七年级上册深圳南山区学府中学数学期末试卷(提升篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册深圳南山区学府中学数学期末试卷(提升篇)(Word版
含解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .
(1)猜想与的数量关系,并说明理由;
(2)若,求的度数;
(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.
【答案】(1)解:,理由如下:
,
(2)解:如图①,设,则,
由(1)可得,
,
,
(3)解:分两种情况:
①如图1所示,当时,,
又,
;
②如图2所示,当时,,
又,
.
综上所述,等于或时, .
【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.
(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.
(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.
2.已知,∠AOB=∠COD=90°,射线OE,FO分别平分∠AOC和∠BOD.
(1)当OB和OC重合时,如图(1),求∠EOF的度数;
(2)当∠AOB绕点O逆时针旋转至图(2)的位置(0°<∠BOC<90°)时,求∠EOF的度数.
【答案】(1)解:当OB和OC重合时,∠AOD=∠AOC+∠BOD=180°,
又∵射线OE,FO分别平分∠AOC和∠BOD,
∴∠COE= ∠AOC,∠BOF= ∠BOD,
∴∠EOF=∠COF+∠BOF= (∠AOC+∠BOD)= ×180°=90°
(2)解:∵∠AOB=∠COD=90°,∠COE= ∠AOC,∠BOF= ∠BOD,
∴∠EOF=∠COE+∠BOF﹣∠BOC
= ∠AOC+ ∠BOD﹣∠BOC
= (∠AOC+∠BOD)﹣∠BOC
= (∠AOB+∠BOC+∠COD+∠BOC)﹣∠BOC
= (180°+2∠BOC)﹣∠BOC
=90°+∠BOC﹣∠BOC
=90°
【解析】【分析】(1)由角平分线的性质可得∠COE=∠AOC,∠BOF=∠BOD;由平角的定义可得∠AOC+∠BOD=180°,由角的构成可得∠EOF=∠COE+∠BOF,代入计算即可求解;(2)同理可求解。
3.如图,O是直线AB上一点,OD平分∠AOC.
(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.
(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.
【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,
∴∠AOE=∠AOD+∠DOE=90°,
∴∠AOD= ∠AOE= ×90°=30°,
∴∠AOC=2∠AOD=60°,
∴∠COE=90°﹣∠AOC=30°
【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;
②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;
(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
4.如图
如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的一个“二倍点”.
(1)一条线段的中点________这条线段的“二倍点”;(填“是”或“不是”)
(2)如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.
问t为何值时,点M是线段AB的“二倍点”.
(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.
【答案】(1)是
(2)解:当AM=2BM时,20﹣2t=2×2t,解得:t= ;
当AB=2AM时,20=2×(20﹣2t),解得:t=5;
当BM=2AM时,2t=2×(20﹣2t),解得:t= ;
答:t为或5或时,点M是线段AB的“二倍点”
(3)解:当AN=2MN时,t=2[t﹣(20﹣2t)],解得:t=8;
当AM=2NM时,20﹣2t=2[t﹣(20﹣2t)],解得:t=7.5;
当MN=2AM时,t﹣(20﹣2t)=2(20﹣2t),解得:t= ;
答:t为7.5或8或时,点M是线段AN的“二倍点”.
【解析】【解答】解:(1)因为线段的中点把该线段分成相等的两部分,
该线段等于2倍的中点一侧的线段长.
所以一条线段的中点是这条线段的“二倍点”
故答案为:是
【分析】(1)由中点可知,这条线段等于中点分出的线段的2倍,进而得出结论;(2)分三种情况:当AM=2BM时,当AB=2AM时,当BM=2AM时,分别列出方程解答即可;
(3)分三种情况:当AN=2MN时,当AM=2NM时,当MN=2AM时,分别列出方程解答即可.
5.如图,已知OE平分,OF平分
(1)若是直角,,求的度数.
(2)若,,,请用x 的代数式来表示直接写出结果就行 .
【答案】(1)解:∵∠AOB是直角,∠BOC=60°,
∴∠AOC=∠AOB+∠BOC=90°+60°=150°,
∵OE平分∠AOC,
∴∠EOC=∠AOC=75°,
∵OF平分∠BOC,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC−∠COF=75°−30°=45°;
(2)解:∵∠AOC=x°,OE平分∠AOC,
∴∠EOC=∠AOC= x°,
∵OF平分∠BOC,∠BOC=60°,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC−∠COF=x°−30°,即y=x−30.
【解析】【分析】(1)由∠AOB是直角、∠BOC=60°知∠AOC=∠AOB+∠BOC=150°,根据OE平分∠AOC、OF平分∠BOC求得∠EOC、∠COF度数,由∠EOF=∠EOC−∠COF可
得答案;(2)由∠AOC=x°,、OE平分∠AOC 知∠EOC=∠AOC= x°,由OF平分∠BOC、∠BOC=60°知∠COF=∠BOC=30°,根据∠EOF=∠EOC−∠COF可得答案.
6.将一副直角三角板按如图1摆放在直线AD上直角三角板OBC和直角三角板MON,,,,,保持三角板OBC不动,
将三角板MON绕点O以每秒的速度顺时针方向旋转t秒
(1)如图2, ________度用含t的式子表示;
(2)在旋转的过程中,是否存在t的值,使?若存在,请求出t的值;若不存在,请说明理由.
(3)直线AD的位置不变,若在三角板MON开始顺时针旋转的同时,另一个三角板OBC 也绕点O以每秒的速度顺时针旋转.
①当 ________秒时,;
②请直接写出在旋转过程中,与的数量关系关系式中不能含
.________
【答案】(1)90﹣8t.
(2)解:当MO在∠BOC内部时,即t 时,根据题意得:
90﹣8t=4(45﹣8t)
解得:t ;
当MO在∠BOC外部时,即t 时,根据题意得:
90﹣8t=4(8t﹣45)
解得:t .
综上所述:t 或t .
(3)5或10;解:∵∠NOD=90﹣8t,∠BOM=6t,∴3∠NOD+4∠BOM=3(90﹣8t)+4×6t=270°. 即3∠NOD+4∠BOM=270°.
【解析】【解答】解:(1)∠NOD一开始为90°,然后每秒减少8°,因此∠NOD=90﹣8t.
故答案为:90﹣8t.
( 3 )①当MO在∠BOC内部时,即t 时,根据题意得:
8t﹣2t=30
解得:t=5;
当MO在∠BOC外部时,即t 时,根据题意得:
8t﹣2t=60
解得:t=10.
故答案为:5或10.
【分析】(1)把旋转前∠NOD的大小减去旋转的度数就是旋转后的∠NOD的大小.(2)相对MO与CO的位置有两种情况,所以要分类讨论,然后根据∠NOD=4∠COM建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO没有追上CO与MO超过CO两种情况,然后分别列方程即可.
②分别用t的代数式表示∠NOD和∠BOM,然后消去t即可得出它们的关系.
7.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.
(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=________度(答案直接填写在答题卡的横线上);在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;
(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,请你直接写出t的值为多少.
【答案】(1)90°,
OM平分∠CON.理由如下:
∵∠BOC=135°,
∴∠MOC=135°-90°=45°,
而∠MON=45°,
∴∠MOC=∠MON
(2)∠AOM=∠CON.
理由如下:如图3,
∵∠MON=45°,
∴∠AOM=45°-∠AON,
∵∠AOC=45°,
∴∠NOC=45°-∠AON,
∴∠AOM=∠CON
(3)解:t= ×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).
故答案为90°;4.5秒或40.5秒.
【解析】【分析】(1)利用旋转的性质可得∠BOM的度数,然后计算∠MOC的度数判断OM是否平分∠CON;(2)利用∠AOM=45°-∠AON和∠NOC=45°-∠AON可判断∠AOM与∠CON之间的数量关系;(3)ON旋转22.5度和202.5度时,ON平分∠AOC,然后利用速
度公式计算t的值.
8.已知:在和中,,,将如图摆放,使得的两条边分别经过点和点 .
(1)当将如图1摆放时,则 ________度.
(2)当将如图2摆放时,请求出的度数,并说明理由.
(3)能否将摆放到某个位置时,使得、同时平分和?直接写出结论________(填“能”或“不能”)
【答案】(1)240
(2)∠ABD+∠ACD=40°;
理由如下:
∵∠E+∠F=100°
∴∠D=180°−(∠E+∠F)=80°
∴∠ABD+∠ACD=180°−∠A−∠DBC−∠DCB=180°−40°−(180°−80°)=40°;
(3)不能
【解析】【解答】解:(1)在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°
∴∠ABC+∠ACB=180°−∠A=180°−40°=140°
在△BCD中,∠D+∠BCD+∠CBD=180°
∴∠BCD+∠CBD=180°−∠D
在△DEF中,∠D+∠E+∠F=180°
∴∠E+∠F=180°−∠D
∴∠CBD+∠BCD=∠E+∠F=100°
∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+100°=240°;
故答案为:240;
( 3 )不能.假设能将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB.则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.
【分析】(1)要求∠ABD+∠ACD的度数,只要求出∠ABC+∠CBD+∠ACB+∠BCD,利用三角形内角和定理得出∠ABC+∠ACB=180°-∠A=180°-40°=140°;∠CBD+∠BCD=∠E+∠F=100°,从而得出答案;
(2)要求∠ABD+∠ACD的度数,只要求出∠ABC+∠ACB-(∠BCD+∠CBD)的度数.根据三
角形内角和定理,∠CBD+∠BCD=∠E+∠F=100°;根据三角形内角和定理得,∠ABC+∠ACB=180°-∠A=140°,得出∠ABD+∠ACD=∠ABC+∠ACB-(∠BCD+∠CBD)=140°-100°=40°;
(3)不能,假设能将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB,则∠CBD+∠BCD=∠ABD+∠ACD=100°,那么∠ABC+∠ACB=200°,与三角形内角和定理矛盾,所以不能.
9.平行线问题的探索
(1)问题一:
已知:如图,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数。
甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图1:
甲同学辅助线的做法和分析思路如下
辅助线:()
分析思路
①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数;
②由MN∥CD可知,∠2=∠1,又由已知∠1的度数可得∠2的度数;
③由AB∥CD,MN〃CD推出AB∥MN,由此可推出∠3=∠4;
④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;
⑤从而可求∠EFG的度数
Ⅰ.请你根据乙同学所画的图形,描述乙同学辅助线的做法
辅助线: ________ ;
Ⅱ.请你根据丙同学所画的图形,且不再添加其他辅助线,求∠EFG的度数________
(2)问题二
如图2,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.
①a=________,b=________ ;
②根据已知点的坐标判断AB与CD的位置关系是 ________ 。
【答案】(1)过点F作MN∥CD;如图,过O作OD∥FG,交CD于N
∴∠ONP=∠1=30°
∵AB∥CD,
∴∠BON=∠ONP=30°
∵EF⊥AB,
∴∠EOB=90°
∴∠EON=∠EOB+∠BON=90°+30°=120°
∵OD∥FG
∴∠EFG=∠EON=120°
(2)-3;-4;AB∥CD
【解析】【解答】解:(1)Ⅰ.如图2,过P作PN∥EF,交AB于N,
故答案为:过点F作MN∥CD,①过P作PN∥EF,交AB于N
( 2 )①∵|a+3|+(b-a+1)2=0,
∴a+3=0,b-a+1=0,
解得:a=-3,b=-4,
故答案为:-3,-4
②AB∥CD,理由是
∵C(0,a),D(b,a),
∴CD∥x轴,
∵点A为x轴负半轴上一点,点B为x轴正半轴上,
∴AB∥CD,
故答案为:AB∥CD
【分析】(1)Ⅰ.由图示可知辅助线的作法;
Ⅱ. 过O作OD∥FG,交CD于N,则两直线平行,内错角相等得∠ONP=∠1,AB∥CD,又由两直线平行内错角相等得∠BON=∠ONP,等量代换从而求得∠BON得度数,结合∠EOB=90°,∠EON=∠EOB与∠BON之和,求得∠EON,再由OD∥FG,根据两直线平行同位角相等求得∠EFG;
(2)根据两个非负数之和等于0,则此两个两个非负数分别等于0列式,解出a、b的值;
C点和D点的横坐标不同,纵坐标相同,则CD∥x轴,又因为点A为x轴负半轴上一点,点B为x轴正半轴上一点,则AB在x轴上,因此得出AB平行CD。
10.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE
(1)若∠COF=20°,则∠BOE=________°
(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系
(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.
【答案】(1)40
(2)解:∵
∴
∴
(3)解:存在.理由如下:
∵
设
∴
∵
∴
∴
∴
∴
【解析】【解答】⑴
∴
∵OF平分∠AOE,
∴
∴
∴
故答案为:40。
【分析】(1)根据,∠EOF=∠COE-∠COF=40°,再由角平分线的定义得出∠AOF=∠EOF=40°,最后∠BOE=∠A OB−∠AOE=120°−80°=40°.
(2)由角平分线的定义得出∠AOE=2∠EOF,再利用等量代换得∠AOE=120°−∠BOE=2(60°−∠COF) , 整理得∠BOE=2∠COF;
(3)∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α ,∠AOF=∠EOF=2α ,根据∠AOD+∠BOD=120°,构建一个含α的方程,5α+70°=120°求出α,进而求出∠DOF和∠COF.
11.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系________;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
【答案】(1)∠A+∠C=90°;
(2)解:如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)解:如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
12.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB的下方.
(1)若OM恰好平分∠BOC,求∠BON的度数;
(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;
(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.
【答案】(1)解:∵∠BOC=120°,OM恰好平分∠BOC
∴∠BOM=∠BOC=60°
又∵∠MON=90°
∴∠BON=∠MON−∠BOM
=90°−60°=30°
(2)解:设的余角为x°,
则
由题意得:,
x=15,
3x=45,
所以的度数为45°
(3)解:(0°< <90°).
.
【解析】【分析】(1)利用角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON−∠BOM,即可求出结果。
(2)设∠ C O M 的余角为x°,表示出∠COM的度数,再根据∠BOM=∠COM余角的3倍,建立方程求解即可。
(3)根据角的和与差计算即可。
13.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补
(1)试判断直线AB与直线CD的位置关系,并说明理由
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH
(3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P 作PQ平分∠EPK交EF于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)
【答案】(1)解:如图,
∵∠1和∠2互补,∠2和∠3互补,
∴∠1=∠3
∴AB∥CD
(2)解:如图,
由(1)得AB∥CD,
∴∠BEF+∠EFD=180°
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,
∴∠EPF=90°,即EG⊥PF
∵GH⊥EG,
∴PF∥GH.
(3)解:∠HPQ的大小不发生变化,理由如下:
∵EG⊥HG,∴∠KGP=90°
∴∠EPK=180°-∠4=180°-(180-∠3-∠KGP)=90°+∠3
∵∠3=2∠6,
∴∠EPK=90°+2∠6
∵PQ平分∠EPK,
∴∠QPK= ∠EPK=45°+∠6
∴∠HPQ=∠QPK-∠6=45°
∴∠HPQ的大小不发生变化,一直是45°
【解析】【分析】(1)利用邻补角的定义可证得∠2与∠3互补,再根据同角的补角相等,可证得∠1=∠3,然后利用同位角相等,两直线平行,可证得结论。
(2)利用两直线平行,同旁内角互补,可证得∠BEF+∠EFD=180°,再利用角平分线的定义去证明∠EPF=90°可得到EG⊥PF,然后利用同垂直于一条直线的两直线平行,可证得结论。
(3)利用垂直的定义可证得∠KGP=90°,利用邻补角的定义可证得∠EPK=90°+∠3,再由∠3=2∠6,可得到∠EPK=90°+2∠6,再利用角平分线的定义,可推出∠QPK=45°+∠6,由∠HPQ=∠QPK-∠6,即可求出∠HPQ的度数。
14.己知AB∥CD,点E在直线AB,CD之间。
(1)如图①,试说明:∠AEC=∠BAE+∠ECD;
(2)若AH平分∠BAE,将线段CE沿射线CD平移至FG。
①如图②,若∠AEC=90°,FH平分∠DFG,求∠AHF的度数;
②如图③,若FH平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由。
【答案】(1)解:如图①
【法1】过点E作直线EK∥AB
因为AB∥CD,所以EK∥CD
所以∠BAE=∠AEK,∠DCE=∠CEK
所以∠AEC=∠AEK+∠CEK=∠BAE+∠ECD
【法2】连接AC,则∠BAC+∠DCA=180°
则∠BAC+∠DCA=180°
即∠BAE+∠EAC+∠ECA+∠ECD=180°
所以∠BAE+∠ECD=180°-(∠EAC+∠ECA)=∠AEC
即∠AEC=∠BAE+∠ECD
(2)解:①【法1】因为AH平分∠BAE,FH平分∠DFG,所以∠BAH=∠EAH,∠DFH=∠GFH
又因为FG∥CE,所以∠GFD=∠ECD
由(1)知,∠AHF=∠BAH+∠DFH
= ∠BAE+ ∠DFG= ∠BAE+ ∠DCE
= (∠BAE+∠DCE) = ∠AEC= ×90°=45°
【法2】因为AH平分∠BAE,所以∠BAH=∠EAH
因为HE平分∠DFG,设∠GFH=∠DFH=x
又CE∥FG,所以∠ECD=∠GFD=2x
又∠AEC=∠BAE+∠ECD,∠AEC=90°
所以∠BAH=∠EAH=45°-x
由(1) 知,易证∠AHF=∠BAH+∠DFH=45°-x+x=45°
②【法1】因为AH平分∠BAE,FH平分∠CFG,所以∠BAH=∠EAH,∠CFH=∠GFH
又因为FG∥CE,所以∠GFD=∠ECD
由(1)知,∠AHF=∠BAH+∠DFH
= ∠BAE+∠GFH+∠GFD= ∠BAE+ ∠CFG+∠GFD
= ∠BAE+ ∠(180°-∠GFD)+∠GFD=90°+ (∠BAE+∠GFD)
=90°+ (∠BAE+∠ECD)=90+ ∠AEC
【法2】设∠BAH=∠EAH=x,∠CED=y,则∠GFD=y
因为HF平分∠CFG,所以∠GFH=∠CFH=90°-
由(1)知∠AEC=∠BAE+∠ECD=2x+y
∠AHF=∠BAH+∠DFH=∠BAH+∠DFG+∠GFH
=x+y+90°- =x+ +90°= (2x+y)+90°= ∠AEC+90°
所以∠AHF= ∠AEC+90°(或2∠AHF=∠AEC+180°或2∠AHF-∠AEC=180°)
【解析】【分析】(1)过点E作直线EK∥AB,根据平行线的性质即可求解;也可连接AC,根据平行线的性质和三角形内角和定理求解;
(2)①根据(1)的结论可得∠AHF=∠BAH+∠DFH,再结合平行线的性质和角平分线的定义表示出∠AHF,即可求解;也可设∠GFH=∠DFH=x,则∠BAH=45°-x,再根据∠AHF=∠BAH+∠DFH求解;
②根据(1)的结论可得∠AHF=∠BAH+∠DFH,结合角平分线的定义将∠AHF用∠AEC表示出来;也可设∠BAH=∠EAH=x,∠CED=∠GFD=y,则有∠AEC=∠BAE+∠ECD=2x+y,再结合∠AHF=∠BAH+∠DFH即可求解.
15.以直线上点为端点作射线,使,将直角的直角顶点放在点处.
(1)若直角的边在射线上(图①),求的度数;
(2)将直角绕点按逆时针方向转动,使得所在射线平分(图②),说明所在射线是的平分线;
(3)将直角绕点按逆时针方向转动到某个位置时,恰好使得(图③),求的度数.
【答案】(1)解:∵,
又∵,
∴ .
(2)解:∵平分,
∴,
∵,
∴,,
∴,
∴所在直线是的平分线.
(3)解:设,则,
∵,,
①若∠COD 在∠BOC的外部,
∴,解得x=10,
∴∠COD=10°,
∴∠BOD=60°+10°=70°;
②若∠COD在∠BOC的内部,
,解得x=30,
∴∠COD=30°,
∴∠BOD=60°-30°=30°;
即或,
∴或 .
【解析】【分析】(1)代入∠BOE=∠COE+∠COB求出即可;(2)求出∠AOE=∠COE,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB,即可得出答案;(3)要分情况讨论,一种是∠COD在∠BOC的内部,另一种是∠COD在∠BOC的外部,再根据平角等于180°可通过列方程求出即可.。