余干县高中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余干县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )
A .(1)与(2)
B .(1)与(3)
C .(2)与(4)
D .(3)与(4)
2. 计算log 25log 53log 32的值为( ) A .1 B .2 C .4 D .8
3. 已知函数21
1,[0,)22
()13,[,1]2
x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x
(12x x <),那么12()x f x ∙的取值范围为( )
A .3[,1)4 B
.1[,
86
C .31[,)162
D .3[,3)8
4. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、
乙两人的平均得分分别

,则下列判断正确的是( )
A

<,乙比甲成绩稳定 B

<,甲比乙成绩稳定 C


,甲比乙成绩稳定
D


,乙比甲成绩稳定
5. 已知数列{}n a 的首项为11a =,且满足111
22
n n n a a +=
+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5
8
6. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0
B .1
C .2
D .3
7. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当
]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则
实数的取值范围是( )111]
A .)2
2,
0( B .)33,0( C .)55,0( D .)66,0(
8. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717
S S
-=,则d 的值为( )
A .120
B .110
C .10
D .20
9. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长
||PQ 等于( )
A .2
B .3
C .4
D .与点位置有关的值
【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.
10.若a <b <0,则下列不等式不成立是( )
A .

B .>
C .|a|>|b|
D .a 2>b 2
11.已知i 是虚数单位,则复数等于( )
A .﹣ +i
B .﹣ +i
C .﹣i
D .﹣i
12.把函数y=sin (2x ﹣)的图象向右平移
个单位得到的函数解析式为( )
A .y=sin (2x ﹣)
B .y=sin (2x+

C .y=cos2x
D .y=﹣sin2x
二、填空题
13.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .
14.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:
).
15.
如图,P是直线x+y-5=0上的动点,过P作圆C:x2+y2-2x+4y-4=0的两切线、切点分别为A、B,当四边形P ACB的周长最小时,△ABC的面积为________.
16.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.
17.已知线性回归方程=9,则b=.
18.(x﹣)6的展开式的常数项是(应用数字作答).
三、解答题
19.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.
(1)求数列{a n}的通项公式;
(2)若b n=,求数列{b n}的前n项和S n.
20.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且.
(Ⅰ)求角B的大小;
(Ⅱ)若b=6,a+c=8,求△ABC 的面积.
21.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*
∈N n ),11=a ,该数列的 前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .
22.(本小题满分10分) 已知函数()2f x x a x =++-.
(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.
23.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB ﹣ccosB . (Ⅰ)求cosB 的值; (Ⅱ)若
,且
,求a 和c 的值.
24.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,
数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n
项和为T n,
(1)求数列{a n}和{b n}的通项公式;
(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围
(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.
余干县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确; ∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;
∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;
∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B .
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
2. 【答案】A
【解析】解:log 25log 53log 32==1.
故选:A .
【点评】本题考查对数的运算法则的应用,考查计算能力.
3. 【答案】C 【解析】
试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则
314t <<,由1324x +=,可得14x =,
由2
13x =,可得x =12111,422x x ≤<≤≤,即221143x ≤≤,则
()212123133,162x f x x x ⎡⎫
=⋅∈⎪⎢⎣⎭
.故本题答案选C.
考点:数形结合.
【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.
4.【答案】A
【解析】解:由茎叶图可知=(77+76+88+90+94)=,
=(75+86+88+88+93)==86,则<,
乙的成绩主要集中在88附近,乙比甲成绩稳定,
故选:A
【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.
5.【答案】B
【解析】
6.【答案】C
【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,
可得b的最小值为:2.
故选:C.
【点评】本题考查集合的基本运算,交集的意义,是基础题.
7.【答案】B
【解析】
试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,
()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,
()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,
()x g 在()+∞,0上单调递减,则⎩⎨
⎧-><<23log 10a
a ,解得:33
0<<a 故选A .
考点:根的存在性及根的个数判断.
【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的
图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.
8. 【答案】B 【解析】
试题分析:若{}n a 为等差数列,
()
()111212n
n n na S d a n n
n -+
==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭
为等差数列公差为2d ,
2017171
100,2000100,201717210
S S d d ∴
-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 9. 【答案】A
【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此
22222222
00000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+
又点M 在抛物线上,∴02
02y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .
10.【答案】A 【解析】解:∵a <b <0,
∴﹣a >﹣b >0,
∴|a|>|b|,a 2>b 2,
即,
可知:B ,C ,D 都正确, 因此A 不正确. 故选:A .
【点评】本题考查了不等式的基本性质,属于基础题.
11.【答案】A
【解析】解:复数=
=
=

故选:A .
【点评】本题考查了复数的运算法则,属于基础题.
12.【答案】D
【解析】解:把函数y=sin (2x ﹣
)的图象向右平移
个单位,
所得到的图象的函数解析式为:y=sin[2(x ﹣)﹣]=sin (2x ﹣π)=﹣sin2x .
故选D . 【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x 加与减,上下平移,y 的另
一侧加与减.
二、填空题
13.【答案】(﹣∞,]∪[,+∞).
【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,
∴数列{a n}是以1为首项,以为公比的等比数列,
S n==2﹣()n﹣1,
对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,
∴x2+tx+1≥2,
x2+tx﹣1≥0,
令f(t)=tx+x2﹣1,
∴,
解得:x≥或x≤,
∴实数x的取值范围(﹣∞,]∪[,+∞).
14.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】该几何体是半个圆柱。

所以
故答案为:
15.【答案】
【解析】解析:圆x2+y2-2x+4y-4=0的标准方程为(x-1)2+(y+2)2=9. 圆心C(1,-2),半径为3,连接PC,
∴四边形P ACB的周长为2(P A+AC)
=2PC2-AC2+2AC=2PC2-9+6.
当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .
∴直线PC 的斜率为1,即x -y -3=0,
由⎩⎪⎨⎪⎧x +y -5=0x -y -3=0
,解得点P 的坐标为(4,1), 由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,
∴S △ABC =12AC ·BC =12×3×3=9
2
.
即△ABC 的面积为9
2
.
答案:92
16.【答案】:.
【解析】解:∵•=cos α﹣sin α=,
∴1﹣sin2α=,得sin2α=, ∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值, ∴cos2α=
=

∵α为锐角,sin (α+)>0,
∴sin (α+

=
===

故答案为:

17.【答案】 4 .
【解析】解:将代入线性回归方程可得9=1+2b ,∴b=4
故答案为:4
【点评】本题考查线性回归方程,考查计算能力,属于基础题.
18.【答案】﹣160
【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,
令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,
故答案为:﹣160.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,
∴=(a2+2)(a4﹣2),
(1+2d)2=(3+d)(﹣1+3d),
d2﹣4d+4=0,解得:d=2,
∴a n=1+2(n﹣1)=2n﹣1,
数列{a n}的通项公式a n=2n﹣1;
(2)b n===(﹣),
S n=[(1﹣)+(﹣)+…+(﹣)],
=(1﹣),
=,
数列{b n}的前n项和S n,S n=.
20.【答案】
【解析】解:(Ⅰ)由2bsinA=a,以及正弦定理,得sinB=,
又∵B为锐角,
∴B=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(Ⅱ)由余弦定理b2=a2+c2﹣2accosB,
∴a2+c2﹣ac=36,
∵a+c=8,
∴ac=,
∴S △ABC ==
.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
21.【答案】(1)12-=n a n ,n
n b 2
1=;(2)n n n T 23
23+-=. 【解析】
试题分析:(Ⅰ1)设d 为等差数列{}n a 的公差,且0>d ,利用数列的前三项分别加上3,1,1后成等比数列,
求出d ,然后求解n b ;(2)写出n
n n T 21
2...232321321-++++=
利用错位相减法求和即可. 试题解析:解:(1)设d 为等差数列{}n a 的公差,0>d ,
由11=a ,d a +=12,d a 213+=,分别加上3,1,1后成等比数列,] 所以)24(2)2(2d d +=+ 0>d ,∴2=d ∴122)1(1-=⨯-+=n n a n
又1log 22--=n n b a ∴n b n -=2log ,即n
n b 21
=
(6分)
考点:数列的求和. 22.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.
【解析】
试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得
解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上
恒成立,即10a -≤≤.
试题解析:
(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧

-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧
⎨-+-≥⎩,
解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;

点:不等式选讲.
23.【答案】
【解析】解:(I )由正弦定理得a=2RsinA ,b=2RsinB ,c=2RsinC , 则2RsinBcosC=6RsinAcosB ﹣2RsinCcosB , 故sinBcosC=3sinAcosB ﹣sinCcosB , 可得sinBcosC+sinCcosB=3sinAcosB , 即sin (B+C )=3sinAcosB , 可得sinA=3sinAcosB .又sinA ≠0,
因此.
(II )解:由
,可得accosB=2,

由b 2=a 2+c 2
﹣2accosB , 可得a 2+c 2
=12,
所以(a ﹣c )2
=0,即a=c ,
所以.
【点评】本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.
24.【答案】
【解析】解:(1)因为f (1)=a=,所以f (x )=

所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=
因为数列{a n}是等比数列,所以,所以c=1.
又公比q=,所以;
由题意可得:=,
又因为b n>0,所以;
所以数列{}是以1为首项,以1为公差的等差数列,并且有;
当n≥2时,b n=S n﹣S n﹣1=2n﹣1;
所以b n=2n﹣1.
(2)因为数列前n项和为T n,
所以
=
=;
因为当m∈[﹣1,1]时,不等式恒成立,
所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,
设g(m)=﹣2tm+t2,m∈[﹣1,1],
所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,
所以,
解得t<﹣2或t>2,
所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).
(3)T1,T m,T n成等比数列,得T m2=T1T n
∴,

结合1<m<n知,m=2,n=12
【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.。

相关文档
最新文档