24.1圆的认识
圆的认识免费ppt课件
![圆的认识免费ppt课件](https://img.taocdn.com/s3/m/56f68b8059f5f61fb7360b4c2e3f5727a5e92432.png)
交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。
圆的认识知识点总结
![圆的认识知识点总结](https://img.taocdn.com/s3/m/1f4e463a00f69e3143323968011ca300a6c3f6c4.png)
圆的认识知识点总结一、圆的定义和基本性质1. 圆的定义:圆是平面上的一组点,到一个确定的点距离相等。
2. 圆的元素:圆心、半径、直径、圆周。
3. 圆的性质:圆的半径相等,圆的直径是两倍的半径。
圆周上的任意两点与圆心的距离相等。
圆心到圆周的距离是半径。
4. 圆的定理:圆心角定理、弧长定理、切线定理等。
二、圆的相关角度和单位1. 角度的定义:角度是一个衡量平面角的单位。
2. 角度的度量单位:度、弧度。
3. 圆周角和对应角:圆周角是指圆的圆心角度数,对应角是指相等的角。
4. 角度的运算和转换:角度的加减、角度和弧度的转换。
三、圆的周长和面积1. 圆的周长公式:周长=2πr,r为半径。
2. 圆的面积公式:面积=πr²。
3. 圆的周长和面积的应用:在解决实际问题时,常常利用圆的周长和面积公式进行计算和推导。
四、圆的相关定理和推论1. 圆的同位角定理:同位角相等的定理。
2. 圆的相交定理:相交弦定理、外接角定理、内接角定理等。
3. 圆的切线定理和切线角定理:切线和切线角的性质和应用。
五、圆的相关方程和函数1. 圆的标准方程:圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
2. 圆的一般方程:圆的一般方程是x²+y²+Dx+Ey+F=0,其中D,E,F为常数。
3. 圆的相关函数和图像:三角函数的正弦曲线和余弦曲线与圆的关系。
六、圆的应用1. 圆的应用领域:几何学、物理学、工程学等。
2. 圆的应用案例:圆的运动、圆的工程设计、圆的运动学分析等。
3. 圆的应用技术:在计算机图形学、图像处理、地理信息系统等领域有广泛的应用。
总结:圆是一个很基础却又富有深刻意义的几何图形,它在数学和自然界中都有着广泛的应用和影响。
通过对圆的认识知识点的总结和概述,有助于我们更好地理解圆的性质和定理,提高数学素养和解决实际问题的能力。
圆的相关知识和技能对于我们的学习和工作都有着重要的意义。
圆的认识知识点总结
![圆的认识知识点总结](https://img.taocdn.com/s3/m/5ae096790812a21614791711cc7931b765ce7b9d.png)
圆的认识知识点总结圆是我们数学中的一个基本几何概念,在日常生活中也经常遇到。
本文将对圆的定义、性质及相关定理进行总结,希望能够更好地帮助大家理解和应用圆的相关知识。
一、圆的定义及基本术语1. 圆的定义:圆是平面上到一个固定点的距离等于定长的点的集合。
2. 圆心:圆形的中心点称为圆心,通常用大写字母O表示。
3. 半径:连接圆心和圆上任意一点的线段称为半径,通常用小写字母r表示。
4. 圆的直径:通过圆心并且两端点都在圆上的线段称为圆的直径,直径的长度等于半径长度的两倍。
5. 圆的弦:圆上的两个点之间的线段称为圆的弦。
二、圆的性质1. 圆上任意两点之间的线段都是弦,弦的长短决定了其距离圆心的远近。
2. 弦与其所对的圆心角,它们之间的关系是:当一个弦被圆分成两段时,两段弧所对的角相等;而当一个弧被多个弦分成几段时,各弦所对的角之和等于该弧所对的角。
3. 圆的半径相等,即圆的所有半径长度都相等。
4. 圆的直径是圆上最长的弦,并且它等于圆的半径长度的两倍。
5. 在同一个圆中,弧度越大,对应的圆心角越大。
三、圆的相关定理1. 圆心角定理:在同一个圆中,圆心角所对的弧长是一定的。
换句话说,圆心角相等的弧长相等,圆心角不等的弧长不等。
2. 弧长定理:在同一个圆中,两条相交弦所对的弧长之和等于这两条弦所对的圆心角所对应的弧长之和。
3. 弦切角定理:当一个弦与一个切线相交时,两个交角的差等于这条弦所对的弧的圆心角。
4. 切线定理:从圆外一点引圆的两条切线,这两条切线的切点与该外点构成的两个三角形是相似三角形。
5. 弦切线性质:从圆外一点引圆的切点与切线相连,该切线与引线所对的圆心角相等。
综上所述,圆是平面几何中的重要概念,其性质及相关定理也是我们应用数学知识解决问题的基础。
掌握了圆的定义、基本术语、性质和定理,我们就能更加深入地理解和运用圆的相关知识。
希望本文对大家的学习有所帮助。
九年级数学人教版(上册)24.1.1圆课件
![九年级数学人教版(上册)24.1.1圆课件](https://img.taocdn.com/s3/m/7c6f4ae21b37f111f18583d049649b6648d7090f.png)
D
F
O
B
I
E
A
⌒ ⌒ ACD ACF
⌒⌒
AC AE
C
⌒⌒
ADE ADC
⌒
AF
⌒
A
D
课堂小结
课堂小结
1.圆的定义、圆的表示方法及确定一个圆的两个基本要素. 2.掌握圆的相关概念: (1)弦、直径;(2)弧及其表示方法;(3)等圆、等弧.
重点: 1.直径是最长的弦! 2.等圆:两个圆能够完全重合 3.等弧:能够完全重合的弧。(所在的圆的半径相等!) 4.劣弧长度<半圆长度<优弧长度 5.圆上各点到定点(圆心O)的距离都等于定长(半径r) 6.到定点的距离等于定长的点都在同一个圆上.
圆的概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋
转一周,另一个端点A所形成的图形叫做圆.
Oo rr AA
固定的端点O叫做圆 心 线段OA叫做半径
确定圆心 确定半径大小
以点O为圆心的圆,记“⊙O”, 读作“圆O”.
确定一个圆的 两个要素
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都 AA
作业布置
如图,在Rt△ABC和Rt△ABD中,∠C=90°, ∠D=90°, 点O是AB的中点.
求证:A、B、C、D四个点在以点O为圆心的 同一圆上.
A O
C
BDBiblioteka 等于定长(半径r);r
(2)到定点的距离等于定长的点
都在同一个圆上.
r OO r
BC
CB
判断几个点是否在同一个圆上。
归纳:圆心为O、半径为r的圆可以看成是: 所有到定点O的距离等于定长r的点组成的图形.
圆的两种定义
人教版数学九年级上学期课时练习-圆及有关概念(知识讲解)(人教版)
![人教版数学九年级上学期课时练习-圆及有关概念(知识讲解)(人教版)](https://img.taocdn.com/s3/m/5f4076df0342a8956bec0975f46527d3240ca6c5.png)
专题24.1 圆及有关概念(知识讲解)【学习目标】1.理解圆的本质属性;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;【要点梳理】要点一、圆的定义第一定义:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.特别说明:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.第二定义:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 特别说明:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.1.点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.特别说明:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.特别说明:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.特别说明:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.类型一、圆的定义1.如图,已知O 的圆心原点()0,0O ,半径长为(10,8),A a 是O 上的在第一象限的点,求a 的值.【答案】6【分析】根据圆的基本性质,可得OA =10,再由(),8A a ,可得AB =8,然后由勾股定理,求出OB =6,即可求解.解:如图,过点B 作AB ⊥x 轴于点B ,连接OA ,⊥O 的半径长为10,⊥OA =10,⊥(),8A a ,⊥AB =8,在Rt AOB 中,由勾股定理得:6OB = ,⊥(),8A a 在第一象限内,⊥0a > ,⊥6a =.【点拨】本题主要考查了圆的基本性质,勾股定理,点的坐标,熟练掌握圆的基本性质,勾股定理是解题的关键.举一反三:【变式1】 ABC 中,90C ∠=︒.求证:A B C ,,三点在同一个圆上.【分析】取AB 的中点O ,根据直角三角形的性质得到CO =AO =BO ,故可求解. 解:如图所示,取AB 的中点O ,连接CO在Rt ⊥ABC 中,⊥AO = BO ,⊥ACB = 90°,⊥CO =12AB ,即CO =AO =BO .⊥A ,B ,C 三点在同一个圆上,圆心为点O .【点拨】此题主要考查证明三点共圆,解题的关键是熟知圆的基本性质及直角三角形的特点.【变式2】如图,已知MN 为O 的直径,四边形ABCD ,EFGD 都是正方形,小正方形EFGD 的面积为16,求圆的半径.【答案】r =【分析】连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==,在Rt ⊥COD 和Rt ⊥FOG 中,分别根据勾股定理可得222(2)832x x x x +=++,解方程即可求解.解:如图,连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==, ⊥222DO CD CO +=,⊥222(2)x x r +=,⊥正方形EFGD 的面积为16,⊥4DG FG ==,⊥4OG x =+,又⊥222OF OG FG =+,⊥2222(4)4832r x x x =++=++,⊥222(2)832x x x x +=++, 解得14x =,22x =-(不合题意,舍去),⊥2224880r =+=,r =【点拨】本题考查勾股定理的应用圆的认识和性质,解题的关键是熟练掌握在一个直角三角形中两条直角边的平方和等于斜边的平方.类型二、与圆有关的概念3.如图,在O 中,半径有________,直径有________,弦有________,劣弧有________,优弧有________.【答案】OA,OB,OC,OD AB AB,BC AC,BC,BD,CD,AD ADC,BAC,BAD,ACD,DAC【分析】根据圆的基本概念,即可求解.解:在O中,半径有OA,OB,OC,OD;直径有AB;弦有AB,BC;劣弧有AC,BC,BD,CD,AD;优弧有ADC,BAC,BAD,ACD,DAC;故答案为:OA,OB,OC,OD;AB;AB,BC;AC,BC,BD,CD,AD;ADC,BAC,BAD,ACD,DAC.【点拨】本题主要考查了圆的基本概念,熟练掌握圆的半径、直径、弦、弧的概念是解题的关键.举一反三:【变式1】小于半圆的弧(如图中的________)叫做______;大于半圆的弧(用三个字母表示,如图中的_______)叫做______ .【注意】1)弧分为是优弧、劣弧、半圆.2)已知弧的两个起点,不能判断它是优弧还是劣弧,需分情况讨论.【答案】AC劣弧ABC优弧【变式2】如图,以点A为端点的优弧是____________,以点A为端点的劣弧是_____________.【答案】AEC,ADE AE,AC【分析】根据劣弧和优弧的定义求解.解:在⊥O中,以A为端点的优弧有AEC,ADE;以A为端点的劣弧有AE,AC;故答案为:AEC,ADE;AE,AC.【点拨】本题考查了圆的认识:掌握与圆有关的概念,注意:大于半圆的弧是优弧,小于半圆的弧是劣弧,半圆既不是优弧,也不是劣弧.类型三、点和圆的位置关系3.已知⊥O的半径r=5cm,圆心O到直线l的距离d=OD=3cm,在直线l上有P、Q、R三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点与⊥O位置关系各是怎样的【答案】PD=4cm,点P在⊥O上.QD>4cm,点Q在⊥O外.RD<4cm,点R在⊥O 内.【分析】依题意画出图形(如图所示),计算出P、Q、R三点到圆心的距离与圆的半径比较大小.解:连接PO,QO,RO.⊥PD=4cm,OD=3cm,⊥PO5r==.⊥ 点P 在⊥O 上.5QO r ===,⊥ 点Q 在⊥O 外.5RO r ==,⊥ 点R 在⊥O 内.【点拨】本题主要考查点与圆的位置关系,点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.举一反三:【变式1】已知:如图,△ABC 中,90,2cm,4cm AC C C B ∠==︒=,CM 是中线,以C长为半径画圆,则点A 、B 、M 与⊥C 的关系如何?【答案】点A 在⊥O 内;点B 在⊥C 外;M 点在⊥C 上【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d ,则当d =r 时,点在圆上;当d >r 时,点在圆外;当d <r 时,点在圆内.解:根据勾股定理,有AB =cm );⊥CA =2cm ,⊥点A 在⊥O 内,⊥BC =4cm ,⊥点B 在⊥C 外;由直角三角形的性质得:CM⊥M 点在⊥C 上.【点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.【变式2】画图说明:端点分别在两条互相垂直的直线上,且长度为5 cm的所有线段的中点所组成的图形.【答案】以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【分析】如图所示,当线段两个端点在O,F时,此时的的中点为B点,同理可知也可在A,G,H点,这些点在已知直线的交点为圆心,2.5 cm长为半径的一个圆上;当线段两个端点在C,D时,其中点为E,根据直角三角形斜边上的中点是斜边的一半知CE=DE=OE,则E点在以O为圆心2.5 cm长为半径的一个圆上;综上即可画出图形.解:如图所示,以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【点拨】此题主要考查点与圆的关系,解题的关键是正确理解题意,再画出图形.类型四、圆中弦的问题4、已知:线段AB = 4 cm,画图说明:和点A、B的距离都不大于3 cm的所有点组成的图形.【答案】所求图形为阴影部分(包括阴影的边界).【分析】以A,B点为圆心,半径为3作圆,重叠的部分即为所求.解:如图所示,以点A,B为圆心,3cm为半径画圆,两个圆相交的部分为阴影部分,图中阴影部分就是到点A和点B的距离都不大于3 cm的所有点组成的图形.【点拨】此题主要考查点与圆的位置关系,解题的关键是根据题意画出图形,根据所学的点与圆的位置关系的判断方法来解答.举一反三:【变式1】如图所示,AB 为O 的一条弦,点C 为O 上一动点,且30BCA ∠=︒,点E ,F 分别是AC ,BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径为7,求GE FH +的最大值.【答案】GE FH +的最大值为212. 【分析】由GE FH +和EF 组成O 的弦GH ,在O 中,弦GH 最长为直径14,而EF 可求,所以GE FH +的最大值可求.解:连结AO ,BO ,⊥30BCA ∠=︒ ⊥60BOA ∠=︒⊥AOB 为等边三角形,7AB =⊥点E ,F 分别是AC ,BC 的中点 ⊥1722EF AB ==,⊥ GH 为O 的一条弦 ⊥GH 最大值为直径14 ⊥GE FH +的最大值为7211422-=. 【点拨】利用直径是圆中最长的弦,可以解决圆中一些最值问题.【变式2】如图,已知等边⊥ABC 的边长为8,点 P 是 AB 边上的一个动点(与点 A 、B 不重合).直线 l 是经过点 P 的一条直线,把⊥ABC 沿直线 l 折叠,点 B 的对应点是点B '.当 PB =6 时,在直线 l 变化过程中,求⊥ACB'面积的最大值.【答案】【分析】如图,过点P 作PH AC ⊥,当B ',P ,H 共线时,ACB '△的面积最大,求出PH 的长即可解决问题.解:如图,过点P 作PH ⊥AC ,由题可得,B '在以P 为圆心,半径长为6的圆上运动,当HP 的延长线交圆P 于点B '时面积最大,在Rt APH 中,8AB =,6PB =,2PA ∴=, ABC 是等边三角形,60PAH ∴∠=︒,1AH ∴=,PH =6BH ∴=ACB S '∴的最大值为18(6242⨯⨯=. 【点拨】本题考查圆与三角形综合问题,根据题意构造出图形是解题的关键. 类型五、与圆周长和面积有关的问题5、如图所示,求如图正方形中阴影部分的周长.(结果可保留π)【答案】正方形中阴影部分的周长为()2060cm π+【分析】阴影部分的周长=半圆弧长+14圆弧长+正方形边长的3倍,依此计算即可求解. 解:根据题意得:1110(cm)2l d ππ==, 2210(cm 41)r l ππ=⋅=, ()1010602060cm C πππ=++=+.故正方形中阴影部分的周长为()2060cm π+.【点拨】本题主要考查列代数式,解题的关键是掌握圆的周长公式.举一反三:【变式1】如图,长方形的长为a ,宽为b ,在它的内部分别挖去以b 为半径的四分之一圆和以b 为直径的半圆.(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =8,b =4时,求阴影部分的面积(π取3).【答案】(1)阴影部分的面积=ab ﹣38πb 2;(2)14.【分析】 (1)根据阴影部分面积=矩形面积-14圆的面积-半圆的面积,结合图形14圆的半径、半圆的半径和矩形的宽的关系,并利用它们的面积公式即可求解.(2)将a ,b 的值代入(1)中所求的代数式进行计算.解:(1)14圆的半径即为矩形的宽=b ,半圆的半径为矩形宽的12=12b , 阴影部分面积=矩形面积-14圆的面积-半圆的面积即:阴影部分面积=2221113()4228ab b b ab b πππ--=- (2)因为π取3,将84a b ==,代入(1)所得的代数式得:原式=238434=148⨯-⨯⨯. 【点拨】本题考查求圆的面积的公式及根据题意列代数式,明确阴影部分面积=矩形面积-14圆的面积-半圆的面积是解题的关键. 【变式2】如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【答案】2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点拨】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.类型六、坐标系中圆的问题6、如图,点P 是反比例函数(0)k y x x=<图象上一点,PA x ⊥轴于点A ,点M 在y 轴上,M 过点A ,与y 轴交于B 、D ,已知A 、B 两点的坐标分别为()()6,00,2A B -,,PB 的延长线交M 于另一点C .(1)求M 的半径的长;(2)当45APB ∠=︒时,试求出k 的值;(3)在(2)的条件下,请求出线段PC 的长.【答案】(1) 10 (2) 48- (3) 【分析】(1)设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,求出满足要求的m ,求出MB 的长,进而可得半径;(2)由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,将P B ,代入得62a b n b -+=⎧⎨=⎩,可得过P B ,的直线的解析式为226n y x -=+,将0y =代入,求得12,02E n -⎛⎫ ⎪-⎝⎭,由45APB ∠=︒ ,90PAB ∠=︒,可知AP PE =,则()1262n n -=---,求出满足要求的n 值,得到P 点坐标,然后代入反比例函数解析式求k 即可;(3)由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+,设(),2C a a -+,由题意知,10MC =,则()2222810a a +-++=,求出符合要求的a 值,进而可得C 的坐标,然后利用勾股定理求PC 的值即可.(1)解:设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,解得:8m =-,⊥()0,8M -,⊥()2810--=,⊥M 的半径的长为10.(2)解:由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,如图,将P B ,代入得62a b n b -+=⎧⎨=⎩, 解得262n a b -⎧=⎪⎨⎪=⎩, ⊥过P B ,的直线的解析式为226n y x -=+, 将0y =代入得122x n-=-, ⊥12,02E n -⎛⎫ ⎪-⎝⎭, ⊥45APB ∠=︒ ,90PAE ∠=︒,⊥45PEA ∠=︒,⊥AP AE =, ⊥()1262n n-=---, 整理得280n n -=,解得8n =,0n =(不合题意,舍去),⊥()6,8P -,将()6,8P -代入k y x =得,86k =-, 解得48k =-,⊥k 的值为48-.(3)解:由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+, 设(),2C a a -+,由题意知,10MC =,⊥()2222810a a +-++=,解得10a =, 0a =(不合题意,舍去),⊥()10,8C -,⊥PC =⊥PC 的长为【点拨】本题考查了圆的概念,反比例函数与一次函数的综合,等角对等边,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.举一反三:【变式1】如图,在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,其中0a >,0b >.(1)请写出方程22(3)(4)25x y ++-=表示的圆的半径和圆心的坐标;(2)判断原点()0,0和第(1)问中圆的位置关系.【答案】(1)半径为5,圆心()3,4- (2)在圆上【分析】(1)根据题目所给的“在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆”即可直接得出答案;(2)将原点()0,0的坐标代入22(3)(4)25x y ++-=,即可判断出点与圆的位置关系.(1)解:在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,∴将22(3)(4)25x y ++-=化成()2223(4)5x y --+-=⎡⎤⎣⎦, ∴22(3)(4)25x y ++-=表示的圆的半径为5,圆心的坐标为()3,4-;(2)解:将原点()0,0代入22(3)(4)25x y ++-=,左边2222(03)(04)3491625=++-=+=+==右边,∴原点()0,0在22(3)(4)25x y ++-=表示的圆上.【点拨】此题主要考查对未学知识以新定义形式出现的题型,读懂题意,根据新定义解决问题是本题的关键.【变式2】阅读下列材料:平面上两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离表示为12PP =,称为平面内两点间的距离公式,根据该公式,如图,设P (x ,y )是圆心坐标为C (a ,b )、半径为r 的圆上任意一点,则点P r =,变形可得:(x ﹣a )2+(y ﹣b )2=r 2,我们称其为圆心为C (a ,b ),半径为r 的圆的标准方程.例如:由圆的标准方程(x ﹣1)2+(y ﹣2)2=25可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C (3,4),半径为2的圆的标准方程为: ;(2)若已知⊥C 的标准方程为:(x ﹣2)2+y 2=22,圆心为C ,请判断点A (3,﹣1)与⊥C 的位置关系.【答案】(1)()()223425x y -+-=;(2)点A 在⊥C 的内部.【分析】(1)先设圆上任意一点的坐标(x ,y ),根据圆的标准方程公式求解即可;(2)先根据圆的标准方程求出圆心坐标,利用两点距离公式求出点A 到圆心的距离d ,然后与半径r 相比较,d >r ,点在圆外,d =r ,点在圆上,d <r ,点在圆内,即可判断点A与圆的位置关系.解:(1)设圆上任意一点的坐标为(x ,y ),⊥()()223425x y -+-=,故答案为()()223425x y -+-=;(2)⊥⊥C 的标准方程为:(x ﹣2)2+y 2=22,⊥圆心坐标为C (2,0),⊥点A (3,﹣1),AC 2 ⊥点A 在⊥C 的内部.【点拨】本题考查两点距离公式的拓展内容,圆的标准方程,正确理解题意、熟练掌握基本知识是解题关键.。
人教版数学九年级上册第24章圆24.1.1圆教学设计
![人教版数学九年级上册第24章圆24.1.1圆教学设计](https://img.taocdn.com/s3/m/b9aa7da5aff8941ea76e58fafab069dc51224759.png)
5.拓展提高题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。这类题目旨在激发学生的学习兴趣,提高他们的数学思维。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础巩固题:针对圆的基本概念和性质,设计一些选择题、填空题,让学生巩固所学知识。
2.应用提高题:设计一些与生活实际相关的题目,如计算圆形花坛的面积、圆桌的周长等,让学生学会将所学知识应用于实际问题。
3.拓展挑战题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。
2.创设问题情境,引导学生通过探究、讨论的方式,发现和掌握圆的相关性质。
-设计一系列由浅入深的问题,如圆中任意两点到圆心的距离是否相等,引导学生自主探索和发现圆的性质。
-组织小组合作学习,鼓励学生之间交流想法,共同解决难题。
3.将理论知识与生活实际相结合,设计实际应用题,提高学生解决问题的能力。
-通过设计如操场跑道周长、圆形花园面积等实际问题,让学生在实际情境中应用所学的圆的周长和面积知识。
5.教学评价多元化,不仅关注学生的知识掌握,也注重学习过程中的思维方法和情感态度。
-通过课堂提问、小组讨论、课后作业、小测验等多种方式,全面评估学生的学习成效。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维能力。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生对日常生活的经验,激发他们对圆的好奇心和探究欲。首先,我会向学生展示一系列包含圆的图片,如车轮、硬币、圆桌等,让学生观察并思考这些图片中的共同特征。通过这种方式,引导学生发现圆在生活中的普遍存在。接着,我会提出问题:“为什么这些图形都是圆的?圆有什么特别之处?”从而引出本节课的主题——圆。
人教版九年级上册数学24.1.圆教案
![人教版九年级上册数学24.1.圆教案](https://img.taocdn.com/s3/m/be26e2a433687e21ae45a949.png)
24.1.1 圆(第一课时)一、内容和内容解析1. 内容圆的定义,以及弦、直径、弧、半圆、等圆、等弧等相关概念.2. 内容解析本课是人教版九年级上册第二十四章《圆》第一节内容,隶属于“图形与几何”领域.本章是在学习了多边形的有关概念和性质,以及轴对称和旋转变换的基础上,研究圆这种特殊的曲线图形.圆是常见的几何图形之一,它不仅在几何中有重要地位,而且是进一步学习数学以及其他科学重要的基础.本节的重点内容是圆的定义,首先在小学画圆的基础上,用“发生法”给出圆的描述性定义.然后分析圆上每一点与圆心的距离都等于定长,同时到定点的距离等于定长的点都在圆上,从集合的角度对圆进一步刻画,把圆看成是所有到定点的距离等于定长的点的集合.在认识圆的概念的基础上,结合图形认识半径、直径、弦、弧、等圆、等弧等相关概念,并能够利用圆的定义解析实际生活的一些问题.在学习概念的过程中,经历了观察、操作、推理、归纳、想象的过程,感受从具体到抽象的数学思想方法.基于以上分析,确定本课的重点:探究生成圆的概念,结合图形理解弦、直径、弧、等圆、等弧等相关元素的概念.二、目标和目标解析1. 目标(1)理解圆的概念;(2)理解弧、弦的概念,了解等圆、等弧的概念;(3)在经历圆的概念的形成过程中,体验从具体到抽象的数学思想;用点与集合进一步刻画圆时,渗透集合的思想;(4)利用圆的定义解释生活的问题,感受圆与生活的密切联系,体会圆蕴含的数学美,感受数学文化的魅力.2. 目标解析达成目标(1)的标志是:能够在动手画圆的基础上归纳出圆的描述性定义.在一个平面内,由线段OA绕着它固定的一个端点O,另一个端点A所形成的图形叫做圆.然后通过分析探究,从点和集合的角度进一步认识圆.在同一平面内,所有到定点的距离等于定长的点的集合叫做圆.达成目标(2)的标志是:结合图形认识弧、弦、等圆、等弧的相关概念,并能够把握它们的区别与联系,理解等圆等弧都是基于全等、重合的基础上的,仅仅长度相等不能说它们是等弧.达成目标(3)的标志是:经历圆的定义形成的过程,体会观察、操作、思考、归纳等数学活动,体悟由具体到抽象的思想方法,感受数学的概念生成是自然的.能够用集合的思想来理解圆的定义,体会把一个图形看成满足某种条件的点的集合.达成目标(4)的标志是:能够用圆的概念去解释生活的问题,感受数学与生活的密切联系,体会圆蕴含的数学美,提高数学审美能力及数学文化素养,提升学生民族自豪感.三、教学问题诊断分析学生在小学中学过圆的一些知识,对于圆已经有初步的了解,并会利用圆规画圆,可以用自己的语言加以简单的描述,初步具备了有条理地思考和表达的能力,为本课的学习奠定了认知基础和活动经验基础.本课的重点是抽象出圆的概念,但学生的抽象逻辑能力仍较弱,需要进一步的启发引导.此外,要用点与集合的角度理解圆,学生会感觉比较困难,需要老师点拨.本节课需要学习的圆的相关概念非常多,并且要学习新的符号语言.可能会出现混淆不清的情况,因此教学的关键应该是引导学生分辨它们的区别与联系.基于以上分析,确定本节课教学难点:探究生成圆的概念及圆的概念的理解.四、教学支持条件分析为了有效实现教学目标,根据问题诊断分析和学习行为分析,采取了以下教学支持条件:1.本课采用课件演示每一个步骤,让学生明白每一个环节的任务和学习内容.2.制作微视频让学生欣赏生活中的圆,感受圆的美.激发学生学习的兴趣.3.准备了两端打结的棉线和橡皮筋若干,充分让学生感受画圆过程.4.用几何画板制作了画圆的动画,让学生直观感受圆的形成过程,从而归纳出圆的概念,突破重难点.5.制作剪辑微课讲授圆的相关概念,提高课堂效率.五、教学过程设计教学程序教学内容教师活动学生活动设计意图1.问题驱动,引入新知创设情景,激趣引入校运会趣味抢球游戏游戏规则:全班同学站在球场的边上,当裁判说游戏开始,立即跑去球场中心抢球,抢到球者获胜.游戏规则是否公平合理?出示问题情境,引导学生修改规则.引出本节学习的课题——圆.思考游戏是否公平,讨论怎么样修改规则才公平.通过创设生活的问题情境,让学生感受学习圆的必要性,激发学生学习的兴趣,感受数学与生活紧密联系.2.探究圆的概念1.说一说小学就学习过圆,你对“圆”有哪些认识?引导学生发掘已有的圆的认识.回忆学过的圆的相关知识.通过挖掘学生对圆已有的认识,能够根据学生已有的经验基础和认知基础,寻找切合的知识的生长点,为本课学习作铺垫.2.欣赏圆的美引出毕达哥欣赏微视频通过微视频呈现生活古希腊的数学家毕达哥拉斯认为:“一切立体图形中最美的是球,一切平面图形中最美的是圆”.欣赏微视频,感受圆的图形之美.3.画一画小组合作操作:1.用一段棉线和笔在画板上画出一个圆.2.用一段皮筋和笔在画板上画出一个圆.并交流作法和体会.4.想一想观察画圆的过程,你能说一说圆是如何形成的吗?5.归纳概括,形成概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆记为,读作确定一个圆的两个的要素:①圆心确定其位置②半径确定其大小.6. 从点与集合的角度进一步认识圆(1)学以致用——用定义解释实际问题修改规则后为什么就公平合理呢?结论1:圆上各点到定点(圆心O )的距离都等于定长(半径r).(2)如图,若OA=OB=OC=OD=OE=5, 则点A、B、C、D、E在以O为圆心.若OA=OB=OC=OD=OE=r,则点A、B、C、拉斯的这句话.播放微视频引导学生小组分组合作画圆,引导学生交流画圆的作法与体会.播放几何画板制作的画圆动画,引导学生思考圆的形成过程,从而给圆下定义.用圆规演示画圆过程,形成图形语言.类比三角形的记法得到圆的记法,形成符号语言.引导学生发现圆的两个要素,圆心和半径.引导学生用圆的定义解决生活中的问题,深切感受半径处处都相等.引导学生发现到定点距离等于定长的点都在同四人一小组合作,其中两人人用棉线画圆,另两人用皮筋画圆.画好后全班展示交流作法与体会.小组内交流.学习圆的概念.全班同学用圆规画圆.学习圆的圆的记法、读法.全班思考,共同回答个别回答,并说明理由.个别回答.中美丽的圆形,让学生体会生活中圆的无处不在,感受圆中蕴含数学美.设置小组内用不同的工具(棉线和皮筋)分别画圆,充分感受画圆的过程.这样设置让学生对比感受定点和定长的作用.通过观察画圆动画,直观感受圆的形成过程,小组讨论、思考、归纳用“发生法”得出圆的概念,体悟由具体到抽象的数学思想.让学生理解圆的概念.通过规范画圆,形成图形语言,学习记法和读法形成符号语言.让学生发现圆的两个要素,圆心定位置,半径定大小.让学生活学活用,感受数学知识是有用的.并且让学生直观地理解圆上各点到定点的距离等于定长.通过设置有梯度的题目,由特殊到一般,让学生易理解到定点的距离等于定长的点都D 、E在以O为圆心.结论2:到定点的距离等于定长的点都在同一个圆上.由结论1,2知,圆心为O、半径为r的圆可以看成是.结论:所有到定点O的距离等于定长r的点的集合.一个圆上.引导学生用集合的思想来描述圆.小组讨论,全班交流在同一个圆上.用点与集合的角度进一步认识圆,渗透集合思想,突破难点.3.应用圆的概概念,拓展提升1.感受数学文化战国时期《墨经》的记载:“圆,一中同长也”.你能理解这句话吗?2.巩固应用,提升演练例1矩形ABCD的对角线相交于点O.求证:A,B,C,D四个点在以点O为圆心的同一个圆上.分析:要证明四个顶点共圆,只需证明归纳步骤:1.找圆心;2.找半径练习:在ABC∆中,o90=∠C.求证:A, B ,C三点在同一个圆上.归纳:证明几个点在同一个圆上:关键确定和,确保这几个点到的距离相等.展示我国的关于圆的数学文化.引导学生解读这句话的含义.出示题目,引导学生分析证明四点共圆的关键.及分析证明的思路.教师板演规范的证明过程.出示题目.先让学生独立思考完成,然后让学生分享不同的证明方法,学生证明过程通过手机拍照即时呈现.了解圆的数学文化.个别回答,全班交流.引导学生归纳证明几点共圆的关键和步骤.学生独立思考,寻求证明思路,写出完整的证明过程.然后小组交流.提高学生的数学文化素养,提升民族自豪感.进一步巩固圆的概念.证明几点共圆,关键要找到圆心和半径.巩固证明几点共圆问题.若题中无圆心时,启发学生应先找到圆心,再找半径.归纳证明此类问题的关键.4.探究圆的相关概念1.微视频学习,介绍弦、直径、弧、等圆、等弧的概念.2.我的疑惑.3.课堂检测如图,弦有.劣弧有:.优弧有:.播放微视频引导学生提出疑问,学生先回答,教师再引导学生归纳概括.让学生完成学案课堂检测并提问.学习微视频学生提出疑惑.完成课堂检测.微视频简短有趣,引导学生根据视频学习提出疑问,师生共同解答,充分调动学生发现问题、提出问题的能力.通过师生互辩,区分弦弧、等圆、等弧等概念.考察学生是否掌握了弦、弧的概念和表示方法.5.小结 1.本节课学习了哪些数学知识?学生发表总结,教师补充归梳理数学内容、方法、反思 2.学习了哪些思想方法? 3.你还有什么疑惑吗?纳.思路,养成系统整理知识的习惯.6.布置作业作业设计 必做题:1: 81页练习第1,2题做在书上 2:89页1,2题做在作业本上 选做题:已知:如图,BD 、CE 是△ABC 的高,M 为BC 的中点.试说明点 B 、C 、D 、E 在以点M 为圆心的同一圆上.布置作业. 课下独立完成作业.课后进一步巩固所学的知识,将本节课的知识升华.六、板书设计24.1.1圆(第一课时)一.数学知识 例1 学生活动区域1.圆的概念记法 读法 圆的两要素: 2. 圆相关概念 二. 数学思想方法:①由具体到抽象 ②由未知转化到已知七、目标检测设计 1. 如图所示,MN 为⊙O 的弦,,o 52=∠N 则MON ∠的度数为( ) A. o 38 B .o 52 C .o 76 D .o 104设计意图:考查学生对圆的概念的掌握,半径处处相等.2.如图,在四边形ABCD 中,o 90=∠=∠DCB DAB ,则A,B,C,D 四个点是否在同一个圆上,若在,说出圆心的位置,并画出这个圆. 设计意图:考查学生对几点共圆证明的掌握.3.练习:如图所示,以O 为圆心的圆记作 , 圆中有 条直径,记作 ;圆中有 条弦,记作弦 ; 圆中劣弧有 条,记作 ;圆中以B 为一个端点的优弧有 条,记作. 设计意图:考查学生对圆及圆的相关概念几何语言的的掌握.。
数学人教版九年级上册24.1.2《垂直于弦的直径》教案
![数学人教版九年级上册24.1.2《垂直于弦的直径》教案](https://img.taocdn.com/s3/m/e8548a35001ca300a6c30c22590102020740f295.png)
1.教学重点
-理解垂直于弦的直径的定义:通过直观演示和实际操作,让学生明确什么样的直径是垂直于弦的,并能够准确地描述这一概念。
-掌握垂直于弦的直径的性质:分析并理解垂直于弦的直径所具有的性质,如平分弦、垂直平分弦等,并能够运用这些性质解决具体问题。
-应用垂直于弦的直径解决实际问题:培养学生将理论知识应用于解决实际问题的能力,如通过垂直于弦的直径的性质来求解圆的相关问题。
-与其他圆的性质的综合应用:在综合问题中,学生需要将垂直于弦的直径的性质与其他圆的性质结合起来,这对于学生来说是一个挑战。
举例:在讲解垂直于弦的直径的证明过程时,教师可以使用直观的动画或模型,逐步引导学生通过观察和思考,理解证明过程中的每一步。对于难点内容,如灵活运用性质,教师可以通过以下方法帮助学生突破:
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的空间观念和几何直观:通过观察、操作、推理等过程,使学生理解并掌握圆的基本性质,提高对圆的认识,发展空间想象力。
2.提升学生的逻辑推理能力:在学习垂直于弦的直径定义和性质的过程中,引导学生运用逻辑思维进行推理和证明,增强分析解决问题的能力。
举例:讲解垂直于弦的直径定义时,教师可以借助图形,如一个圆和一条弦,通过动画或实物演示,让学生观察并总结出垂直于弦的直径的特点。
2.教学难点
-理解垂直于弦的直径的证明过程:学生往往难以理解为什么垂直于弦的直径会具有平分弦的性质,以及如何通过几何证明来证实这一点。
-灵活运用垂直于弦的直径的性质:在解决具体问题时,学生可能难以迅速找到垂直于弦的直径,并有效地利用其性质来简化问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是经过圆中心并且垂直于弦的线段。它在圆的性质中占有重要地位,因为它可以平分弦,并在几何图形中起到关键作用。
圆的认识教案报名版
![圆的认识教案报名版](https://img.taocdn.com/s3/m/63832773168884868762d6a1.png)
解释引言中的车轮问题时,先让学生独立思考,再分组讨论,学会组织语言,用所学的知识去解释。
数学教学是在教师的引导下,进行的再创造,再发现的教学,通过活动,教给学生一种科学研究的方法,学会发现问题,提出问题,分析和解决问题,再得出结论。
3、游戏中的数学问题:
投圈游戏
一些学生正在做投圈游戏,他们呈“一”字型排开,这样队形对每个人公平吗?你认为他们应当排成什么样的队形?为了使投圈游戏公平,现在有一条3米长的绳子,你准备怎么办?
教师出示判断题,以检测学生对本节课所学概念的理解情况,特别要关注学生是否能准确地把握好每一个概念,要及时纠正错误的观点,并说明错误的原因。
2、问题小结:要确定一个圆,必须先确定圆的圆心和半径,圆心决定圆的位置,半径决定圆的大小。
3、体验生活:回到课前提出的“车轮为什么是圆形”的问题。结合动画演示,便于学生理解。
出示这两个问题后,先让学生独立思考,再回答,然后教师再从中提出“等圆”和“同心圆”的概念,可以使学生很容易地理解,再让学生列举生活中的等圆和同心圆的例子。
问题3的提出是为了让学生学会学以致用,让学生感受到数学来源于生活,并服务于生活,结合动画演示可以使学生更好地理解这一现象。同时也培养学生的观察和归纳能力。
活动4
问题
学习与圆有关的概念:
1、弦,直径(并结合三个习题以熟悉所学的弦和直径,并学会辨析哪些线段不是弦。)
2、讨论探究为什么直径是最长的弦。
3、弧,半圆,劣弧,优弧和等弧的概念,并介绍弧的表示方法,结合相关的习题来熟知概念,特别是等弧的理解是个难点,结合动画演示,效果更好。
教师直接结合图形,给出弦的概念,和直径,弧,半圆,劣弧与优弧,等弧,并说明表示方法,再提出可辨析概念的一些问题,让学生加深对概念的理解。等弧的理解是个难点,教师结合动画演示,和举反例,让学生更好地理解等弧。
《圆的认识》公开课课件
![《圆的认识》公开课课件](https://img.taocdn.com/s3/m/81ce6da7534de518964bcf84b9d528ea81c72f08.png)
通过大量实例和观察,归纳出一般 性的结论。在圆的证明中,有时可 以通过归纳法来证明一些性质。
圆的定理和推论
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的弧。这个定理是圆 的基本性质之一,在圆的证明和
作图中非常有用。
切线长定理
经过圆外一点的切线与切点之间 的线段长等于过切点的直径与该 点的距离。这个定理在解决与切
圆与三角形的相切
当一个三角形与圆相切时,切线 与半径垂直。利用这个性质,我 们可以解决一些几何问题。
圆与其他图形的结合
圆与直线的位置关系
根据圆心到直线的距离,我们可以判 断圆与直线是相交、相切还是相离。 这些位置关系在解决几何问题中非常 有用。
圆与多边形的结合
在一个多边形中,如果所有顶点都在 同一个圆上,则这个多边形称为圆内 接多边形。通过圆内接多边形的性质 ,我们可以研究圆的性质。
圆的面积是指圆所占平面的大小,通常用字母A表示。
圆的面积的计算公式
A = πr^2,其中r表示圆的半径。
圆的面积的应用
通过圆的面积公式,我们可以计算出圆的面积,进而求出圆内接多 边形的面积等。
圆的相关计算
圆的相关计算包括:求圆心角、圆弧长、圆内接多边形的面 积等。这些计算都需要用到圆的半径和直径,以及相关的数 学公式和定理。
圆与圆的关系
内含、相交、外离、同心
内含:一个圆完全位于另 一个圆的内部。
外离:两个圆没有公共的 交点。
相交:两个圆有公共的交
同心:两个圆有共同的圆
•·
点。
心。
圆在生活中的应用
轮胎、餐具、建筑、天文
轮胎:车辆的轮胎设计为 圆形,可以保证平稳滚动 。
建筑:圆形窗户和门框在 建筑中常用于装饰和结构 。
24.1.1 圆的认识(课件+教案+学案)
![24.1.1 圆的认识(课件+教案+学案)](https://img.taocdn.com/s3/m/83292b00192e45361066f534.png)
24.1.1圆的认识学案一、学习目标•1、理解并掌握圆的概念。
•2、了解和认识圆的相关概念。
•3、探究圆的一些基本特征。
•4、能利用圆的概念及其特征解决一些实际问题。
二、圆的定义1、请在白纸上画一个半径为2cm的圆.若要在平坦的操场上画一个半径为3m的圆,你有什么办法?活动:通过对画圆过程的观察,探讨圆的定义。
定义1:(动态)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.①定点O叫做②线段OP叫做圆的③表示:以O为圆心的圆,记做“⊙O”,读做“圆O”。
定义2:(静态)圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点组成的图形.①圆上各点到定点(圆心O)的距离都等于定长(半径r);②到定点的距离都等于定长的点都在同一个圆上.探求新知:车轮为什么做成圆形?三、圆的有关概念①连接圆上任意两点的线段叫做___________,如图线段AC,AB;②经过圆心的弦叫做__________,如图线段AB;注意:凡直径都是弦,是圆中最长的弦但弦不一定是直径.即时练习1. 如图(1)直径是_______;(2)弦是_____________;(3) PQ是直径吗?______;(4)线段EF、GH是弦吗?_______.A弦OBC 直径.B A CO2. 如图,半径有:______________如图,弦有:______________③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、B 为端点的弧记作 AB ”,读作“圆弧 AB ”或“弧AB ”.大于半圆的弧(如图所示 或 叫做优弧,•小于半圆的弧(如图所示 或 叫做劣弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.即时练习1. 如图,劣弧有:优弧有:2. 判断:半圆是弧,但弧不一定是半圆.( )四、课堂展示(展示题,学生补充完成)1. 过圆上一点可以作圆的最长弦有( )条.A. 1B. 2C. 3D.无数条2. 图中有____条直径,____条非直径的弦,圆中以A 为一个端点的优弧有____条,劣弧有____条.3.如图, ⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一直线上,图中弦的条数为_____。
24.1.1 圆教案及反思
![24.1.1 圆教案及反思](https://img.taocdn.com/s3/m/befdf3f39b89680203d8257d.png)
课型新授课课题24.1.1 圆备课人教学媒体多媒体教学目标知识技能1.了解圆的有关概念,并灵活运用圆的概念解决一些实际问题.2.结合图形理解弧、等弧、弦、等圆、半圆、直径等有关概念.过程方法通过举出生活中常见圆的例子,经历观察画圆的过程,多角度体会和认识圆.情感态度激发学生观察、探究、发现数学问题的兴趣和欲望.教学重点圆、弧、等弧、弦、等圆、半圆、直径等有关概念的理解教学难点圆、弧、等弧、弦、等圆、半圆、直径等有关概念的区别与联系.教学过程设计教学程序及教学内容师生行为设计意图一、创设情境、引入新课人们在用语言来表达对美好事物的赞美或向往是,常常与“圆”联系在一起,如“花好月圆”、“破镜重圆”等等。
圆在生活中也是无处不在的,首先,我们来欣赏一组图片:今天我们一起走进圆的世界,进一步探究圆的相关知识.板演课题24.1.1圆本节课要完成的学习目标是:1、了解圆的定义;指出圆在生活中无处不在,引导学生欣赏图片,学生观察,思考,对圆进行直观认识引出课题,板演24.1.1 圆学生默读学习目标直观形象的初步认知圆,培养学生思考习惯了解本节课要掌握的知识2、理解弦、弧、半圆、优弧、劣弧,了解同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系。
二、自主学习、探究新知自主学习一自学时间:3分钟自学内容:教材第79-80页例1前的内容;自学要求:独立思考,圈画出你认为关键的知识点.自学问题:1、用圆规画一个半径为3cm的圆,标明圆心、半径,并体会圆的形成过程;2、思考:圆的位置与什么有关系?圆的大小与什么有关系?3、量一量:在你所画的圆中,圆上的点与圆心间的距离有什么关系?到圆心的距离等于3cm的点在哪里?交流展示一1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径,一般用r表示以点O为圆心的圆,记作“⊙O”,读作“圆O”.2、圆的两要素:圆心决定圆的位置半径决定圆的大小同心圆:圆心相同,半径不同等圆:半径相同,圆心不同同圆:半径相同,圆心相同我们可以得到圆的集合定义:圆心为O,半径为r 的圆可以看成是所有到定点O的距离等于定长r 的点的集合.应用新知1.不共线三点A、B、C到定点O的距离相等,那么A、B、C在以O为圆心的同一圆上吗?为什么?2、已知:矩形ABCD的对角线AC、BD相交于O, 老师在学生自学的过程中巡视,并点拨自学出现的问题学生用圆规画圆,观察体验,归纳总结,发现结论时间结束,老师提问:根据你画圆的过程,结合动画演示,给出圆的定义引导学生抓住关键词老师引导:看下面两幅图片比较圆心和半径,你有何发现?学生口答,老师点拨老师提问,学生尝试作答,教师点评总结,得到(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.教师提出问题,引发学生思考,并运用刚学的知识解释说明点,便于学习中抓住重点,分清主次让学生亲自动手进行实验,探究,得出结论,激发学生的求知欲望.通过问题引导学生探究,发现圆的集合定义,初步感知圆学生理解概念,让学生通过练习进一步理解概念,培养学生的应用意识和能力求证:A 、B 、C 、D 在以O 为圆心的同一圆上。
山东省临沭县九年级数学《24.1.1圆的认识》课件 新人教版
![山东省临沭县九年级数学《24.1.1圆的认识》课件 新人教版](https://img.taocdn.com/s3/m/aed483e5482fb4daa48d4b51.png)
弧
圆上任意两点间的部分叫做圆弧,简称
弧.以A、B为端点的弧记作 ⌒ AB ,读作“圆 弧AB”或“弧AB”.
圆的任意一条直径的两个端点把圆分成两条 弧,每一条弧都叫做半圆.
B
O·
⌒
A
C
劣弧与优弧
小于半圆的弧(如图中的 ⌒ AC )叫做劣弧;
⌒ 大于半圆的弧(用三个字母表示,如图中的
叫做优A弧BC.
)
B
O·
A
C
想一想 判断下列说法的正误:
(1)弦是直径;( )
(2)半圆是弧; (
)
(3)过圆心的线段是直径; ( )
(4)过圆心的直线是直径;( )
(5)半圆是最长的弧;( )
(6)直径是最长的弦;( ) (7)圆心相同,半径相等的两个圆是同心圆;( )
(8)半径相等的两个圆是等圆.( )
A
1.如图,半径有:__O_A_、__O_B_、__O_C___
圆心确定其位置, 半径确定其大小.
同步练习
1、填空: (1)根据圆的定义,“圆”指的是“圆周 ”, 而不是“圆面”。 (2)圆心和半径是确定一个圆的两个必需条件, 圆心决定圆的 ,位半置径决定圆的 ,二者 缺一大不小可。
与圆有关的概念
弦
O·
A
连接圆上任意两点的线段 (如图AC)叫做弦,
B
经过圆心的弦(如图中 的AB)叫做直径.
圆是生活中常见的图形,许多物体都给我们以圆的形象.
祥子
一石激起பைடு நூலகம்层浪
小憩片刻
圆的概念
如图,在一个平面内,线段OA绕它固定的一个
端点O旋转一周,另一个端点A所形成的图形叫做圆.
固定的端点O叫做圆心
24[1][1].1圆的认识(一)
![24[1][1].1圆的认识(一)](https://img.taocdn.com/s3/m/e6ad4dccda38376baf1faecb.png)
古希腊的数学家毕达哥拉斯认为: 古希腊的数学家毕达哥拉斯认为: 一切立体图形中最美的是球形, “一切立体图形中最美的是球形, 一切平面图形中最美的是圆形. 一切平面图形中最美的是圆形.” 它的完美来自于中心对称,无论 它的完美来自于中心对称, 处于哪个位置,都具有同一形状. 处于哪个位置,都具有同一形状. 它最谐调、最匀称. 它最谐调、最匀称. 在生活中处处都与圆有联系, 在生活中处处都与圆有联系,如: “圆桌会议”, “没有规矩不成 圆桌会议” 方圆”等.
车轮为什么做成圆形的? 车轮为什么做成圆形的? 如果车轮是椭圆或正方形, 如果车轮是椭圆或正方形,坐车的人 会是什么感受? 会是什么感受?
连接圆上任意两点的线段叫圆的弦; 连接圆上任意两点的线段叫圆的弦; 中的弦; 如线段AB、BC、AC都是圆O中的弦; 圆心与圆上的点的连线叫圆的半径; 圆心与圆上的点的连线叫圆的半径; 线段OA、OB、OC都是圆的半径, 都是圆的半径, 经过圆心的弦 经过圆心的弦叫圆的直径 为直径. 线段AC为直径.
巩固练习 1.过圆上一点可以作出圆的最长弦有 过圆上一点可以作出圆的最长弦有 条 2.下面判断中 正确的是 下面判断中,正确的是 下面判断中 正确的是: A.过圆内的一个点的无数条弦中有最长的 过圆内的一个点的无数条弦中有最长的 没有最短的弦. 弦,没有最短的弦 没有最短的弦 B.过圆内的一个点的无数条弦中有最短的 过圆内的一个点的无数条弦中有最短的 没有最长的弦. 弦,没有最长的弦. C.过圆内的一个点的无数条弦中有最长的 过圆内的一个点的无数条弦中有最长的 也有最短的弦. 弦,也有最短的弦 也有最短的弦 B.过圆内的一个点的无数条弦中没有最短 过圆内的一个点的无数条弦中没有最短 的弦,也没有最长的弦. 的弦,也没有最长的弦.
人教版九年级数学上册24.1.1《圆》教学设计
![人教版九年级数学上册24.1.1《圆》教学设计](https://img.taocdn.com/s3/m/178e38f8f424ccbff121dd36a32d7375a417c6a5.png)
c.画一个直径为8cm的圆,并标出圆心、半径、弦和弧。
-通过这些基础题目的练习,使学生熟练掌握圆的周长和面积的计算方法。
2.应用拓展题:
-设计一道实际生活中的问题,让学生运用圆的知识解决:
例如:某公园要建一个直径为10米的圆形花坛,花坛的边缘要用一条宽度为0.5米的道路包围。求这条道路的面积。
-教师进行点评,强调重点知识,指出学生在学习过程中需要注意的问题。
-鼓励学生将所学知识运用到实际生活中,激发学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学的圆的相关知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
1.基础巩固题:
-根据教材课后练习,完成以下题目:
a.求半径为5cm的圆的周长和面积。
4.小组合作题:
-分成小组,共同完成以下任务:
a.收集并分享生活中的圆形物体及其应用。
b.讨论圆的性质在实际问题中的应用,如圆形建筑设计、圆形交通标志等。
-通过小组合作,培养学生的团队协作能力和交流表达能力。
作业要求:
1.学生需独立完成作业,要求字迹清楚、步骤齐全。
2.家长需关注学生的学习情况,鼓励学生主动思考和解决问题。
-圆的周长和面积的计算公式。
2.教学活动设计:
-通过动态演示和实物操作,让学生直观地理解圆的基本概念。
-结合几何画板等教学工具,引导学生探究圆的性质,并用自己的语言进行描述。
-讲解圆的周长和面积计算公式,通过例题讲解,让学生掌握计算方法。
(三)学生小组讨论
1.教学内容:
-探讨圆在实际生活中的应用,如圆形建筑、圆形交通标志等。
3.教师将对作业进行批改和反,关注学生的进步和存在的问题,为下一步教学提供依据。
人教版数学九年级上册圆ppt课堂课件
![人教版数学九年级上册圆ppt课堂课件](https://img.taocdn.com/s3/m/174fa64f8762caaedc33d495.png)
D
点 都在同一个圆上.
我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径.
议一议
为什么车轮是圆 的呢?椭圆或正 方形可以吗
把车轮做成圆形,车轮上各点到车轮中心(圆 心)的距离都等于车轮的半径,当车轮在平面上滚 动时,车轮中心与平面的距离保持不变,因此,当 车辆在平坦的路上行驶时,坐车的人会感觉到非常 平稳,这也是车轮都做成圆形的数学道理.
人教版数学九年级上册:24.1.1圆-课 件
归纳小结
今天的学习,你有那些收获?我 们来自我检测一下。
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
达标检测
A
等边三角形
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
•
3.在品读文字中,继续巩固总分的构 段方法 ,初步 学习围 绕中心 句概述 自然段 主要内 容。
•
4.第五节讲只要细心观察就能获得更 多的知 识。从 植物妈 妈的办 法中, 学生能 感受到 大自然 的有趣 ,生发 了解更 多植物 知识的 愿望, 培养留 心观察 身边事 物的习 惯。
•
5.根据诗歌内容,课文中配有相应的 插图, 形象地 描绘了 三种植 物传播 种子的 方法, 同时告 诉小读 者植物 传播种 子的方 法有很 多,仔 细观察 就能得 到更多 的知识 。
A
B
C
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
13..
人教版数学九年级上册:24.1.1圆-课 件
圆的认识知识点总结
![圆的认识知识点总结](https://img.taocdn.com/s3/m/41108b5fdf80d4d8d15abe23482fb4daa58d1dcc.png)
圆的认识知识点总结圆是数学中一个非常重要的图形,在我们的日常生活和学习中都有着广泛的应用。
下面就来对圆的认识相关知识点进行一个全面的总结。
一、圆的定义1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2、以点 O 为圆心的圆记作“⊙O”,读作“圆O”。
二、圆的相关元素1、圆心圆心是圆的中心,决定了圆的位置。
2、半径连接圆心和圆上任意一点的线段叫做半径。
半径决定了圆的大小。
在同一个圆中,半径都相等。
3、直径通过圆心并且两端都在圆上的线段叫做直径。
直径是圆内最长的线段。
在同一个圆中,直径等于半径的 2 倍,用字母表示为 d = 2r 。
4、弦连接圆上任意两点的线段叫做弦。
直径是圆中最长的弦。
5、弧圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
6、圆心角顶点在圆心的角叫做圆心角。
7、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。
三、圆的性质1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
2、圆是中心对称图形,其对称中心是圆心。
3、垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
四、圆的周长和面积1、圆的周长圆的周长 C =2πr 或 C =πd ,其中π是圆周率,约等于 314 ,r 是半径,d 是直径。
2、圆的面积圆的面积 S =πr² 。
五、弧长和扇形面积1、弧长公式n°圆心角所对的弧长 l =(nπr)/180 ,其中 n 是圆心角度数,r 是半径。
2、扇形面积公式(1)S =(nπr²)/360 ,其中 n 是圆心角度数,r 是半径。
(2)S = 1/2 lr ,其中 l 是弧长,r 是半径。
六、圆与其他图形的关系1、圆与直线的位置关系(1)相离:直线与圆没有公共点。
(2)相切:直线与圆有且只有一个公共点,此时圆心到直线的距离等于半径。
24.1圆
![24.1圆](https://img.taocdn.com/s3/m/dee21e8ecc22bcd126ff0c0c.png)
24.1圆第一课时圆中有关概念学习目标:1、学习圆的概念2、理解圆的定义以及一些相关概念3、体会数学在生活中的应用重点:理解圆的定义以及一些相关概念难点:理解圆的定义以及一些相关概念课前预习11、到圆心的距离{ }半径长的点都在圆上。
2 、连接圆上任意两点的{ }叫做弦,{ }是圆中最长的弦。
3 、圆中任意{ }叫做圆弧4、在{ }中能够互相重合的弧叫等弧。
5、判断并改错{1}弧分为优弧和劣弧两种{2}半圆是弓形而不是弧。
{3}弦是指圆上两点之间的部分、课前预习2一创境激趣在日常生活中,圆形的物体随处可见,如太阳、车轮、你是否想过车轮为什么要制作成圆形的?这有什么好处吗?二自主探究问题一木工师傅想在木板上画一个圆,却没有圆规,只有一根绳子,你能帮他想一个画圆的办法吗?思路分析:要想画圆,把握两点:1固定圆心位置2把握半径大小。
解题过程:本题小结:{ }和{ }是确定圆的两大要素。
通过问题一,你对圆的定义有怎样的认识?圆是{ }圆是{ }通过对圆的认识,你能否解释“车轮制成圆形”的原因?你会表示以o为圆心的圆吗?{ }问题二自学教材第79页,思考下列问题:弦是直径吗?{ } 直径是弦吗?{ } 半径是弦吗?{ } 弧是弦吗?{ } 弧是半圆吗?{ } 半圆是弧吗?{ }什么是优弧?{ } 怎样表示?什么是劣弧?{ } 怎样表示?补充概念:有弦及其所对的弧组成的图形叫弓形。
B请在如图的⊙o 中写出直径、弦、优弧、劣弧问题三:讨论同圆、等圆概念的区别{ }等弧必须互相{ }而只有在{ }圆和{ }圆中才有可能满足“互相重合”,因此,不相等的两个圆中一定不存在等弧判断并改错:{1}长度相等的两条弧是等弧{ }{2}等弧的长度相等{ }补充概念:同心圆;圆心相同,半径不相等的两个圆叫同心圆;图示:你能在现实生活中找出同心圆的实例吗?{ }三 能力提升1下列说法中,正确的是( )①线段是弦 ②直径是弦 ③经过圆心的弦是直径 ④经过圆上一点有无数条直径 ⑤长度相等的弧是等弧 ⑥优弧大于劣弧 ⑦直径是同一圆中最长的弦 ⑧同圆和等圆的弦一定相等2 一个圆的最大的弦长为10cm ,则此圆的半径为{ }3 以点o 为圆心做圆,可以作( )个圆4 以3cm 的长为半径,可以作( }个圆5 以A 为圆心,3cm 为半径可以作( )个圆6 如图:在⊙O 中,AB 是直径,AB 与弦CD 的延长线交于点E ,且AB=2DE,∠E=15º 求∠AOC思路分析:在圆中,要注意利用半径相等来构造等腰三角形解题。
24.1.1《圆》的说课稿
![24.1.1《圆》的说课稿](https://img.taocdn.com/s3/m/0f15503a26284b73f242336c1eb91a37f11132d2.png)
24.1.1《圆》的说课稿发布时间:2021-07-23T15:08:58.097Z 来源:《中小学教育》2021年7月1期作者:彭志平[导读]彭志平四川省南充市五星中学四川南充 637000中图分类号:G652.2 文献标识码:A 文章编号:ISSN1001-2982(2021)07-065-01本课题选自人教版义务教育教科书数学九年级上册第24章第一节第一课时的内容.根据新课标的理念,对于本节课,本文将以教什么,怎样教,为什么这样教为思路,从内容及内容分析、目标和目标解析、教学问题诊断分析、教学支持条件分析、教学过程设计分析、目标检测设计、课后反思七个方面展开说课。
一、内容及内容分析圆是生活中常见的图形,也是平面几何中的基本图形,圆在数学中占有重要地位.本节课的内容是对已学过的旋转及轴对称等知识的巩固,也为本章即将要探究的圆的性质、圆与其它图形的位置关系、数量关系等知识打下坚实的基础.本节课的内容体现了运动的观点,是研究圆的性质的基础.二、目标和目标解析新课标下的数学活动必须建立在学生已有的认知水平及知识经验的基础上.新课程理念下的数学教学不仅是知识技能的训练,更应重视能力的培养和情感的教育.根据本节课教材的地位和作用,结合学生的特点,特确定如下目标:目标一通过小组交流学习的方式去理解圆的定义,熟练掌握圆心、半径、直径、弦、弧、半圆、劣弧、优弧、等圆、等弧等概念。
目标二通过情景创设,使学生经历动手实践、观察思考、分析概括的学习过程,形成自主探究、合作交流的习惯.利用课堂探究和对比分析,培养学生探究知识的能力。
目标三渗透数学的应用价值,感悟从特殊到一般的数学思想,体验“先猜想后证明”的数学思想方法,激发学生学习数学的兴趣。
三、教学问题诊断分析根据对教材地位和作用以及教学目标的分析,结合新课标对本节课的要求,我将本节课的重点确定为:圆、半径、弦、直径、弧、半圆、劣弧、优弧、等圆、等弧等与圆有关的概念,解释生活中与圆有关的问题.从心理特征来说,初中阶段的学生逻辑思维从经验型向理论型过渡,观察力,记忆力和想象力逐渐攀升.但这一阶段的学生好动,注意力易分散,爱发表见解.从认知状况来说,学生在此之前已经学习了圆,对圆已经有了初步的认识,但对于圆的理解可能会产生一定的困难.基于此,本节课学生如何理清弦、直径、弧、等弧、等圆、同圆等易混淆的概念则是本节课的难点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标
1、理解圆的定义及表示方法。 2、理解直径与弦,弧、优弧、劣弧与半 圆的关系及表示方法。 3、了解等圆、等弧、同心圆的概念。
圆的概念
如图,观察画圆的过程,你能由此说出圆的形成过程吗? 在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
∴AO=OC;OB=OD;
又∵AC=BD ∴OA=OB=OC=OD ∴A、B、C、D在以O为圆心以OA为半径的圆上。 矩形--四点共圆.
练习
判断下列说法的正误:
)
)
1、弦是直径;( 2、半圆是弧;
(
3、过圆心的线段是直径; 4、过圆心的直线是直径;( 5、半圆是最长的弧;(
( )
) )
6、直径是最长的弦;( ) 7、圆心相同,半径相等的两个圆是同心圆 ;( 9、半径相等的两个圆是等圆.( )
⌒
B
由弦及其所对 的弧组成的图 形叫弓形。
O
·
C
A
等圆
能够重合的两个圆是等圆。 容易看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
等弧
E O1
F
·
B
O2
·
D
A
C
在同圆或等圆中,能够互相重合的弧叫做 等弧。
同心圆
• 同心圆:圆心相同而半径不等的两个圆或多个圆。
1、什么是圆?怎样表示呢?画一个圆需要什么条件?
观察下列图形,从中找出共同特点:
祥子
一石激起千层浪
小憩片刻பைடு நூலகம்
圆是一种基本的几何图形, 圆形物体在生活中随处可见。 圆也是一种和谐、美丽的图形,无 论从哪个角度看,它都具有同一形状。 十五的满月、圆圆的月饼都象征着圆满、 团圆、和谐。 古希腊的数学家毕达 哥拉斯认为:“一切立体图 形中最美的是球,一切平面 图形中最美的是圆”。
O
●
C
AC
在圆中有长度不等的弦,
直径是圆中最长的弦。
⌒ BC ⌒ AB 13.如图,弧有:______________
A
B
O
●
⌒ ⌒ BCA ⌒ ABC ACB
它们一样么?
⌒ BC
BAC
C
⌒ 14.劣弧有: AB ⌒ 优弧有: A CB
⌒
你知道优弧与劣弧的区别么?
判断:半圆是弧,但弧不一定是半圆.(
2、什么是弦、直径?它们有什么区别呢? 3、什么是弧、半圆、优弧、劣弧?有什么区别?怎样 表示呢?
4、什么是等圆、同心圆、等弧呢?
思考题
求证:矩形的四个顶点在以对角线交点为圆心的圆上。 已知:矩形ABCD的对角线AC、BD相交于O。 求证:A、B、C、D在以O为圆心的同一圆上。
A O B C D
证明:∵ABCD是矩形
)
谈一谈
通过本节学习你有哪些收获呢?
作业:
小卷P73页
)
9、圆中最长的弦长为12cm,则该圆
的半径为 6cm 。 A
)个
10、下列说法错误的有( ①经过P点的圆有无数个。
②以P为圆心的圆有无数个。
③半径为3cm且经过P点的圆有无数个。
④以P为圆心,以3cm为半径的圆有无数个。
A、1 B、2 C、3 D、4
A
11.如图,半径 OA、OB、OC 有:______________ B 若∠AOB=60°, 等边 则△AOB是 _____三角形. 12.如图,弦有:______________ AB、BC
B O
·
C
A
弧
圆上任意两点间的部分叫做圆弧,简称 弧.以A、B为端点的弧记作 ⌒ AB ,读作 “圆弧AB”或“弧AB”.
圆的任意一条直径的两个端点把圆分成两条 弧,每一条弧都叫做半圆.
B
O
O
·
B
A
·
A
劣弧与优弧
⌒ 提醒:知道弧的两个起 小于半圆的弧(如图中的 AC )叫做劣弧; 弧有三类,分别是 点,不能判断它是优弧 优弧、劣弧、半圆。 还是劣弧,需分情况讨 大于半圆的弧(用三个字母表示, 论。 如图中的 ABC )叫做优弧.
归纳:圆心为O、半径为r的圆可以 看成是所有到定点O的距离等于定长r 的点的集合.
动态:在一个平面内,线段OA绕它固定
的一个端点O旋转一周,另一个端点A所 形成的图形叫做圆.
静态:圆心为O、半径为r的圆可以看成
是所有到定点O的距离等于定长r 的点组 成的图形.
与圆有关的概念
弦 连接圆上任意两点的线段(如图 AC)叫做弦, 经过圆心的弦(如图中的AB)叫做直径.
我们知道,线段的垂直平分线可以 看作是到线段两个端点的距离相等 的点的集合,那么圆从集合的角度 应该怎样定义,它是什么点的集合?
O
A
r
·
我国古人很早对圆就有这样的认识了,战国时的《墨经》就 有“圆,一中同长也”的记载.它的意思是圆上各点到圆心 的距离都等于半径.
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
O
r
·
线段OA叫做半径
以点O为圆心的圆,记作“⊙O”, 读作“圆O”.
确定一个圆的要素:
一是圆心, 圆心确定其位置,
二是半径,
半径确定其大小.
O
A
同步练习 1、填空: (1)根据圆的定义,“圆”指的是 “ 圆周 ”,而不是“圆面”。 (2)圆心和半径是确定一个圆的两个 必需条件,圆心决定圆的 位置 , 半径决定圆的 大小 ,二者缺一不 可。