高一数学必修一函数与方程知识梳理
函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)
![函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)](https://img.taocdn.com/s3/m/ab0f4f4c001ca300a6c30c22590102020740f233.png)
专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。
高中必修一数学公式知识点
![高中必修一数学公式知识点](https://img.taocdn.com/s3/m/28f89659a517866fb84ae45c3b3567ec112ddc53.png)
高一数学必修一知识点1、集合{a1,a2...an}子集个数公式:,真子集个数公式:2、重要不等式:3、基本不等式:4、一元二次函数、方程、不等式f(x)=ax²+bx+c。
对称轴:图像顶点坐标:与x轴有交点时x1= x2=x1+x2= x1x2=若a>0 ,x1>x2,f(x)>0的解集:5、函数单调性。
若x1>x2,当单调递增;当单调递减。
6、函数奇偶性。
当是奇函数;当是偶函数。
7、指数运算(a>0,b>0)a r a s= (a r)s= (ab)r=8、对数运算(a>0,a≠1,M>0,N>0)=log a MN= log a MNlog a M n =对数换底公式:log a b=9、方程f(x)=0有实数解⇔函数y=f(x)有⇔函数y=f(x)的图像与x轴有函数零点存在定理:y=f(x)在[a,b]上连续,f(a)f(b)<0,那么y=f(x)在区间(a,b)内至少有一个零点,即存在c ϵ(a,b),使得f(c)=0,这个c也是方程f(x)=0的解。
10、诱导公式(奇变偶不变,符号看象限)sin (π+α)= sin (-α)=cos (π+α)= cos (-α)=tan (π+α)= tan (-α)=sin (π-α)= sin (2π-α)=cos (π-α)= cos (2π-α)=tan (π-α)= tan (2π-α)=sin (2π+α)= sin (2π-α)=cos (2π+α)= cos (2π-α)=2、三角恒等变换sin (α+β) = sin (α-β)=cos (α-β) = cos (α+β)= Sin2α =cos2α= = = tan (α-β)= tan (α+β)=tan2α =sin ²= cos ²=tan ²= 2α 3、同角平方和公式:4、y=asin α+bcos α辅助角公式:5、A (x1,y1),B (x2,y2)两点间距离公式:6、勾股定理: 2α2α2α。
高一数学上册第一章函数及其表示知识点及练习题(含答案)
![高一数学上册第一章函数及其表示知识点及练习题(含答案)](https://img.taocdn.com/s3/m/8e3bded15ef7ba0d4a733be3.png)
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
高一必修一数学第三章函数与方程知识点
![高一必修一数学第三章函数与方程知识点](https://img.taocdn.com/s3/m/fbe9252049649b6649d74759.png)
高一必修一数学第三章函数与方程知识点
高一必修一数学第三章函数与方程知识点
在数学中,一个函数是描述每个输入值对应唯一输出值的这种对应关系,符号通常为f(x)。
小编准备了高一必修一数学第三章函数与方程知识点,具体请看以下内容。
函数与方程知识点
函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
1 (代数法)求方程的实数根;
2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数 .
(1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根,二次函数的图象与轴有一。
高中数学必修一函数与方程知识点总结
![高中数学必修一函数与方程知识点总结](https://img.taocdn.com/s3/m/d0cc25942e3f5727a4e962d7.png)
高中数学必修一函数与方程知识点总结函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
从本质上讲,函数与方程没是没有什么区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。
可以说,函数的研究离不开方程。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
典型例题1:很多时候,在高考数学学习中,如果我们能实现函数与方程的互相转化、接轨,就能达到解决问题的目的。
我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的等等;不等式问题也与方程是近亲,密切相关。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了联系和变化的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
典型例题2:典型例题3:函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答。
高一数学必修一知识点梳理
![高一数学必修一知识点梳理](https://img.taocdn.com/s3/m/d6d5aa959fc3d5bbfd0a79563c1ec5da51e2d672.png)
高一数学必修一知识点梳理一、函数基础1. 函数概念- 定义:一个从集合A到集合B的映射,记作f: A → B。
- 表示法:f(x)。
- 函数图像:描述函数关系的图形。
2. 函数的性质- 单调性:函数值随自变量增加而增加(单调递增)或减少(单调递减)。
- 奇偶性:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
- 反函数:对于每个y值,存在唯一的x值满足f(x) = y。
3. 函数的运算- 四则运算:函数的加法、减法、乘法和除法。
- 复合函数:两个函数的组合,记作(f∘g)(x)。
4. 常见函数类型- 一次函数:f(x) = ax + b。
- 二次函数:f(x) = ax^2 + bx + c。
- 指数函数:f(x) = a^x。
- 对数函数:f(x) = log_a(x)。
二、集合与常用数列1. 集合概念- 定义:一组明确的、互不相同的对象构成的集合。
- 表示法:大写字母表示集合,如集合A。
- 集合运算:并集、交集、补集。
2. 集合的性质- 子集:如果集合A的所有元素都属于集合B,则A是B的子集。
- 幂集:一个集合的所有子集构成的集合。
3. 常用数列- 等差数列:每一项与前一项的差是常数的数列。
- 等比数列:每一项与前一项的比是常数的数列。
- 级数:数列的和,如等差级数和等比级数。
三、解析几何1. 平面直角坐标系- 点的坐标:(x, y)表示平面上一点的位置。
- 距离公式:两点之间的距离计算。
- 斜率:直线的倾斜程度。
2. 直线方程- 点斜式:y - y1 = m(x - x1)。
- 斜截式:y = mx + b。
- 一般式:Ax + By + C = 0。
3. 圆的方程- 标准式:(x - h)^2 + (y - k)^2 = r^2。
- 一般式:Ax^2 + By^2 + Dx + Ey + F = 0。
四、初等三角函数1. 三角函数定义- 正弦、余弦、正切:基于直角三角形的边长比。
高一数学所有知识点及其公式大全
![高一数学所有知识点及其公式大全](https://img.taocdn.com/s3/m/ebaf28b0cd22bcd126fff705cc17552707225ed5.png)
高一数学所有知识点及其公式大全数学作为一门理科学科,对于高中学生来说是必修的科目之一。
在高一数学学习中,掌握并熟练运用各种知识点和公式是至关重要的。
下面将为大家详细介绍高一数学的所有知识点及其相应的公式。
一、函数与方程1. 函数:函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值。
函数通常用f(x)或y表示,其中x为自变量,y为因变量。
2. 相关系数:相关系数用于衡量两个变量之间的线性关系强弱,其取值范围为-1至1。
相关系数趋近于1时表示正相关,趋近于-1时表示负相关,趋近于0时表示无相关。
3. 一次函数:一次函数是最简单的线性函数,表达式为y = kx + b,其中k为斜率,b为截距。
4. 二次函数:二次函数是一种特殊的非线性函数,表达式为y = ax²+ bx + c,其中a、b、c为常数。
5. 幂函数:幂函数是形如y = x^a的函数,其中a为常数。
6. 对数函数:对数函数是幂函数的反函数,表达式为y = logₐx,其中a为底数。
7. 幂函数与对数函数的关系:幂函数与对数函数是互为反函数的关系,即y = a^x与y = logₐx 是一对反函数。
8. 指数函数:指数函数是以底数为常数的指数形式表示的函数,表达式常为y = a^x,其中a为底数。
9. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等,它们是数学中常用的特殊函数。
10. 方程与不等式:方程和不等式是数学中常见的表示关系的符号体系,可用于求解各种实际问题。
二、数列与数列的运算1. 等差数列:等差数列是一种具有公差的数列,其中相邻两个项之间的差值是恒定的。
2. 等差数列的通项公式:等差数列的通项公式为an = a₁ + (n-1)d,其中a₁为首项,d为公差,n为项数。
3. 等比数列:等比数列是一种具有公比的数列,其中相邻两个项之间的比值是恒定的。
4. 等比数列的通项公式:等比数列的通项公式为an = a₁ * r^(n-1),其中a₁为首项,r为公比,n为项数。
高一数学必修1函数知识点总结
![高一数学必修1函数知识点总结](https://img.taocdn.com/s3/m/5e37a9e9ee06eff9aff807ca.png)
函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
那么就是的函数。
记作函数及其表示函数{[][][][][]().,,()()(),,1212()()(),,12f x a b a x x b f x f x f x a b a b f x f x f x a b a b a =≤<≤<>⎧⎪⎪⎧⎪⎨⎨⎩⎪⎧⎪⎨⎪⎩⎩近代定义:函数是从一个数集到另一个数集的映射。
定义域函数的三要素值域对应法则解析法函数的表示方法列表法图象法单调性函数的基本性质传统定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。
导数定义:在区间[][][][][]()1()2()()00,()0(),,()0(),,y f x I M x I f x M x I f x M M y f x b f x f x a b a b f x f x a b a b =∈≤∈==⎧⎪⎪⎨><⎪⎪⎩最大值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最大值最值最上,若,则在上递增,是递增区间;如 则在上递减,是的递减区间。
()1()2()()00(1)()(),()(2)()(),()y f x I N x I f x N x I f x N N y f x f x f x x D f x f x f x x D f x =∈≥∈==-=-∈-=∈⎧⎪⎨⎪⎩小值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
高一数学必修一函数知识点总结归纳
![高一数学必修一函数知识点总结归纳](https://img.taocdn.com/s3/m/6a13537408a1284ac9504372.png)
高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一必修一数学全章知识点
![高一必修一数学全章知识点](https://img.taocdn.com/s3/m/c9b1e775366baf1ffc4ffe4733687e21af45ff9b.png)
高一必修一数学全章知识点一、集合与函数1. 集合的概念和表示方法2. 集合的基本运算3. 集合的关系和判定方法4. 函数的概念和表示方法5. 函数的性质和基本类型二、数与式1. 实数的概念和性质2. 整式与分式的概念和性质3. 代数式的运算规则和性质4. 同类项与合并同类项5. 因式分解的方法和应用6. 分式的运算和应用三、方程与不等式1. 方程的概念和解的概念2. 一元一次方程的解法和应用3. 一元二次方程的解法和应用4. 一元一次不等式的解法和应用5. 一元二次不等式的解法和应用6. 绝对值方程与不等式的解法和应用四、平面几何与立体几何1. 点、线、面的基本概念与性质2. 直线与线段的性质3. 角的概念与性质4. 三角形的分类与性质5. 四边形的分类与性质6. 圆的性质与定理7. 三维图形的基本概念与性质五、函数与图像1. 二次函数的图像与性质2. 一次函数的图像与性质3. 反比例函数的图像与性质4. 幂函数的图像与性质5. 指数函数的图像与性质6. 对数函数的图像与性质六、实数与三角函数1. 整式的值域与最值问题2. 三角函数的概念与性质3. 三角函数的图像与变化规律4. 三角函数的同角关系5. 三角函数的基本公式与应用七、数列与数学归纳法1. 数列的概念与表示2. 等差数列与等差数列的性质3. 等比数列与等比数列的性质4. 递推数列与递推数列的性质5. 数学归纳法的原理与应用八、概率与统计1. 随机事件与概率的概念2. 概率的运算与应用3. 组合与排列的概念与性质4. 统计图表的制作与分析5. 平均数与波动范围的计算以上是高一必修一数学全章的知识点,希望对你的学习有所帮助。
高一数学必修一知识点整理大全
![高一数学必修一知识点整理大全](https://img.taocdn.com/s3/m/6b68493b6d175f0e7cd184254b35eefdc9d31541.png)
高一数学必修一知识点整理大全
一、数集与复数
1、数集:实数集、整数集、有理数集、自然数集、负数集和无理数集等
2、复数:复数由实数部分和虚数部分组成,表示形式为a+bi,其中a 为实数部分,b为虚数部分;以及其实部和虚部计算方法,共轭数,复数的乘法和除法等
二、方程与不等式
1、一元一次方程的解法:唯一解法、无解法,以及利用求根公式求解等
2、不等式:不等式的解法、绝对值不等式、二次不等式和向量不等式
三、集合与函数
1、集合:一个集合由若干元素组成,可用于天空符号来表示,以及运算符号的应用;
2、函数:体景函数的定义、反函数的概念、一元函数的性质、复合函数和函数的变换
四、直线与圆
1、直线:斜率的概念,相交点的求解、两条直线的垂直关系、直线的标准方程和点斜式;
2、圆:圆的性质,圆的中点、半径和圆心的关系,同心圆的特点,圆的标准方程,圆上一点到圆心的弧长。
五、三角函数
1、三角函数的定义:余弦函数、正切函数,以及三角函数的四象性理论;
2、三角函数的应用:三角形的基本概念、余弦定理、正弦定理,以及用于解三角形的其他定理。
六、分数与比例
1、分数:基本分数的概念,真分数、假分数,特殊分数及其转换,带分数的基本运算等;
2、比例:比例具有多重性,比例的初始情况和分级表,比例的连续变化、列比较法求不确定比例等。
完整版)高一数学必修一函数知识点总结
![完整版)高一数学必修一函数知识点总结](https://img.taocdn.com/s3/m/bc6606f62dc58bd63186bceb19e8b8f67c1cef13.png)
完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。
我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。
需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。
同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。
相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。
在考虑函数的值域时,我们可以使用观察法、配方法或代换法。
函数图象是指在平面直角坐标系中,以函数y=f(x)。
(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。
我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。
区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。
同时,还有无穷区间。
我们可以使用数轴来表示区间。
映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。
我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。
对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。
3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。
高一数学公式和知识点汇总
![高一数学公式和知识点汇总](https://img.taocdn.com/s3/m/2f10812ff08583d049649b6648d7c1c708a10b34.png)
高一数学公式和知识点汇总在高一数学学习中,数学公式和知识点的掌握是至关重要的。
下面是一些高一数学中常见的公式和知识点的汇总:一、函数与方程1. 一元一次方程的解法:- 移项法- 相加相消法- 代入法- 分式法2. 一元二次方程的解法:- 因式分解法- 完全平方式- 公式法- 配方法3. 函数的概念与性质:- 定义域与值域- 正比例函数与反比例函数- 函数的图像与性质4. 幂函数与开方函数:- 幂函数的图像与性质- 开方函数的概念与性质- 幂函数与开方函数的图像变换5. 对数函数与指数函数:- 对数函数的概念与性质- 指数函数的概念与性质- 对数函数与指数函数的图像变换二、平面解析几何1. 直线与曲线方程:- 一次函数的图像与性质- 二次函数的图像与性质- 圆的方程与性质- 椭圆、双曲线和抛物线的方程与性质2. 平面坐标系的应用:- 直线的斜率与截距- 点到直线的距离- 点在直线上的投影- 直线的位置关系3. 圆的相关知识:- 弧长与扇形面积- 切线与法线- 圆与直线的位置关系- 圆与圆的位置关系三、三角函数1. 三角函数的基本概念:- sin、cos、tan的定义- 三角函数的周期性- 三角函数的图像与性质2. 三角函数的基本关系:- 三角函数的和差化简公式- 三角函数的倍角化简公式- 三角函数的半角化简公式- 三角函数的积化简公式3. 三角函数的应用:- 三角函数在平面几何中的应用 - 三角函数在解析几何中的应用 - 三角函数在物理问题中的应用四、数列与数学归纳法1. 数列的概念:- 数列的定义与性质- 等差数列与等比数列- 数列的通项公式与前n项和公式2. 数学归纳法:- 数学归纳法的基本思想- 数学归纳法的证明方法- 数学归纳法在数列问题中的应用五、概率与统计1. 概率的基本概念:- 随机事件与样本空间- 概率的定义与性质- 事件的概率计算与运算2. 统计的基本概念:- 数据的收集与整理- 数据的图表表示- 平均数、中位数和众数- 数据的分布与统计规律以上是高一数学中的一些常见公式和知识点的汇总。
高一数学知识点归纳及解析
![高一数学知识点归纳及解析](https://img.taocdn.com/s3/m/6dc518fef021dd36a32d7375a417866fb94ac072.png)
高一数学知识点归纳及解析导言:数学是一门既有逻辑性又有实践性的科学,它贯穿于我们日常生活的方方面面。
高中数学作为数学学科的延续,承接了初中数学的基础,同时也引入了新的知识点和数学思维方式。
本文将对高一数学的一些关键知识点进行归纳及解析,帮助同学们更好地理解和学习数学。
一、函数与方程1. 函数的定义与性质函数是描述变量之间关系的工具,它可以将自变量的取值映射到因变量的取值上。
函数通常用符号y=f(x)表示,在高一数学中,我们主要学习了一次函数、二次函数和绝对值函数等。
2. 方程与不等式方程是等式的一种特殊形式,它通过未知数与已知数之间的关系来求解未知数的值。
高一数学中,我们学习了一元一次方程、一元二次方程等。
不等式则表达了不同量的大小关系,同样在高一数学中有着重要的地位。
二、数列与数列的应用1. 等差数列与等比数列数列是一组按照一定规律排列的数,它由前项、公式、通项、首项和公差等组成。
等差数列中,每一项与前一项之差都相等;等比数列中,每一项与前一项的比值都相等。
这些数列不仅具有独特的性质,而且在实际问题中也有广泛的应用。
2. 数列的和与数列的极限数列的和是数列中所有项的求和,它涉及到了数列的前n项和与部分和的概念。
数列的极限则是指数列在无限项下的最终趋势,例如常见的无穷等差数列极限是正无穷。
三、平面向量与坐标系1. 平面向量的基本概念与性质平面向量是用有向线段表示的物理量,它有大小和方向,并遵循平行四边形法则和三角形法则。
在高一数学中,我们学习了平面向量的加法、数量积与向量的模等重要概念与性质。
2. 坐标系与平面向量的坐标表示坐标系是研究平面几何的重要工具,其中直角坐标系是最常见的一种。
平面向量可以利用坐标系进行表示,通过平移、旋转等运算可以简化向量的分析与计算。
四、三角函数与立体几何1. 三角函数的定义及常用公式三角函数是描述角与边的关系的函数,其主要有正弦函数、余弦函数、正切函数等。
在高一数学中,我们学习了三角函数的定义、性质以及常用公式,这对解决三角函数相关的问题非常有帮助。
高一数学必修1函数与方程知识点归纳.doc
![高一数学必修1函数与方程知识点归纳.doc](https://img.taocdn.com/s3/m/01e9c109a58da0116d17499c.png)
高一数学必修1函数与方程知识点总结高一数学必修1函数与方程知识点梳理1、函数零点的定义(1)对于函数)(xfy ,我们把方程0)( xf的实数根叫做函数)(xfy 的零点。
(2)方程0)( xf有实根函数()yfx 的图像与x轴有交点函数()yfx 有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程0)( xf是否有实数根,有几个实数根。
函数零点的求法:解方程0)( xf,所得实数根就是()fx的零点(3)变号零点与不变号零点①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。
②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。
③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()( bfaf是()fx在区间,ab内有零点的充分不必要条件。
2、函数零点的判定(1)零点存在性定理:如果函数)(xfy 在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb ,那么,函数)(xfy 在区间,ab 内有零点,即存在),(0bax ,使得0)(0 xf,这个0x也就是方程0)( xf 的根。
(2)函数)(xfy 零点个数(或方程0)( xf实数根的个数)确定方法①代数法:函数)(xfy 的零点0)( xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy 的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定0 )(xfy 有2个零点0)( xf有两个不等实根; 0 )(xfy 有1个零点0)( xf有两个相等实根;0 )(xfy 无零点0)( xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.3、二分法(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb 的函数()yfx ,通过不断地把函数()yfx 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;高一数学必修1教学总结高一数学必修1教学总结(一)数学必修1即将学习结束,我有以下几点体会:1、刚开学,高一数学要放慢进度,降低难度,注意教学内容和方法的衔接。
高一数学期中知识点梳理
![高一数学期中知识点梳理](https://img.taocdn.com/s3/m/c349f2c60342a8956bec0975f46527d3240ca6f5.png)
高一数学期中知识点梳理数学作为一门基础学科,是学生们在高中阶段必修的学科之一。
高一数学内容相较于初中阶段有了相当大的进阶和拓展,涉及到了更多的数学知识和概念。
本文将对高一数学期中知识点进行梳理和总结,以帮助同学们更好地掌握数学知识。
一、函数与方程1. 函数的概念及性质函数是高中数学中重要的概念之一。
用文字、符号以及函数图像来描述函数,并从定义域、值域、图像和性质等多个方面进行分析和研究。
2. 一次函数与二次函数一次函数的定义及性质,包括线性函数和常函数的特点;二次函数的定义、性质以及图像的绘制方法,包括顶点坐标、对称轴等关键概念的理解和应用。
3. 三角函数三角函数的定义和性质,包括正弦函数、余弦函数、正切函数等的图像性质和周期性,以及三角函数的基本公式和同角三角函数的关系。
4. 方程的解法涉及到一元一次方程、一元二次方程以及简单的含参方程等,需要掌握方程的解法和解的性质分析。
二、平面几何1. 三角形三角形的定义及性质,包括分类、角度关系、边长关系等;三角形中一些重要定理的理解和应用,如三角形的内角和、外角和、勾股定理等。
2. 圆与圆的相关概念圆的定义及性质,如圆心、半径、圆周、弧等;切线和割线的概念及性质;圆与圆的位置关系,如相交、相切等。
3. 相似与全等相似三角形的判定条件及相似比例的计算;全等三角形的判定条件和性质。
4. 平面向量向量的定义、加法、减法及数量积的计算方法;向量共线、垂直的判定;向量的应用,如平面向量的解析几何表示、向量运动和力的合成等。
三、立体几何1. 点、线、面点、线、面的基本概念及相互关系的理解和应用。
2. 空间几何体常见几何体的定义及性质,如立方体、正方体、长方体、棱锥、棱台、棱柱等。
3. 空间坐标与空间向量空间坐标系的建立及相关概念的理解,如空间点的坐标、两点之间的距离等;空间向量的定义、加法、减法和数量积等基本运算。
四、概率与统计1. 概率的基本概念概率的定义、性质以及用概率描述事件发生可能性的计算方法,包括事件的互斥、相容等概念的理解。
高一数学函数与方程知识点的总结
![高一数学函数与方程知识点的总结](https://img.taocdn.com/s3/m/a0bd82030a4c2e3f5727a5e9856a561252d32186.png)
高一数学函数与方程知识点的总结高一数学函数与方程知识点的总结「篇一」1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;高一数学函数与方程知识点的总结「篇二」一、直线与方程高考考试内容及考试要求:考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;二、直线与方程课标要求:1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。
高一数学必修一知识点总结归纳
![高一数学必修一知识点总结归纳](https://img.taocdn.com/s3/m/b21f525cf4335a8102d276a20029bd64783e623b.png)
高一数学必修一知识点总结归纳高一数学必修一是数学学科的基础课程,对于学生的数学思维能力和解题能力的培养具有重要意义。
本文将对高一数学必修一的知识点进行总结归纳,以帮助学生更好地掌握和应用这些知识。
一、函数与方程函数与方程是数学中的基本概念,也是高中数学的核心内容。
函数是一个映射关系,将一个自变量的值映射到一个因变量的值。
方程则是描述了一个等式关系,其中包含未知数。
在高一数学必修一中,我们学习了一元一次方程、一元二次方程以及简单的函数概念。
通过解方程和绘制函数图像,我们可以更好地理解和应用这些概念。
二、平面向量平面向量是高中数学中的重要内容,它不仅在数学中有着广泛的应用,还与物理等其他学科有着密切的联系。
在高一数学必修一中,我们学习了平面向量的定义、加法、数乘以及数量积等基本运算。
通过学习平面向量的性质和运算规律,我们可以更好地理解和解决与平面向量相关的问题。
三、三角函数三角函数是高中数学中的重要内容,它是研究三角形和周期现象的基础工具。
在高一数学必修一中,我们学习了正弦函数、余弦函数和正切函数的定义、性质以及图像特征。
通过学习三角函数的概念和性质,我们可以更好地理解和应用三角函数,解决与三角形和周期现象相关的问题。
四、立体几何立体几何是高中数学中的重要内容,它研究的是三维空间中的几何体及其性质。
在高一数学必修一中,我们学习了立体几何的基本概念,如点、直线、平面等,以及立体几何中的重要几何体,如球、圆柱、锥等。
通过学习立体几何的基本概念和性质,我们可以更好地理解和分析与立体几何相关的问题。
五、概率与统计概率与统计是高中数学中的重要内容,它研究的是随机事件的发生规律和数据的收集、整理与分析。
在高一数学必修一中,我们学习了概率的基本概念、计算方法以及与概率相关的统计方法,如频率分布、平均数、方差等。
通过学习概率与统计的基本概念和方法,我们可以更好地理解和应用概率与统计,解决与随机事件和数据分析相关的问题。
高一数学必修一知识点总结及公式
![高一数学必修一知识点总结及公式](https://img.taocdn.com/s3/m/4347dea8846a561252d380eb6294dd88d0d23df0.png)
高一数学必修一知识点总结及公式在高一数学必修一课程中,我们学习了许多重要的数学知识点和公式。
这些知识点和公式对我们理解数学问题、解决数学难题都具有重要作用。
下面将对这些知识点和公式进行总结。
1. 一元一次方程与不等式- 一元一次方程的一般形式为ax + b = 0,其中a和b为常数,x为未知数。
- 一元一次不等式的解集表示一组使不等式成立的实数。
2. 二元一次方程组- 二元一次方程组是由两个一元一次方程组成的方程组。
- 通过消元法、代入法或加减法等方法,可以求解二元一次方程组中的未知数。
3. 平面直角坐标系与直线方程- 平面直角坐标系由x轴和y轴组成,可以用来表示点的位置。
- 直线方程的一般形式为y = kx + b,其中k为斜率,b为截距。
4. 直线与圆的位置关系- 判断直线与圆的位置关系常用圆的方程和直线方程。
- 当直线与圆相交时,可以通过求解方程组来确定交点。
5. 因式分解- 因式分解是将一个多项式分解成若干个乘积的形式。
- 常见的因式分解方法有提公因式法、配方法和完全平方式等。
6. 二次函数及其图像- 二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数。
- 二次函数的图像为抛物线,可以通过求顶点、轴对称等方法来研究其性质。
7. 平面向量- 平面向量是具有大小和方向的量。
- 平面向量可以表示位移、速度、力等物理量。
8. 三角函数- 三角函数是用来描述角度与边长之间的关系的函数。
- 常见的三角函数包括正弦函数、余弦函数和正切函数等。
9. 三角恒等式与解三角形- 三角恒等式是指在三角函数中成立的等式。
- 解三角形可以通过已知边长或已知角度来确定三角形的边长和角度。
10. 几何向量- 几何向量是具有大小和方向的有向线段。
- 几何向量可以进行加法、减法、数乘等运算。
以上为高一数学必修一知识点的总结及公式的简要介绍。
掌握这些知识点和公式对于进一步学习数学和解题非常重要。
希望同学们能够加强对这些知识的理解和运用,在数学学习中取得更好的成绩!。
高一必修一函数与方程知识点总结
![高一必修一函数与方程知识点总结](https://img.taocdn.com/s3/m/474aa528ce2f0066f433223d.png)
高一必修一函数与方程知识点总结
高一必修一函数与方程知识点总结数学是学习其他学科的基础。
小编准备了高一必修一函数与方程知识点,具体请看以下内容。
1、映射
(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB.
注意点:(1)对映射定义的理解.(2)判断一个对应是映射的方法.一对多不是映射,多对一是映射
2、函数
构成函数概念的三要素①定义域②对应法则③值域
两个函数是同一个函数的条件:三要素有两个相同
二、函数的解析式与定义域
1、求函数定义域的主要依据:
(1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义;
(3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于1;
三、函数的值域
1求函数值域的方法
①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,
定义域D1 ,D2,D1D2要关于原点对称]
3.奇偶性的判断
①看定义域是否关于原点对称②看f(x)与f(-x)的关系
五、函数的单调性
1、函数单调性的定义:
2 设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数.
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高一必修一函数与方程知识点,希望大家喜欢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一函数与方程知识梳理
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,以下是函数与方程知识梳理,请大家学习。
1、函数零点的定义
(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。
(2)方程0)(xf有实根函数()yfx的图像与x轴有交点函数()yfx 有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。
函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点
①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。
②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。
③若函数()fx在区间,ab上的图像是一条连续的曲线,则
0)()(bfaf是()fx在区间,ab内有零点的充分不必要条件。
2、函数零点的判定
(1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab 内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。
(2)函数)(xfy零点个数(或方程0)(xf实数根的个
数)确定方法
①代数法:函数)(xfy的零点0)(xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定
0)(xfy有2个零点0)(xf有两个不等实根; 0)(xfy有1个零点0)(xf有两个相等实根;
0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.
3、二分法
(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤:
①确定区间[,]ab,验证()()0fafb,给定精确度
②求区间(,)ab的中点c; ③计算()fc;
(ⅰ)若()0fc,则c就是函数的零点;
(ⅱ) 若()()0fafc,则令bc(此时零点0(,)xac (ⅲ) 若()()0fcfb,则令ac(此时零点0(,)xcb
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的
教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
④判断是否达到精确度,即ab,则得到零点近似值为a(或b);否则重复②至④步.
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
函数与方程知识梳理的内容就是这些,查字典数学网预祝大家期中考试取得好成绩。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。