 的交点A 的横坐标是45-,则关于x 的不等式2
k ax c x --<
0的解集是__________
第16题图 第17题图 第18题图
三.解答题(共86分)
19.(10分)计算:(1
)0
4(1-- (2)
20.(10分) (1)解方程:x 2
+2x -3=0.(配方法) (2)2)(x -2)2
-3(x -2)=0.
22.如图,已知A B 是⊙O 的直径,弦C
D A B ⊥于点
E ,16C D =cm ,20A B =cm ,求O E 的长.
23.姚明,林书豪都是深受大家喜爱的亚裔篮球明星,而且他们都为休斯顿火箭队打球。

下表是两人刚刚加入火箭时前五场季前赛的得分情况。

(第22题)
根据以上信息回答以下问题:
(1)计算两位球员的前五比赛的平均得分.
(2)从前五场比赛得分上看谁的成绩更稳定,并说明理由.
(3)国内著名篮球评论员杨毅曾根据两位球员前五场比赛得分的折线统计图(你可以绘制草图)做出如下评价:林书豪虽为亚裔球员但是他生长在美国熟悉美国职业篮球文化,林书豪今后的场均成绩将趋于15分左右,而姚明需要时间适应他乡环境,他成绩处于____________________________________(结合折线图写出一条合理性分析).
24. 已知二次函数21
2
y x bx c =++的图象经过两点(0,2)(4,0)A B -、,当x ≥0时,其图象如图所示.
(1)求该函数的关系式,并写出抛物线的顶点坐标; (2)在所给坐标系中画出抛物线当0x <时的图象; (3)根据图象,直接..写出当x 为何值时,0y <.
25. 如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G .
(1)直线FC 与⊙O 有何位置关系?并说明理由; (2)若2OB =,∠G=30°求CD 的长.
26.苔干美味可口,是春节期间馈赠亲朋好友的理想佳肴,某苔干加工厂为指导今年的苔干销售,对往年的市场销售情况进行了调查统计,得到如下数据: (1)在如图的直角坐标系内,作出各组有序数对 (x ,y )所对应的点.连接各点并观察所得的图形,
判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;
(第24题)
(2)若苔干制作本为13元/千克,试求销售利润 P (元)与销售价x (元/千克)之间的函数关系式, 并求出当x 取何值时,P 的值最大?
27. 如图, ⊙P 的半径为r,圆心P 在抛物线2y ax c =+上运动.抛物线与x 轴和y 轴分别交与点A(1,0)
点B(0,-1).
(1) 求:抛物线的解析式。

(2) 当r=1,且 ⊙P 与x 轴相切时,求点P 的坐标。

(3) 是否存在⊙P 满足⊙P 与x 轴和y 轴同时相切,若存在请确定点P 的个数并求出r 的值;若不存在请说明理由。

28.数学是一种研究数、式、几何形体特点的自然科学,数学存在着各种现象、规律和内在联系。

如:正
;含有30。

利用上面的两个规律解决下面的图形变换问题。

已知:如图①正方形ABCD 与正方形EFGH 中,点H 与点A 重合,点E 、F 、G 分别在AB 、AC 、AD 上。

DG 与BE 有怎样的关系_______________;
C F
D G
=____________(直接写出答案无需证明..........)
(1)若将正方形EFGH绕点A逆时针旋转到图②的位置,(1)中的结论是否仍然都成立?为什么?(2)若果将正方形EFGH沿着AC平移,如图③,当点F与点C重合时运动停止。

①若AB=5㎝,HE=1㎝,令将正方形EFGH㎝/s,运动时间为t.求:当t为何值时△DHF
为等腰三角形?
若AB=a,HE=b, 正方形EFGH运动的过程中是否存在某一时刻使△DHF为正三角,若存在直接写出
....的值;若不存在请简要说明理由。

相关文档
最新文档