《平均数》大单元教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平均数》大单元教学设计
【教学目标】
1.结合生活实例,通过观察、对比、分析、交流等活动,理解平均数的意义,探索求平均数的基本方法,发展数据意识和推理意识。
2.借助实际情境,通过观察、对比、分析、归纳等活动,初步学会根据具体情况运用平均数分析与解决实际问题,根据统计结果作出简单的判断和预测,发展数据分析观念,体会统计的作用及价值。
3.使学生进一步体会数学与生活的密切联系,体验运用数学知识解决问题的乐趣,培养学生善于观察、勤于思考、勇于探索的良好学习习惯。
【教学重点】
理解平均数的意义,掌握求平均数的方法。
【教学难点】
理解平均数的意义。
【教学过程】
出示“杭州亚运会”精彩视频集锦,进行爱国主义及体育运动精神教育,学习中国运动员不服输,勇于挑战自己的精神。
师:同学们,你们喜欢体育运动吗?都喜欢什么运动?
生:足球、篮球、乒乓球……
师:孩子们,有玩过套圈的游戏吗?这是我们学校趣味运动会的一个项目。
想不想一睹他们的风采?
师:老师请大家做裁判,做裁判最重要的素养是什么?
生:公平、公正。
师:你们有信心做好吗?我们先来了解一下比赛规则:分成男女两组进行比赛,小组成员每人投掷 15 个圈,记录套中的圈数。
套圈水平更高的小组就能获胜。
【设计意图】:以这样的设计谈话引入,一方面是为了激起学生的认知兴趣,另一方面为学生探究活动的开展指明了方向。
一、创设情境,感受平均数学习的必要性
师:那今天就请大家来评一评,看哪个小组的水平更高,男生女生组各派了一名队员参加。
男生套了 2 个,女生套了 10 个,谁赢了?生:女生。
师:看来是女生水平较高,那我们现在宣布女生队获胜。
可以吗?生:不可以,只进行了一场比赛,一个人不能代表全队的水平。
师:一个人套圈的水平,我们把它叫做是个人水平。
现在是男生和女生一起参加比赛,我们能用个人水平来比较他们的成绩吗?
生:不能。
我们得比较他们总体的水平。
师:也就是比较他们的整体水平。
出示统计表、统计图。
男女队各派 3 名队员上场。
师:男生队他们的套圈水平可以用哪个数字来表示?
生:7。
师:看来,每个人一样多的时候,我们就可以用这个一样多(也就是同样多)的数,来代表小组的整体水平。
师:那我们再来看女生组,每个人都是套了(6 个),女生队的整体
水平可以用哪个数字来表示?(6)
师:男生队的整体水平是 7。
女生队的整体水平是 6。
显而易见这次比赛谁赢了?
师:女生不服气,想再比一次,请看这一次,数据有多的有少的,那谁赢了呢?我们应该怎样比较呢?
生:把套圈的个数加起来,求出总数,然后再比较大小。
生说算式师板书:6+5+10=21(个) 5+6+8=19(个)
师:谁赢了?男生又赢了。
师:场景怎么这么熟悉,和第二场比赛的数据相似?还是谁赢了?(男生赢)。
趁着裁判还没宣布结果,女生弱弱的又提了一个小要求,我们想再派一个人,再套一次,我们班的男生啊,自信爆棚,竟然也答应了,
师:那同学们仔细观察,谁赢了?预设(女生),同桌两个裁判商量,为什么是女生赢了?说一说你的理由?裁判有自己独立的判断也是很重要的。
生 1:因为女生套中的总数多。
生 2:我感觉不公平。
因为女生多派了一个人,人数不相同,比较总数不公平。
师:好了,同学们。
看来做一名公平公正的裁判不容易啊。
不管做什么事情,要学会反思,反思是成功的开端。
看来啊,我们需要找到一个新的统计量,来代表每个小组的整体水平。
你们知道这样的一个统计量叫什么吗?有同学已经说到了叫做平均数。
今天这节课我们就
一起来学习有关平均数的知识。
(板书课题)
【设计意图】:通过两组数据的比较,环环相扣地提出问题,将学生的思维一步步引向深入。
学生在深入思考后可以感知到用平均数解决此类问题具有合理性和普适性。
教师引导学生在熟知的生活情境中应用已有的知识经验解决问题,既激发了学生的探究欲望,同时也在解决问题的过程中自然地引出了平均数,化抽象为形象,学生主动体会了平均数产生的必要性。
二、解决问题,探究平均数的意义
初步感知平均数:这个 10 能代表男生的整体水平吗?明显多了。
5 能代表男生的整体水平吗?又明显怎么了?少了。
平均数它肯定有一个大致的范围,在最大和最小之间。
(一)用“移多补少”的方法理解平均数
师:能不能借助小磁扣更直观清晰地跟大家展示一下你的想法,找到一个数,让这个数可以代表男生组的整体水平吗?
学生移动小磁扣展示移多补少的过程。
师:为什么要把它移成这个样子吗?
生:因为这样他们三个都一样多了。
哦,都一样多了,我们就说同样多(板贴)。
师:都一样了,那你觉得这个一样多的数就可以代表他们的整体水平吗?
师:大家同意吗?太好了,你现在告诉大家这个数是几?七。
师:不仅动手能力强,还非常的会表达,掌声送给他。
这个一样多的
7,现在就可以代表男生组的整体水平。
师:我们通过摆一摆,移一移的方法就找到了这个同样多的数。
那你们能不能给这个方法取个名字?这个方法就叫“移多补少”。
老师希望同学们在学习生活中也能做到互相帮助,取长补短,共同成长。
师:这个同样多的数啊,我们就把它叫做这组数据的(平均数)。
真棒,孩子们,这个时候啊,7 就张开嘴巴说话了:我现在代表男生组的整体水平,我是 6、5、10 这三个数的平均数。
谁能来模仿着 7,也来说一说?
师:女生组的,在脑子里想一想,应该怎么移动呢?生表达想法,同样多的数是 6,那 6 这时候,张开了大大的嘴巴也要说话了,谁来帮它一下!
生:我代表女生组的整体水平,是 5、6、8、5 这四个数的平均数。
师:仔细观察男生队移多补少的过程,你发现了什么?
生:数一数,多于平均数的个数和少于平均数的个数相同。
像我们学的成语取长补短。
(二)用“求和平分”的方法理解平均数
刚才一眼就看出移多补少的方法,真有数学的眼光。
要是一眼看不出来,那还有其他的方法吗?
师:除了移多补少法,还有用别的方法的吗?
生:还可以用算一算的方法。
生说师板书。
师:请你给大家讲一讲你是先求的什么?再求的什么?
生边说想法,教师边展示课件。
生:我是先求出套圈的总数,再除以 3。
师:这里为什么要除以 3?
生:因为有三名队员。
师:老师现在有 1 个疑惑,算出来的平均数是 7 个,那这 7 个是谁套中的呢?
生:谁的也不是,7 代表这组数据的整体水平。
师:它是一个虚拟出来的数,这是平均数一个重要的特点(虚拟性)。
师:我们再来看女生组的,怎么要除以 4?
生:因为女生队有 4 名队员。
得到的平均数是 6,也就是女生组的整体水平是 6。
师:老师又有疑问了,2 号也套中了 6 个,这 2 个 6 的意思一样吗?说说你的理解。
生:不一样,2 号的 6,是他个人的成绩,而平均数 6 个是女生队的整体水平。
师:了不起,对两个 6 的意义理解得非常的透彻。
总结:第一步干什么?第二步干什么?生边说,教师边展示课件。
师:像这样用总数除以总份数求平均数的方法(板贴:总数÷总份数)叫做:求和平分。
师:我们用移多补少、求和平分的方法找到了平均数。
它们都有一个共同的目的,那就是要几个不一样的数变得同样多。
其实我们刚才,通过移一移、对比分析等数学方法,借助数形结合的数学思想,认识
了平均数。
【设计意图】:通过引导学生结合条形统计图把平均数和原始数据进行比较,让学生进一步认识到平均数与原始数据的区别,通过移一移、对比分析等数学方法,借助数形结合的数学思想,明确了平均数是把原始数据进“移多补少”或“求和平分”处理后得到的结果,它是一个“虚拟”的数,可以用来表示一组数据的整体水平,从而使学生对平均数的统计意义有了更清晰的认识。
三、学以致用,解决问题
师:孩子们,你们知道吗?中国文化博大精深,早在 3000 多年前,《周易》中就有对“移多补少”的记载,君子以裒多益寡,称物平施”,“裒“指减少,“益”指增加,在一个整体中取长补短,公平施予。
什么感觉?是不是很自豪,佩服古人的智慧。
【设计意图】:通过介绍平均数的数学史,丰富学生的数学文化,体会到数学与生活实际的密切联系,增强民族自豪感,有机地渗透了爱国主义教育。
(一)分析平均数的变化,感悟平均数的敏感性
师:好,同学们,不管是玩游戏也好、动手探究也好,我发现咱们班的同学具有数学的眼光,非常善于观察和思考。
是不是感觉学的非常轻松?那敢不敢继续接受挑战?好,我们继续用数学的思维思考现实世界。
师:想一想如果男生队再派一个人参加,会对这个平均数产生什么样的影响呢?生:各抒己见。
师:通过统计图来直观地看一下数据对平均数的影响。
师展示课件,看来啊,我们无意间发现了平均数一个非常重要的特点(敏感性),其中任何一个数据稍有风吹草动,平均数就会跟着发生变化。
那在这里的套中 1 个或者说套中 20 个,可以被称为极端数据。
师:所以我们在各种比赛评分中,通常要去掉一个最高分和一个最低分,再计算平均分。
也就是减少极端数据对平均数的影响,保证平均成绩更接近真实水平,让比赛更加的公平公正。
【设计意图】:本环节教学利用条形统计图直观形象的特点,使学生更清晰直观地体会平均数会随着数据的变化而变化,感悟平均数的敏感性。
(二)分析平均数的范围,理解平均数的区间性
师:趣味运动会过后,套圈游戏掀起了全校同学的运动热潮,上周我们班内进行了套圈比赛,这是我们班套圈个数统计图,观察数据,估一估我们班套圈个数的平均数。
生:各抒己见。
师:为什么不估计 9 个或者 1 个呢?
生:结合移多补少法说明原因
师:说得真好,不仅敢说还非常的会说,有理有据,真棒!我们要想得到平均数,通过移多补少法,最终应该使得每一位同学的个数同样多,所以原本最多的 9肯定要减少,原本最少的 1 肯定要增多。
这也是平均数的另一个重要特点:区间性。
即平均数的范围在最小数和最大
数之间。
师:老师在课前求出了全班同学的平均数是 5 个,确实在最小数和最大数之间。
【设计意图】:在条形统计图的直观作用下,学生对平均数的范围十分敏锐。
在具体情境中自觉地将平均数锁定在最大数与最小数之间,这是学生对数据观察和分析的直觉。
但学生往往会忽略其中的因果联系,对此,教师要引导学生有依据地思考,把深层原因表达清楚。
学生借助直观工具清晰阐述了平均数范围存在的原因,这不仅是对“移多补少”的经验感悟,还将平均数的这一特征从直觉表象引向了深层思考,感悟平均数的区间性。
四、拓展数据,分析创新
1.平均分(两组数据间个体对比)
师:好,其实平均数不只体现在套圈活动中,它在我们的生活中也非常常见,上学期期末考试过后,四年级 1 班同学的数学平均成绩 90 分,怎么样?那每个人都考了 90 分吗?说一说你的理解?我们再来看 42 班的平均成绩是 85 分。
小红是 41 班的,小强是 42 班的,小红说,你肯定没我考的多!
生:我觉得小红应该有可能比小明的分要高,也有可能要比他的分要低,因为小明有可能是 42 班里面成绩最好的,而小红是 41 班成
绩最坏的。
师:也就是说平均数代表的是全班的整体水平,不是个人得分。
2.平均水深(极端数据的影响)
师:夏天的时候,我们要注意防溺水安全,选择正规的游泳馆去锻炼身体。
小冬到湖边玩耍,湖水平均水深 110cm,小冬身高145cm。
小冬下去游泳安全吗?
生:虽然平均水深是 110 厘米,但只是代表一个整体水深。
说明水面有浅的,可能也会有比 110 厘米更深的。
师:也就是可能会有极端数据的存在。
所以,我们一定做好防溺水安全,杜绝安全事故的发生。
【设计意图】:本环节教学结合防溺水安全教育,引导学生对生活中的具体事例进行交流、思考,使学生体会到平均水深在日常生活中的实际意义,真切感受到平均数就在我们身边,并且感受极端数据的存在。
同时,教师结合素材适当地进行了安全教育,学生深刻认识到防溺水安全教育的必要性。
3.平均销售数量(平均数可以帮助我们预测和决策)
师:除此之外,蛋糕店的草莓蛋糕平均每天的销售数量也用到了平均数。
看快乐蛋糕店周一到周四平均每天销售 6 个草莓蛋糕,预测周五可能销售几个?(一定是 6 个吗?)如果你是老板,周五你会做几个草莓蛋糕?
生:6 个左右。
师:为什么呀?
生:因为前 4 天的平均数是 6, 说明 6 这个数代表前几天销售的整体水平,所以第五天应该也差不多。
师:非常棒,不仅利用了本节课学习的知识,还结合了实际情况进行
预测,很有当老板的潜力。
看来平均数不仅能告诉我们有用的信息,还能帮助我们未雨绸缪,进行预测和决策。
【设计意图】:本环节结合生活实际,学生进入“小老板”的角色,体会平均数在日常生活中的作用,不仅能代表一组数据的整体水平,最重要的是平均数的实际作用,也就是数据分析后,可以进行预测和决策。
4.电影评分(结合实例理解平均数的意义)
师:除此之外,电影评分中也有平均数。
师:你能用自己的语言谈谈对 8.4 分的理解吗?生:不是的,有的比8.4 高,有的比 8.4 低。
5.平均速度(爱国主义教育)
师:除了电影评分中用到了平均数,还有咱们的中国速度,看!我国的磁悬浮列车平均速度已经能够达到 600 千米/时,厉不厉害?
6.平均气温(环保教育)
师:除了平均速度中用到了平均数,平均气温也用到了平均数。
通过观察数据,我们发现全球的平均气温在逐年?
生:升高。
师: 孩子们,因为环境污染导致全球变暖,为了遏制环境污染和全球变暖,我们要低碳环保、绿色出行、保护环境,从我们做起。
师:同学们真棒!你们认识了平均数,而且能够结合具体的情况来理解、解释平均数的意义,真的了不起。
【设计意图】:电影评分、平均速度、平均气温等教学环节结合生活
实际引导学生对生活中的具体事例进行交流、思考,使学生体会到平均数在日常生活中的实际意义,真切感受到平均数就在我们身边。
同时,教师还结合素材适当地进行了爱国主义教育,学生深刻认识到数学的价值与魅力,并受到情感态度与价值观的教育。
五、分享收获
师:吾生而有涯,而知也无涯,今天我们开启了平均数的旅程,旅程中你都有哪些收获? 生分享收获。
师:同学们的收获真不少。
本节课我们通过收集数据、整理数据、描述数据、分析数据,认识了平均数。
这是我们统计的全过程,由此也可以看出平均数是一个会说话的平均数,是一个非常重要的统计量。
师:最后,送给同学们一句话,让数据分析成为一种思维方式。
在如今这个大数据时代,数据背后的故事会带给我们新的启发。
孩子们,相信未来我们用数学的眼光去观察,数学的思维去思考,数学的语言去表达,大家会有更多的收获!下课!
【设计意图】:通过交流收获,使学生对所学知识和学习方法进行系统的整理归纳。
有助于学生学习主动性的提升和数据分析能力的发展。
教师通过听学生的反思,可以反馈教学目标的达成情况,为今后改进课堂教学获取重要的信息。
【设计解读】
为了贯彻落实《义务教育数学课程标准(2022 年版》的新理念、新要求,本节课将注重以下几个方面:
1.感悟概念意义,落实核心素养
理解平均数的意义是本节课的教学重点,也是难点。
本环节设计了两个层次的活动。
第一层次:基于问题解决,理解平均数的含义。
平均数的本质含义主要体现在两方面:一是平均数反映一组数据的集中趋势,二是平均数具有虚拟性。
平均数与过去学习的平均分是两个不同的概念,但作为一种算法,一组数据的平均数可以通过平均分得到。
鉴于此,我们首先引导学生借助直观教具进行“移多补少”,体会“把不同的数变得同样多”的过程,再求男女生组的平均每人套中的圈数,引出“求和平分”的方法:在此基础上,揭示“平均数”的概念。
之后将平均数与其他场的得分进行比较,体会平均数不是真实存在的数,而是为了反映一组数据的整体水平而产生的一个虚拟的数,感悟平均数的虚拟性。
第二层次:变化问题情境中的数据,感悟平均数的特征。
平均数还有两个重要的特征,一是敏感性,二是区间性。
教学中,我们采用情境变式,通过增加男生组队员的数量,引导学生讨论男生组平均圈数的变化,不仅帮助学生感悟平均数的敏感性,而且有利于他们提升直观想象能力。
通过统计图清晰直观阐述全班套圈个数的平均数存在的范围,将平均数的这一特征从直觉表象引向了深层思考,感悟平均数的区间性,发展数据分析观念。
2.经历统计过程,进行单元整体教学
所谓“引而伸之,触类而长之”,本节课引导学生通过数据收集、数据整理、数据表达、数据分析、预测推断这五个过程,依托条形统计图的直观支撑,助力平均数意义的深度理解,在相关练习中,适当延伸折线统计图的知识,比如呈现平均气温折线统计图、总结升华统
计的过程的折线统计图,为后续学习折线统计图做好铺垫。
并在后续巩固练习中适当拓展平均速度、电影评分、“蛋糕店老板”等延展学生思维空间的同时,教与学的状态也得以延伸。
总之,在本节课的教学中,要注重引导学生理解平均数的意义,挖掘平均数的特征,培养数据分析素养,对学生的长远发展有益。
“平均数”作为一个有着丰富内涵和外延的概念,对其的认识不可能一蹴而就,而需要一个长期的过程, 在单元的后续教学中,要不断地为学生提供加深理解的机会,引领学生经历多维度、多层次的体验过程,在丰富的感悟中完善心中个性化的“平均数”。