种内关系和种间关系例谈
种内与种间关系
15
2、性选择
(1)植物的性选择:选择受精,如自交不亲 和性、远交不亲和性、多个花粉精核间竞争。 • 植物选择受精的生物学意义: • 一方面在同种中可以保证最适应的两性细胞 的高度融合,从而增强其后代的存活能力; • 另一方面也限制了异种之间的自由交配,使 种间生殖隔离,从而保证了各个种的相对稳 定性。
26
4、动物的婚配制度
A、婚配制度的定义和进化 • 婚配制度:指种群内婚配的各种类型。 包括异性间相互识别、配偶的数目、配 偶持续时间以及对后代的抚育等。
27
求偶行为的复杂性
• • • • • • • • • ①鸣叫、鸣啭、发声; ②体色显示,发光; ③释放分泌物; ④身体接触; ⑤舞蹈和婚飞; ⑥求偶喂食; ⑦象征性营巢; ⑧装饰求偶场; ⑨公共竞技场求偶等。
21
再如 求偶给饵:就是在婚配前的求偶期 间,雄性给雌性采集饵料作为礼物向 雌性献殷勤,这种行为与雌性繁殖前 的营养补给以及对抚幼运送饵料的能 力密切相关。
22
有些雌性有识别近亲异性的能力: 如欧洲天鹅通过羽色和姿容,山雀 通过鸣叫来识别近亲雄性。
23
•雌性选择的目的是生产出健康优质的后 代和提高繁殖成效,但明亮的色泽、美 丽的装饰必然给雄性带来极大的危险。 •所以,一方面,只有在生活史的晚期、 繁殖季节才出现美丽的色泽和装饰,或 埋藏在羽衣的底面。 •另一方面,让步赛特征表明它在一些方 面具有上等基因。
5
单 量 与 密 度 的 关 系 面 积 上 三 叶 草 的 干 物 质 产
6
位
亚麻在不同密度下发育到成熟期的植株大小
7
2、-3/2自疏法则 (the –3/2 thinning law)
• 自疏现象(self-thinning):随着植物密度的提 高,种内竞争不仅影响到植株生长发育的速 度,也影响到植株的存活率,在高密度样方 中,有些植株死亡了,这种现象就叫自疏现象。
种间关系举例
种间关系举例生物之间也有着许多关系,其实生物之间的关系分为两种,一种是在同种种群内的种内关系,包括种内互助和种内斗争;另一种则是不同物种种群之间的相互作用所形成的关系,两个种群的相互关系可以是间接的,也可以是直接的相互影响,这种影响可能是有害的,也可能是有利的。
例如:共生、寄生、竞争、捕食等。
我们今天就一起来了解一下生物之间的关系吧。
(一)种内关系种内关系(同种生物)存在于生物种群内部个体间的相互关系称为种内关系,存在于生物种群内部个体间的相互关系称为种内关系。
1.种内互助生活中常见同种生物群居的现象,他们为了维持生存,互相合作的现象,叫做种内互助。
比如说狮群。
狮群中一般包含多数母狮,少数雄狮以及它们所生的孩子。
母狮负责捕猎、传宗接代、抚育后代。
雄狮负责在领地周边巡逻来防范其他雄狮的入侵。
母狮和雄狮共同合作,维持生活。
2.种内斗争同种生物个体之间,争夺生活条件而发生的斗争,叫做种内斗争。
还是我们刚刚提及过的狮群,在狮群内分工明确的同时,存在一定斗争,当年幼的雄狮长大后,会被狮群赶出去让它自己闯荡成长,当它们身强力壮后,便会去挑战狮群中的雄狮,接管这个狮群,就会出现一定的斗争。
(二)种间关系种间关系是指不同物种种群之间的相互作用所形成的关系,这种相互关系可以是间接的,也可以是直接的相互影响。
例如:共生、寄生、竞争、捕食等。
1.共生两种生物体之间生活在一起的互相帮助。
比如说小丑鱼居住在海葵的触手之间,这些鱼可以使海葵免于被其他鱼类食用,而海葵有刺细胞的触手,可使小丑鱼免于被掠食,而小丑鱼本身则会分泌一种黏液在身体表面,保护自己不被海葵伤害。
它们之间的互相帮助便叫做共生。
2.寄生寄生即两种生物在一起生活,一方受益,另一方受害,后者给前者提供营养物质和居住场所。
比如菟丝子寄生在大豆上。
菟丝子这个名字我们不常听到,但一定见过它。
菟丝子和绝大部分植物不一样,它并不是通过光合作用来生存的,而是寄生在大豆等豆类作物上,形成寄生关系。
种内关系和种间关系
时间
生物A
生物B
捕食
指一种生物以另一种为食的现象。
例如:草食动物兔以某些植物为食 小型肉食动物可以草食动物为食 大型肉食动物可以草食或小型肉食动物为食 杂食性生物可以植物或动物为食
如果用坐标系来表示两种生物的寄生关系,则可表示如下:
生物数量
时间
生物数量
时间
A 宿主
B 寄主
A 宿主
B 寄主
C 寄主
两种生物生活在一起,由于争夺资源、空间等而发生斗争的现象叫竞争。结果往往对一方不利,甚至于被消灭。
大草履虫小草履虫
分别培养
生活很好
混合培养
大草履虫死亡小草履虫正常
如果用坐标系来表示两种生物的竞争关系,则可表示为
例四:狼群在追捕马鹿时,常常是几只狼在后面追,另几只狼在前面抄近路堵截,配合默契,它们的阴谋往往能够得成。
种内斗争
两种生物共同生活在一起,相互依赖,彼此有利;或对一方有利但对另一方无害;如果彼此分开,则双方或者一方不能独立生存。两种生物的这种关系叫共生 。
藻类
光合作用
给真菌提供有机物
例如:地衣是藻类与真菌共生体
种内斗争
种内互助
1 种内关系
2 种间关系
共生
寄生
竞争
捕食
种内互助
例一:社会性昆虫
例二:非社会性生物
Eg蚂蚁、蜜蜂
Eg 蝗虫、鱼类、某些哺乳类等;
同种生物生活在一起,通力合作,共同维护群体的生存。如:群聚的生活的某些生物,聚集成群,对捕食和御敌是有利的
例三:麝牛聚集成群时,遇到狼群,雄牛就围成一圈,头朝外面,把雌牛和小牛围在圈内,可免遭狼群袭击。
真菌
吸收水和无机盐
生态学课件第5章种内种间关系
生物多样性的形成与维持
生物多样性是指在一定区域内生物种类的丰富程度,包括基因多样性、物种多样性 和生态系统多样性。
种间关系是生物多样性的重要基础,不同物种之间通过竞争、共生、捕食和被捕食 等关系,共同形成和维持了生物多样性。
种间关系的复杂性和动态性使得生物多样性得以维持,同时也有助于增强生态系统 的稳定性和适应性。
竞争关系
竞争关系
是指两种或多种生物生活在同一环境中,为了争夺相同的资源而产生的一种相互制约的关系。例如,两种不同的 植物可能会竞争阳光、水分和养分等资源,从而影响它们的生长和繁殖。
总结
竞争关系是一种相互制约的关系,两种或多种生物为了争夺相同的资源而展开竞争,从而影响各自的生存和繁衍。
寄生关系
寄生关系
总结词
狼捕食兔子以获取食物,而兔子为了生 存则尽可能避免被捕食。
VS
详细描述
狼是兔子的天敌,通常会捕食健康的成年 兔子。兔子为了生存,进化出了敏锐的感 知和快速的反应能力,以便及时发现并逃 避狼的捕食。这种关系促进了双方的进化 ,维持了生态平衡。
森林中树木间的竞争关系
总结词
树木之间为了争夺阳光、水分和营养物质而 相互竞争,导致优胜劣汰。
种群增长是指在一定时间内种群数量的变化情况,受到出生率、死亡率、迁入 率和迁出率等因素的影响。
02 种间关系
互利共生关系
互利共生关系
是指两种生物生活在一起,彼此都有利,但两者分开后,各自也能独立生活。例 如,蜜蜂和花朵之间存在互利共生关系,蜜蜂通过花朵获得食物,同时帮助花朵 授粉。
总结
互利共生关系是一种相互依赖的关系,两种生物彼此提供对方所需的好处,共同 生存和繁衍。
是指一种生物寄居在另一种生物的体内或体表,从寄主身上获取营养,对寄主造成一定的危害。例如 ,某些昆虫寄生在其他昆虫体内,吸取寄主的营养物质,导致寄主死亡。
生物种内和种间关系
-3/2自疏法则:
W = C×d-a
a一般为3/2。即W = C×d-3/2
思考题:
种植密度持续提高,对产量有何影响? 最后产量恒值法则和自疏现象发生的原因?
种内关系之二:生物的性行为
植物的性别系统 雌雄同花:多见 同株异花:
雌雄异株:少见,优势?
哪个系统更进化?
种内关系之二:
动物的婚配制度
过度放牧使草场退化
种间关系之五:互利共生
生物之间的和平共处现象
互利共生
指两种生物生活在一起,彼此有利,两者分开以后都不能独立生 活。 地衣中真菌和藻类植物的共生体,两者分开,不能独立生活。 白蚁和肠内鞭毛虫的关系:白蚁体内无法分泌纤维素脢,无 法消化木质纤维素,然而鞭毛虫能分泌一种消化纤维素脢 蚂蚁和蚜虫; 豆科植物与根瘤菌;
一部分。
(2)捕食者只是利用了对象种中超出环境所能支持的 部分个体,所以对最终猎物种群大小没有影响。
捕食有什么生态意义?
捕食的生态意义:
对猎物种群的数量和质量起着重要的生态意义 保持种群规模平衡:种群规模增大 例如 鹿种群的稳定 捕食者淘汰多余个体
促进种群健康:患病个体被捕杀以后,消除了病原体,减少传
植物和食草动物的协同进化
化学防御:植物发展防御机制, 积累有毒物质,以对付食草动物的进攻, VS 食草动物在进化中形成特殊的酶进行解毒; 物理防御: 植物长刺 VS 动物调整食用季节
食草作用对植物种群有何影响?
适度的食草作用(放牧),可以促进植物生长
报复性生长
放牧强度对植物生长的影响
息地或食物结构,避免与竞争对手的生态位重叠
,以获取新的生存方式。 生态位重叠越显著,那么生态位分化越强烈
生态学种间和种内关系
寄生与宿主关系
寄生定义
一个物种(寄生者)从另一个物种(宿主)身上获取营养,通常 对宿主造成损害。
寄生类型
寄生关系可以是内寄生或外寄生。内寄生生活在宿主体内,而外寄 生生活在宿主的表面或与宿主接触的地方。
寄生与宿主关系的结果
寄生关系通常会对宿主产生负面影响,如降低繁殖能力、生长速度 或生存机会。
共栖
社会等级
优势等级
在某些动物群体中,个体之间存在优势等级差异,例如狮子 和猴子。优势等级有助于协调群体行为,确保群体稳定和资 源分配的合理性。
社会行为
动物会根据优势等级表现出不同的社会行为,例如屈从、顺 从和支配等。这些行为有助于维护群体内部的和谐与稳定。
繁殖策略
单配制
一些动物采用单配制繁殖策略,即一雄一雌结成配偶共同抚育后代。这种策略 有助于提高后代的存活率。
在水资源管理方面,应合理配置水资源 ,防止水资源的过度开发和污染,保障 生态系统的正常运转。
在土壤改良方面,可以采用土壤改良剂 、有机废弃物等手段改善土壤理化性质 ,提高土壤肥力。
生态恢复和重建的方法包括植被恢复、 土壤改良、水资源管理等,旨在改善生 态环境质量,提高生态系统的稳定性。
在植被恢复方面,可以选择适宜的植物 种类和种植方式,促进植被的快速生长 和演替。
种间和种内关系可以影响生物地球化学循环,如水循环、气候变 化等。
05 种间和种内关系的应用
生物防治
生物防治是指利用天敌、寄生 性昆虫、微生物等有益生物来 控制或减少有害生物种群数量
的方法。
生物防治在农业、林业和城市 生态系统中广泛应用,可以有 效降低害虫和病原体的危害, 减少化学农药的使用,保护生
落的结构和功能。
群落演替
07-种内与种间关系
种间关系
指两个或多个不同物种在共同的时间和空间环境中 生活,由于不同物种相互成为环境因子,形成了不 同物种之间的相互作用 相互动态:相互作用的不同物种的种群动态 协同进化:物种在进化上的相互作用 种间竞争 捕食作用 寄生和共生
18
主要研究方向
关系类型
(一) 种间竞争
33
稳定的共存
种间竞争总结
1/K1和1/K2代表物种1和物种2的种内竞争强度
β/K2代表物种1对物种2的种间竞争强度
α/K1代表物种2对物种1的种间竞争强度 1/K1< β/K2, 1/K2 > α/K1 ,种2被排斥,种1取胜 1/K2 < α/K1, 1/K1 > β/K2,种1被排斥,种2 取胜 1/K1 < β/K2, 1/K2 < α/K1,不稳定的平衡点,皆可能 获胜 1/K1 > β/K2/, K2 > α/K1, 稳定的平衡点,共存
壮、体重大、性成熟程度高,具有打斗经验。
生理基础:是血液中有较高浓度的雄性激素(睾丸
酮)。实验证明,给低位鸡注射睾丸酮就会出现反 啄食顺序的表现,许多野生动物也有类似结果。
一般说来,社群中雌雄各有等级顺序,主雄多 与主雌或若干强雌交配,不允许其他雄体与后 者交配。
14
领域性社会等级与种群调节的关系
Growth curves for双核小草履虫Paramecium aurelia and大 草履虫P. caudatumin separate and mixed cultures
大草履虫与袋状草履虫共培养
生态学:第五章 种内与种间关系
先的位置。在社群等级关系中地位的高低,可能受雄性激素的水
平、强弱、大小、体重、成熟程度、打斗经验、是否受伤、疲劳
等因素的影响,特别与雄性激素的水平有关。若给低位鸡注射睾
丸酮,它就会出现等级顺序变化。
• 社会等级的意义:通常,有稳定社会等级顺序的的群体,其个体
生长的速度往往比不稳定的快,产卵也较多,原因是在不稳定的
环 境 科 学 系
密度效应
最后产量恒值法则:在一定范围内,当条件 相同时,不管一个种群的密度如何,最后产 量差不多总是一样的。(澳大利亚, Donald,1951) Y(C)=W·d=Ki W为植物个体平均重量; d为密度;Y(C)为单位面积产量;Ki为常数。环
境 科 学 系
三叶草播种密度与产量的关系
多配偶制:一个个体具有两个或更多的配偶。如果一对配偶
中的一个能从养育关怀后代中解脱出来,就有可能把能量和
精力消耗在种内竞争配偶和竞争资源上去;如果资源分布不
均匀,社群等级中处于高地位的种类有了配偶以后,未有配
偶的一方选择配偶的困难将会增加,出现多配偶现象。包括 一雄多雌,如海豹,北美松鸡;和一雌多雄,如美洲雉鴴。
环
文献阅读:植物他感作用的研究进展。
境 科
学
系
生态位理论
生态位(niche)是物种在生物群落
或生态系统中的地位和作用。
多维生态位空间(multidimensional niche space):影响 有机体的环境变量作为一系列维,
湿 度
温度
多维变量便是n-维空间,称多维生
态位空间,或n-维超体积(n-
K1 < K2 /β,K2> K1/α 1/K1>β/K2,1/K2<α/K1,N1失败,N2取胜;
生物种内和种间关系
高 斯 假 说
57
Growth curves for Paramecium aurelia and P. caudatumin
separate and mixed cultures
高斯假说中的失败者如何生存? 生态位的分化
58
生态位分化: 竞争中处于劣势的个体,通过调整自身的栖
息地或食物结构,避免与竞争对手的生态位重叠 ,以获取新的生存方式。
15
种内关系之三:生物的领域性
16
什么是领域性? 领域性
指个体、家庭或其他社群单位所占据并积极保卫不让 同种其他个体侵入的空间
17
哪些因素影响领域的大小?
18
影响领域大小的因素: ➢体重 ➢食物品质 ➢生活史
19
影响领域大小的因素之一:体重
20
?
与体重的关系?
21
影响领域大小的因素之二:食物品质 ?
27
形形色色的雷锋精神 种内关系之五:利他行为
28
什么是利他行为? 利他行为
指生物个体通过牺牲自我而使社群整体或其他个 体获得利益的行为。
29
利他行为的案例:
蜘蛛和螳螂 魑(ci)幅 工蚁或工蜂 犬鼠
30
为什么存在利他行为? 利他行为的动机?
31
利他行为的动机:
➢为了种群的繁衍 ➢利益互惠 ➢被操纵或欺骗
生态位重叠越显著,那么生态位分化越强烈
59
60
61
Resource partitioning
• Resource partitioning is demonstrated by the feeding habits of five species of North American warblers. Each of these insecteating species searches for food in different regions of spruce trees.
生态学 -第三章 种内与种间关系
(2)、他将种间竞争作为生态位的特殊的环境参数。
(3)、物种的生态位也将被生境所限制,生境会使生 态位的部分内含缺失。
基础生态位:物种能够栖息的理论上 的最大空间,没有种间竞争的种的生 态位。
实际生态位:物种能够占据的生态位 空间。(由竞争和捕食胁迫造成,互 利共生可扩大实际生态位)。
生态位分化与重叠
三个共存物种的资源利用曲线。 (a) 图生态位狭,相互重叠少; (b) 图生态位宽,相互重叠多。 d--为曲线峰值间的距离,w--为曲线的标准差
d>w : 种间竞争小,种内竞争强度大。 w>d: 种内竞争小,种间竞争强度大。 竞争释放:在缺乏竞争者时,物种扩张其实际生态位的现象。
竞争排斥原理与生态位的概念应用到自然生物群落的要点:
第三节 种内与种间关系
一、 种内关系 1、密度效应 2、动植物的性行为
二、 种间关系 1、高斯假说 2、Lotka-Volterra模型 3、生态位理论 4、他感作用 5、捕食作用 6、寄生与共生
一、种内关系
1、密度效应
密度效应——在一定时间内,当种群的个体数目增加 时,就必定出现邻接个体之间的相互影响,称为密度 效应或邻接效应。
1、高斯假说(竞争排斥原理)
在一个稳定的环境内,两个以上受资源限制的、具有相 同资源利用方式的种,不能长期共存在一起,也即完全的竞争 者不能共存。
2、Lotka-Volterra模型
物种1 物种2
dN1 / dt r1N1(K1 N1 / K1) dN2 / dt r2 N2 (K2 N2 / K2 )
化学物质,对其他物质产生直接或间 接的影响。
(2)、他感作用的物质 乙烯、香精油、酚及其衍生物、不饱和内酯、生物碱、 配糖体
(完整版)第七章种内与种间关系
(3)性选择(sexual selection)
• 性选择是由于配偶竞争中生殖成效区别所引起的。在两性 问对于后代投入的差别越大,为接近高投入性别(一般是 雌性)者,低投入性别(一般是雄性)者之间的竞争也就越激 烈;高投入性别者的更加挑剔,必然可从低投入性别者那 里获得更好的出价。简言之,雄性应该是有进攻性的,雌 性应该是挑剔性的。
• 美国生态学家Wilson根据雌雄两性在婚配中这种投入不平 衡性提出:高等动物最常见的婚配制度是一雄多雌制,而一 雄一雌的单配偶制则是由原始的一雄多雌的多配偶制进化 而来的。
• 婚配制度的类型 单配制 多配制 一雄多雌制:海狗 一雌多雄制:矩翅水雉
• 决定动物婚配制度的主要生态因素可能是资源的分布,主 要是食物和营巢地在空间和时间上的分布情况。
植物的最后产量差不多总是一样的。
在高密度情况下,植株之间对光、水、营养物等资源的 竞争十分激烈。在资源有限时,植株的生长率降低,个体变 小。
(2)-3/2自疏法则
随着播种密度的提高,种内竞争不仅影响到植株生长发 育的速度,也影响到植株的存活率。同样在年龄相等的固 着性动物群体中,竞争个体不能逃避,竞争结果典型的也 是使较少量的较大个体存活下来。这一过程叫做自疏(selfthinning)。
• Fisher氏私奔模型(Fisher’s runaway model)认为,雄 性这种诱惑性(epigamic)特征开始被恣意的雌性所选择, 并将继续进化,如果雌性基因对挑选特征(如选大尾的)编 码,雄性也会对该特征(如尾的大小)编码。
极乐鸟(天堂鸟)
(4)植物的性别系统 • 雌雄同花: • 雌雄两类花:玉米,南瓜 • 雌雄异株:银杏
• 美国生态学家T.H.Hamilton(1980)提出了一种假说:营 有性繁殖的物种之间的竞争和捕食者—猎物间相互作用是 使有性繁殖持续保持的重要因素。
第七章 种内与种间关系
• 在游动时可形成有利于游泳的动力学条件,比单独行 动时减低阻力,游泳的效率最高。
• 集群可能改变环境的化学性质,已有研究证明,鱼类 在集群条件下比营个体生活时对有毒物质的抵御能力 更强,这可能与集群分泌黏液和其他物质以分解或中 和毒物有关。
同理,N2种群中每个个体对自身种群的增长 抑制作用为1/K2。
另外,从(1)、(2)两个方程以及α、β的 定义中可知:
N2种群中每个个体对N1种群的影响为:α/K1 N1种群中每个个体对N2种群的影响为:β/K2 因此,当物种2可以抑制物种1时,可以认为, 物种2对物种1的影响 > 物种2对自身的影响,即 α/K1 > 1/K2。 整理后得:K2 > K1/α。
• 美国生态学家T.H.Hamilton(1980)提出了一种假说:营 有性繁殖的物种之间的竞争和捕食者—猎物间相互作用是 使有性繁殖持续保持的重要因素。
• 红皇后效应(Red Queen Effect):病原生物在生存竞争过 程中不断进攻遗传上一致的宿主种群并将其淘汰,而只有 那些具不断交化的、进行有性繁殖的基因型的宿主能存活 下来;宿主的多型又进而使病原体生物同样也进行有性繁 殖、这样才能使病原体生物保持有进攻多变型宿主的能力。
植物的最后产量差不多总是一样的。
在高密度情况下,植株之间对光、水、营养物等资源的 竞争十分激烈。在资源有限时,植株的生长率降低,个体变 小。
(2)-3/2自疏法则
随着播种密度的提高,种内竞争不仅影响到植株生长发 育的速度,也影响到植株的存活率。同样在年龄相等的固 着性动物群体中,竞争个体不能逃避,竞争结果典型的也 是使较少量的较大个体存活下来。这一过程叫做自疏(selfthinning)。
生态学:第五章 种内与种间关系
干燥的条件下取胜。
环
境
科
学
系
高斯假说
G.F.Gause假说 (1934):当两个 物种利用同一资 源和空间时产生 的种间竞争现象。 两个物种越相似, 生态位重叠越多, 竞争越激烈。
环 境 科 学 系
洛特卡-沃尔泰勒(Lotka-Volterra)竞争模型
逻辑斯缔模型: dN/dt=rmN(K -N)/K
环 境
群体中,相互间的格斗要消耗许多能量。通过自然选择而保存下
科 学
来的社会等级顺序是很有意义的。
系
第二节 种间关系
种间竞争:指具有相似要求的物种,为了争夺 空间和资源,而产生的一种直接或间接抑制对
方的现象。
高斯假说
Lotka—Volterra模型
植物的竞争模型
他感作用
生态位理论
捕食作用
环 境
科
寄生与共生
学 系
种间竞争
两物种利用同样的有限资源时,种间竞争会发生。 包括资源利用性竞争,即两种生物之间没有直接干 涉,只有资源总量减少而产生竞争;相互干涉性竞 争,如杂谷盗和锯谷盗不仅竞争食物且相互吃卵。
种间竞争的例子:
粟色拟谷盗和杂拟谷盗混养实验,粟色拟谷盗在 高温和潮湿的条件下取胜,而杂拟谷盗在低温和
第五章 种内与种间关系
第一节 种内关系 第二节 种间关系
思考题
环 境 科 学 系
灰沼狸站岗放哨
环
境
科
学
螽斯伪装成树叶
系
种内关系和种间关系
种内关系:存在于各个生物种群内部的个体与个体 之间的关系。种内关系的主要形式有竞争、自相残 杀和利他等。
利他作用:譬如社会昆虫。白蚁的巢穴如被打开, 工蚁和幼虫都向内移动,兵蚁则向外移动以围堵缺 口;工锋在保卫蜂巢时放出毒刺,这实际上是一种 “自杀行动”。利他行为的产生与群体选择有关。
种内关系和种间关系实例
种内关系和种间关系实例沈渭泉生物与环境的主要关系如下表:1.“群聚”互助①“社会性”群聚;如蜜蜂群,包括蜂王、工蜂等。
蚂蚁群、白蚁群,包括蚁王、工蚁、兵蚁等。
②“生活性”群聚:如大雁群的南来北往、鱼群的洄游等。
2.“报警”互助如狼在群捕大动物或袭击“敌人”时,用嚎叫引来狼群共同出击(声);乌鸦看到猫头鹰发出特殊的鸣叫以引起同类的警惕(声);蜂在受刺激时,释放一种化学物质引来同类蜂共同对敌(化);竹荚鱼在未打乱鳀鱼的群体之前很难单独捉到鳀鱼。
竹荚鱼受到狐鲣鱼袭击时,竹荚鱼也能形成稠密的群体(化);受伤的鱼能产生一种物质警告其它个体(化);当一只蚜虫受到攻击时,释放化学物质从而使邻近的蚜虫迅速逃避敌人(化);鹿闪动白尾巴报警(示);蚂蚁报警的方式有三种①肛门上和口腔边腺体发出外激素(化);②跳警戒舞(示);③身体撞击巢壁产生警戒颤动(示)。
3.同类相食如肉食性鲈鱼在水体中没有其它鱼类时,以本种幼鱼为食;鳕鱼丰产时,以幼鱼为饵料;面粉甲虫产卵过多时,自食其卵;雄螳螂完成交配后往往是雌螳螂一顿美餐;虾、啮齿类动物也有食同类现象。
4.争夺配偶如蟋蟀之斗、斗鸡、雄海狗争夺配偶,以及雄性猴为争夺“王位”打得头破血流。
5.争夺生活场所按树种植过密有自毒现象,部分植株死亡;椎实螺在高密度时产卵减少;同一寄主上的许多槲寄生为养料争得“你死我活”。
6.种内寄生如深水(角)的雄性鱼个体小,用口吸附在雌鱼体表并吸其体液为食。
7.共栖(偏利共生) 如蛤贝外套腔内共栖豆蟹,食宿主的残食和排泄物:“偕老同穴”是指生活在深海里的一种矽质水绵和它中央腔内生活的一对俪虾,俪虾食海绵的残食并洋中的一种小珠鱼常与海参或牡蛎共栖。
小珠鱼分享它们的猎获物。
藻类在龟甲壳上寄居;螺旋菌附着在有粘液的披发鞭毛虫体外生活;蓝绿藻体外有许多细菌以其分泌物为生;一种棘胫小蠹利用特殊的贮藏器内的孢子萌发菌丝,吸收树木渗漏的树汁为营养,对树木无害;海葵附着在寄居蟹的贝壳上,借其移动,获得食物或吃剩残食。
第7章:种内和种间关系可编辑全文
种群1的种内竞争强度小于种间竞争强度 K2<K1/α,即1/K2>α/K1,
种群2的种内竞争强度大于种间竞争强度 B. 种群2取胜,种群1被排挤掉。
K1<K2/β, K2>K1/α,与A情况相反
C.两种群不稳定地共存。 K1>K2/β,即1/K1<β/K2 ; K2>K1/α,即1/K2<α/K1
Y=Wad=Ki
Y单位面积产量,Wa植物个体平均重量,d为密度,Ki常数
原因:一定环境下的资源承载力是一定的;密度增加时, 竞争加强,生长率下降,个体变小
密度效应
7.1.1.2 -3/2自疏法则
自疏现象:同一种植物因密度引起的个体死亡
自疏导致的密度和个体重量的关系: W = C d -3/2
(3) 生态习性的分离(如时间分隔) 均以啮齿动物为主要食物的猛禽类,分为昼
行性(隼形目)和夜行性(鸮形目)两大类。
高斯假说(Gause hypothesis)
在一个稳定的环境内,两个以上受资 源限制的,但具有相同资源利用方式的物 种,不能在长期共存在一起。即完全的竟 争者不能共存。这一假说被称为高斯假说, 又称为竞争排斥原理。
第7章 种内与种间关系
种内关系:生物种群内部的个体间的 相互作用。主要有竞争、自相残杀、性别 关系、领域性和社会等级
种间关系:生活于同一生境中的物种 间的相互作用。主要有竞争、捕食、互利 共生
种间相互作用的基本类型
相互作用型
物种 1 物种 2
相关作用的一般特征
中性作用
○
○ 两个物种彼此不受影响
竞争:直接干扰型
dd
w 窄生态位
种内关系和种间关系例谈
种内关系和种间关系例谈盛文龙环境中有许多因素都会影响生物体的形态、结构、生理和分布,其中生物因素可以分为种内关系和种间关系。
1.种内关系:种内关系是同种生物个体之间的关系,包括种内斗争和种内互助。
(1)种内斗争:同种生物个体之间,由于争夺食物,栖息地、配偶或其它生活条件而发生的斗争。
它是种群数量调节的一个重要因素。
植物同种个体间斗争一般表现在对水分、养料、光照、空气等无机环境因素的需求上。
同种动物间,由于食物、栖所、繁殖或其他因素的矛盾而斗争也时有发生。
如有的动物的雄性个体在繁殖期时,往往为了争夺雌性个体与同种的雄性个体进行斗争。
对于失败者常常造成死亡,但是对于种的延续是有利的,可以使同种内生存下来的个体得到比较充分的生活条件,或者出生的后代能够更优良一些。
(2)种内互助:同种生物的个体或种群在生活过程中互相协作,以维护生存的现象。
很多动物的群聚生活方式就是常见的种内互助现象。
群聚生活方式主要有两种类型:①蚂蚁、蜜蜂等社会性昆虫的群聚生活,个体之间有明确的分工,同时又通力合作,共同维护群体的生存;②与社会性昆虫不同的一些昆虫(如飞蝗)、鱼类、鸟类和哺乳类等动物的群聚生活,个体之间没有明确分工,聚集成群在一定区域内,沿着一定的路径漫游,从而使种群在适于栖息的区域内分布得均匀一些。
动物的群聚生活有利于捕食、御敌。
动物通过种内互助能更有效的捕食、避敌,更好地适应环境。
2.种间关系:种间关系是指不同物种种群之间的相互作用所形成的关系。
两个种群的相互关系可以是间接的,也可以是直接的相互影响。
这种影响可能是有害的,也可能是有利的。
(2)互利共生:两种生物长期生活在一起,彼此互有利益的关系,称为互利共生典型的互利共生例如:地衣、菌根、根瘤。
另外蚂蚁和蚜虫也可看作是一种共生关系,蚂蚁收集蚜虫的分泌物,并保护蚜虫,蚜虫的分泌物是蚂蚁的食物,到深秋,蚂蚁把蚜虫卵带到蚁穴越冬,第二年春天又把它送到地面孵化繁殖。
(3)偏利共生:两种生物长期生活在一起,一方受利,另一方无利亦无害、无显著利害关系。
第七章 种内与种间关系
2、性别生态学(ecology of sex)
(1)两性细胞结合与有性繁殖
• 自体受精和异体受精
• 无性繁殖优越性:①可迅速增殖,占领暂时性新栖息地;
②母体所产的后代都带有母本的整个基因组,因此给下代 复制的基因组是有性繁殖的两倍。
• 有性生殖混合或重组了双亲的基因组,导致产生遗传上易 变的配子,并转而产生遗传上易变的后代。遗传新物质的 产生,使受自然选择作用的种群的遗传变异保持高水平, 使种群在不良环境下至少能保证少数个体生存下来,并获 得繁殖后代的机会。
同理,N2种群中每个个体对自身种群程以及α、β的 定义中可知:
N2种群中每个个体对N1种群的影响为:α/K1 N1种群中每个个体对N2种群的影响为:β/K2 因此,当物种2可以抑制物种1时,可以认为, 物种2对物种1的影响 > 物种2对自身的影响,即 α/K1 > 1/K2。 整理后得:K2 > K1/α。
• Fisher氏私奔模型(Fisher’s runaway model)认为,雄 性这种诱惑性(epigamic)特征开始被恣意的雌性所选择, 并将继续进化,如果雌性基因对挑选特征(如选大尾的)编 码,雄性也会对该特征(如尾的大小)编码。
极乐鸟(天堂鸟)
(4)植物的性别系统 • 雌雄同花: • 雌雄两类花:玉米,南瓜 • 雌雄异株:银杏
物种1能抑制物种2 物种1不能抑制物种2
(K1 > K2/β)
(K1 < K2/β)
物种2能抑制物种1 两物种都有可能得
(K2 > K1/α)
胜 (结果3)
物种2总是得胜 (结果2)
物种2不能抑制物 种1
(K2 < K1/α)
物种1总是得胜 两物种都不能抑制对
第五章-种内与种间关系
(4) 生态位移动(niche drift): 生态位移动是 指种群对资源谱利用的变动。种群的生态位 移动往往是环境压迫或是激烈竞争的结果。
Trends in Ecology and Evolution 2007,Vol.23 No.3
5)生态位分离(niche separation): 生态位分 离是指两个物种在资源序列上利用资源的分离程 度。这是竞争的结果。
在三角形K1 E K2 / 中,种群1不能增长,种群2继续 增长, 三角形K2EK1 /α中,种群2不能增长,种群1继 续增长。N2和N1出现稳定的平衡点。
K2
K1/α
dN2/dt=0
E dN1/dt=0
K2 /
K1
K1 >K2 / (N1),K2> K1 /α(N2):不稳定共存
在三角形K1 E K2 / 中,种群2不能增长,种群1 继续增长, 三角形K2EK1 /α中,种群1不能增长, 种群2继续增长。N2和N1出现不稳定的平衡点。
性状替换 (character displacement): 生态位收缩导致 形态性状发生变 化的现象。
案例:燕鸥的性状替换
三、 共位群
共位群(guild):同资源种团,以相同方式 利用相同资源的所用物种,这些物种的生态位 相似,并且种间竞争很弱,在生态位研究视为 一个整体。如分布在池塘和湖泊的慈姑、泽泻、 芦苇等。
Gause1934,通过草履虫实验,提出了著名的 竞争排斥原理,即两个生态位完全相同的种不 可能实现共存。
Hutchison1957,一个特定群落中与物种适应 性有关的环境大小就是它的生态多维超体积。 未考虑竞争作用和资源限制,称为基础生态位 。后来加进了竞争和资源限制作用,称为实际 生态位。
种内与种间竞争
种内与种间竞争第七章种内与种间关系一、种内竞争1,密度效应1)最后产量衡值法则(law of constant final yield )不管初始播种密度如何,在一定范围内,当条件相同时,植物的最后产量差不多总是一样的。
最后产量衡值法则可表示为:Y= ×d = K i其中:d为密度;Y 为单位面积产K i 是一常数。
W W 在一定时间内,当种群的个体数目增加时,就必定会出现邻近个体之间的相互影响,称为密度效应2)–3/2自疏法则该法则可用下式表示:×d -3/2两边取对数得:lg = lgC –3/2lgdWW表示植物个体平均重量;d 为密度;C是一常数W 据报道,某年欧洲老鼠数量极多,为调节种内密度,众多老鼠争相作出自我牺牲,成群接队,翻山越岭,抵达北冰洋集体自杀。
关于如何引发这件稍带神秘色彩的事的争议有很多,但从生物学角度看,个体的生理作用与种内的密度调节是应该可以用来解释此事的。
但不论怎样,鼠群们那种一去兮不复还的勇气却另人感慨……2,动物的婚配制度1)婚配制度的定义和进化婚配制度是指种群内婚配的种种类型,包括配偶的数目,配偶持续时间,以及对后代的抚育等。
美国生态学家Wilson 认为:高等动物最常见的婚配制度是一雄多雌制,而一雄一雌的单配偶制则是由原始的一雄多雌的多配偶制进化而来的。
2)婚配制度的类型单配制(monogamy)一雄多雌制(polygamy)多配制一雌多雄(polyandry)3)决定婚配制度类型的环境因素资源的分布是决定动物婚配制度的主要生态因素,尤其是食物和营巢地在空间和时间上的分布情况。
3,领域性和社会等级领域(territory)是指由个体、家庭或其它社群单位所占据的,并积极保卫不让同种其它成员侵入的空间。
以威胁、直接进攻驱赶入侵者等,称为领域行为。
具领域性(territoriality)的种类在脊椎动物中最多,尤其是鸟兽。
特点:领域面积随其占有者的体重而扩大。
种间关系例子
种间关系例子
原始合作:指两种生物共居在一起,对双方都有一定程度的利益,但彼此分开后,各自又都能够独立生活(如寄居蟹和海葵)偏利共生:指共生的两种植物,一方得利.而对另一方无害。
(如鸟在植物上筑巢)
互利共生:指两个生物种群生活在一起,相互依赖互相得益。
(如豆科植物和根瘤菌)
竞争:两个或多个种群争夺同一对象的相互作用(大小草履虫的竞争)
捕食:指一种生物以另一种生物为食的种间关系(如狼吃兔子)寄生:指一种生物生活在另一种生物的体内或体表,并从后者摄取营养以维持生活的种间关系(蛔虫和人)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
种内关系和种间关系例谈
盛文龙
环境中有许多因素都会影响生物体的形态、结构、生理和分布,其中生物因素可以分为种内关系和种间关系。
1.种内关系:种内关系是同种生物个体之间的关系,包括种内斗争和种内互助。
(1)种内斗争:同种生物个体之间,由于争夺食物,栖息地、配偶或其它生活条件而发生的斗争。
它是种群数量调节的一个重要因素。
植物同种个体间斗争一般表现在对水分、养料、光照、空气等无机环境因素的需求上。
同种动物间,由于食物、栖所、繁殖或其他因素的矛盾而斗争也时有发生。
如有的动物的雄性个体在繁殖期时,往往为了争夺雌性个体与同种的雄性个体进行斗争。
对于失败者常常造成死亡,但是对于种的延续是有利的,可以使同种内生存下来的个体得到比较充分的生活条件,或者出生的后代能够更优良一些。
(2)种内互助:同种生物的个体或种群在生活过程中互相协作,以维护生存的现象。
很多动物的群聚生活方式就是常见的种内互助现象。
群聚生活方式主要有两种类型:①蚂蚁、蜜蜂等社会性昆虫的群聚生活,个体之间有明确的分工,同时又通力合作,共同维护群体的生存;②与社会性昆虫不同的一些昆虫(如飞蝗)、鱼类、鸟类和哺乳类等动物的群聚生活,个体之间没有明确分工,聚集成群在一定区域内,沿着一定的路径漫游,从而使种群在适于栖息的区域内分布得均匀一些。
动物的群聚生活有利于捕食、御敌。
动物通过种内互助能更有效的捕食、避敌,更好地适应环境。
2.种间关系:种间关系是指不同物种种群之间的相互作用所形成的关系。
两个种群的相互关系可以是间接的,也可以是直接的相互影响。
这种影响可能是有害的,也可能是有利的。
(2)互利共生:两种生物长期生活在一起,彼此互有利益的关系,称为互利共生典型的互利共生例如:地衣、菌根、根瘤。
另外蚂蚁和蚜虫也可看作是一种共生关系,蚂蚁收集蚜虫的分泌物,并保护蚜虫,蚜虫的分泌物是蚂蚁的食物,到深秋,蚂蚁把蚜虫卵带到蚁穴越冬,第二年春天又把它送到地面孵化繁殖。
(3)偏利共生:两种生物长期生活在一起,一方受利,另一方无利亦无害、无显著利害关系。
如某些蕨类、兰花附在大树上,为了获得较多的阳光。
(3)竞争:通常是指在不同种的个体之间,因争夺共同的资源、空间发生的相互作用。
生物对资源的需求与生活型态越相似时,彼此间的竞争也就愈激烈。
竞争的结果可能是一个物种获得生存发展,另一个被淘汰;也可能导致其生态要求的分化而长期共存。
例如在桦木林中常出现云杉幼苗,随着云杉的生长,两者矛盾日趋尖锐。
当云杉的高度超出桦木时,桦木因不如云杉耐阴而逐渐死亡,最终桦木林被云杉林代替。
(4)寄生:一种生物居住在另一种生物的体内或体表,以获取生存所需的物质,使一方受益而另一方受害,此种关系称为寄生。
动物中寄生现象相当普遍,有的寄生在体表,有的寄生在体内,如蛔虫寄生于人体的小肠内。
植物组织中也有寄生现象,如菟丝子以茎部的不定根寄生在大豆等植物的茎内。
(5)捕食:一种生物以另一种生物为食的现象叫捕食,是群落中生物之间最常见、最基本的关系之一。
在漫长的进化过程中,捕食者和被捕食者在形态、生理和行为上都产生了
一系列的相互适应性。
一个有独特的捕杀技巧,另一个就要有一系列保护性适应。
捕食者和被捕食者在种群数量上关系复杂。
一般被捕食者数量多时,捕食者因食物丰富数量随着增加,但这种增加必然导致被捕食者数量下降。
这种相互作用常使许多捕食者和被捕食者种群出现周期性的数量波动规律,捕食者的数量高峰总是出现在被捕食者数量高峰之后。
3.典型例题
例1.“白蚁和其消化道内鞭毛虫”的相互之间关系,与下列哪项最相近()
A.老虎与被其捕食的山羊B.人与消化道内的蛔虫
C.寄居蟹与其体外的海葵D.樟木与附生其树干上的蝴蝶兰
例2.X、Y 两种微藻分别在锥形瓶中培养时(图甲),其数量随时间之变化如图乙,而当混合在同一个锥形瓶中培养时(图丙),其数量随时间之变化如图丁。
则在混合培养时,两者的关系如何?若X生物非微藻而为一种草履虫,则在混合培养时,两者的关系是是什么?
例3.生态学家高斯曾在实验室里做过这样的实验:他将2种草履虫,即有尾草履虫和双小核草履虫分别培养在容器中,各给以细菌作食物,不久两种草履虫分裂繁殖并和细菌数量达到平衡。
但是如把2种草履虫放在同一培养皿中,给以细菌混合培养,16天后,结果如下图。
(1)从图中可以看出:混合培养后,能正常生长的是,不能正常生长的是。
(2)试分析高斯实验结果的原因,生物学上称这种现象是什么?
(3)混合培养后,能正常生长的个体发展趋势是,在这个发展过程中,生物因素间的关系将由转变为。
(4)如果在自然界中,2种草履虫生活在同一环境里,是否会发生与高斯实验相同的结果?说明原因。
参考答案:
1.C(白蚁与鞭毛虫为互利共生;老虎捕食山羊-捕食;人与蛔虫-寄生;寄居蟹与海葵-互利共生;樟木与蝴蝶兰-偏利共生)
2.A(X微藻与Y微藻均为自养生物,两者竞争水中的无机盐等;草履虫为异养生物,草履虫捕食微藻)
3.(1)双小核草履虫有尾草履虫(2)由于双小核草履虫繁殖速度略高于有尾草履虫,具有一定优越性,因此在食物数量有限的情况下,它就能胜过有尾草履虫而生存下来。
生物学上称这种现象为种间竞争。
(3)先增加然后稳定竞争种内斗争(4)不会发生与高斯实验相同的结果。
原因:自然生态系统的成分和营养结构复杂,自动调节能力强。