永安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }
中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是(

A .(11,25)
B .(12,16]
C .(12,17)
D .[16,17)
2. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )
A .
B .﹣
C .3
D .﹣33. 设F 1,F 2分别是椭圆
+
=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠
F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )
A .
B .
C .
D .4. 已知在△ABC 中,a=,b=
,B=60°,那么角C 等于(

A .135°
B .90°
C .45°
D .75°
5. 若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )
A .∀x ∈R ,2x 2﹣1<0
B .∀x ∈R ,2x 2﹣1≤0
C .∃x ∈R ,2x 2﹣1≤0
D .∃x ∈R ,2x 2﹣1>0
6. 直线的倾斜角是( )
A .
B .
C .
D .
7. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
8. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )
A .0<a <1
B .﹣≤a
≤C .﹣1≤a ≤1
D .﹣2≤a ≤2
9. 记集合和集合表示的平面区域分别为Ω1,Ω2,{
}
22
(,)1A x y x y =+£{}
(,)1,0,0B x y x y x y =+£³³ 若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( )
A .
B .
C .
D .
1
2p
1
p
2p
13p
【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.10.已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是(

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .y=x ﹣4
B .y=2x ﹣3
C .y=﹣x ﹣6
D .y=3x ﹣2
11.将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )
A .
B .
C .2
D .3
12.已知函数,的图象与直线的两个相邻交点的距离等于
()cos (0)f x x x ωωω=
+>()y f x =2y =,则的一条对称轴是( )
π()f x A . B .
C .
D .12
x π=-
12
x π
=
6
x π
=-
6
x π
=
二、填空题
13.已知(x 2﹣)n )的展开式中第三项与第五项的系数之比为
,则展开式中常数项是 .
14.用“<”或“>”号填空:30.8 30.7.
15.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为 

16.复数z=
(i 虚数单位)在复平面上对应的点到原点的距离为 .
17.已知三棱柱ABC ﹣A 1B 1C 1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O 的表面上,且球O 的表面积为7π,则此三棱柱的体积为 .18.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则
b
a
的值为 ▲ .
三、解答题
19.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2.(Ⅰ)求数列{a n }通项公式;(Ⅱ)设数列{b n }满足b n =
(n ∈N *),求证:b 1+b 2+…+b n <.
20.已知椭圆C 1: +=1(a >b >0)的离心率为e=,直线l :
y=x+2与以原点为圆心,以椭圆C 1的短半轴长为半径的圆O 相切.
(1)求椭圆C 1的方程;
(2)抛物线C 2:y 2=2px (p >0)与椭圆C 1有公共焦点,设C 2与x 轴交于点Q ,不同的两点R ,S 在C 2上(
R ,S 与Q 不重合),且满足•
=0,求|
|的取值范围.
21.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A 万元,则超出部分按log 5(2A+1)进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).
(1)写出奖金y 关于销售利润x 的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?
22.(本小题满分12分)在中,内角的对边为,已知
ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2
cos 22
=-+C B B A
(I )求角的值;C
(II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.
23.(本小题满分12分)
如图,在直四棱柱中,.1111ABCD A B C D -60,,BAD AB BD BC CD ∠===o
(1)求证:平面平面;
11ACC A ⊥1A BD (2)若,,求三棱锥的体积.
BC CD ⊥12AB AA ==11B A BD -
24.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:月份x
1
2345销售量y
(百件)4
4
5
6
6
(Ⅰ)该同学为了求出y 关于x 的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)
(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X ,求X 的分布列和数学期望.
A
B
C
D
A 1
C 1
B 1
D 1
永安市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】C
【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,
∵a n=﹣n+p,∴{a n}是递减数列,
∵b n=2n﹣5,∴{b n}是递增数列,
∵c8>c n(n≠8),∴c8是c n的最大者,
则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,
∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,
当n=7时,27﹣5<﹣7+p,∴p>11,
n=9,10,11,…时,2n﹣5>﹣n+p总成立,
当n=9时,29﹣5>﹣9+p,成立,∴p<25,
而c8=a8或c8=b8,
若a8≤b8,即23≥p﹣8,∴p≤16,
则c8=a8=p﹣8,
∴p﹣8>b7=27﹣5,∴p>12,
故12<p≤16,
若a8>b8,即p﹣8>28﹣5,∴p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p﹣9,
∴p<17,
故16<p<17,
综上,12<p<17.
故选:C.
2.【答案】A
【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3
所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.
故选A.
3.【答案】D
【解析】解:设|PF1|=t,
∵|PF1|=|PQ|,∠F1PQ=60°,
∴|PQ|=t,|F1Q|=t,
由△F1PQ为等边三角形,得|F1P|=|F1Q|,
由对称性可知,PQ垂直于x轴,
F2为PQ的中点,|PF2|=,
∴|F1F2|=,即2c=,
由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,
∴椭圆的离心率为:e===.
故选D.
4.【答案】D
【解析】解:由正弦定理知=,
∴sinA==×=,
∵a<b,
∴A<B,
∴A=45°,
∴C=180°﹣A﹣B=75°,
故选:D.
5.【答案】C
【解析】解:命题p:∀x∈R,2x2﹣1>0,
则其否命题为:∃x∈R,2x2﹣1≤0,
故选C;
【点评】此题主要考查命题否定的定义,是一道基础题; 
6.【答案】A
【解析】解:设倾斜角为α,
∵直线的斜率为,
∴tanα=,
∵0°<α<180°,
∴α=30°
故选A.
【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.
7.【答案】A
【解析】解:由“|x﹣2|<1”得1<x<3,
由x2+x﹣2>0得x>1或x<﹣2,
即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,
故选:A.
8.【答案】B
【解析】解:定义域为R的函数f(x)是奇函数,
当x≥0时,
f(x)=|x﹣a2|﹣a2=图象如图,
∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),
∴1≥3a2﹣(﹣a2),
∴﹣≤a≤
故选B
【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题. 
9. 【答案】A
【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示及其内部,OAB D
由几何概型得点M 落在区域Ω2内的概率为,故选A.
1
1
2P ==p 2p
10.【答案】A
【解析】解:设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=﹣2,x 12=﹣2y 1,x 22=﹣2y 2.两式相减可得,(x 1+x 2)(x 1﹣x 2)=﹣2(y 1﹣y 2)∴直线AB 的斜率k=1,
∴弦AB 所在的直线方程是y+5=x+1,即y=x ﹣4.故选A , 
11.【答案】B
【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B .
【点评】题考查类比推理和归纳推理,属基础题. 
12.【答案】D 【解析】
试题分析:由已知,,所以,则,令 ()2sin(6
f x x π
ω=+
T π=22π
ωπ=
=()2sin(2)6
f x x π
=+
,得,可知D 正确.故选D .
2,62x k k Z ππ
π+
=+
∈,26
k x k Z ππ
=
+∈考点:三角函数的对称性.()sin()f x A x ωϕ=+二、填空题
13.【答案】 45 .
【解析】解:第三项的系数为C n 2,第五项的系数为C n 4,
由第三项与第五项的系数之比为
可得n=10,则T i+1=C 10i (x 2)10﹣i (﹣
)i =(﹣1)i C 10i
=,
令40﹣5r=0,解得r=8,故所求的常数项为(﹣1)8C 108=45, 故答案为:45. 
14.【答案】 > 
【解析】解:∵y=3x 是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>
【点评】本题考查对数函数、指数函数的性质和应用,是基础题. 
15.【答案】
【解析】解:作
的可行域如图:
易知可行域为一个三角形,验证知在点A (1,2)时,z 1=2x+y+4取得最大值8,∴z=log 4(2x+y+4)最大是,故答案为:.
【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
16.【答案】 .
【解析】解:复数z==﹣i(1+i)=1﹣i,
复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.
故答案为:.
【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.
17.【答案】 .
【解析】解:如图,
∵三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,
∴三棱柱为正三棱柱,且其中心为球的球心,设为O,
再设球的半径为r,由球O的表面积为7π,得4πr2=7π,∴r=.
设三棱柱的底面边长为a,则上底面所在圆的半径为a,且球心O到上底面中心H的距离OH=,
∴r2=()2+(a)2,即r=a,
∴a=.
则三棱柱的底面积为S==.
∴==.
故答案为:.
【点评】本题考查球的内接体与球的关系,球的半径的求解,考查计算能力,是中档题.
18.【答案】
1 2

点:函数极值
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
三、解答题
19.【答案】
【解析】(Ⅰ)解:由4S n=(a n+1)2,
令n=1,得,即a1=1,
又4S n+1=(a n+1+1)2,
∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.
∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,
∴a n=1+2(n﹣1)=2n﹣1;
(Ⅱ)证明:由(Ⅰ)可知,b n==,
则b1+b2+…+b n=
=
=.
20.【答案】
【解析】解:(1)由直线l:y=x+2与圆x2+y2=b2相切,∴=b,解得b=.
联立解得a=,c=1.
∴椭圆的方程是C1:.
(2)由椭圆的右焦点(1,0),抛物线y2=2px的焦点,
∵有公共的焦点,∴,解得p=2,故抛物线C2的方程为:y2=4x.
易知Q(0,0),设R(,y1),S(,y2),
∴=(,y1),=,
由•=0,得,
∵y1≠y2,∴,
∴=64,当且仅当,即y1=±4时等号成立.
又||===,
当=64,即y2=±8时,||min=8,
故||的取值范围是[8,+∞).
【点评】本题考查了椭圆与抛物线的标准方程及其性质、向量的数量积运算和基本不等式的性质、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
21.【答案】
【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,
∴0<x≤8时,y=0.15x;x>8时,y=1.2+log5(2x﹣15)
∴奖金y关于销售利润x的关系式y=
(2)由题意知1.2+log5(2x﹣15)=3.2,解得x=20.
所以,小江的销售利润是20万元.
【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题.
22.【答案】
【解析】(I )∵,1cos )sin 3(cos 2
cos 22
=-+C B B A ∴,0cos sin 3cos cos cos =-+C B C B A ∴,
0cos sin 3cos cos )cos(=-++-C B C B C B ∴,
0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B ∴,因为,所以0cos sin 3sin sin =-C B C B sin 0B >3
tan =C 又∵是三角形的内角,∴.
C 3π
=C
23.【答案】
【解析】(1)证明:∵,,60AB BD BAD =∠=o
∴为正三角形,∴.
ABD ∆AB AD = ∵,为公共边,
CB CD =AC ∴.
ABC ADC ∆≅∆∴,∴.
CAB CAD ∠=∠AC BD ⊥∵四棱柱是直四棱柱,
1111ABCD A B C D -∴平面,∴.
1AA ⊥ABCD 1AA BD ⊥∵,∴平面.
1AC AA A =I BD ⊥11ACC A ∵平面,∴平面平面.
BD ⊂1A BD 1A BD ⊥11ACC A (2)∵∥,∴,
1AA 1BB 11111B A BD A BB D A BB D V V V ---==由(1)知.
AC BD ⊥∵四棱柱是直四棱柱,1111ABCD A B C D -∴平面,∴.
1BB ⊥ABCD 1BB AC ⊥ ∵,∴平面.
1BD BB B =I AC ⊥1BB D 记,
AC BD O =I
∴,11111(22)332A BB D BB D V S AO -∆=
⋅=⨯⨯⨯=
∴三棱锥.11B A BD -
24.【答案】
【解析】解:(1),=5…
且,代入回归直线方程可得
∴=0.6x+3.2,
x=6时,=6.8,…
(2)X的取值有0,1,2,3,则
,,
,…
其分布列为:
X0123
P

【点评】本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力. 。

相关文档
最新文档