第2章 简单事件的概率 单元复习
浙教版九年级下 第二章 简单事件的概率整理复习
第二章 简单事件的概率2.1~2.2简单事件概率及其计算在数学中,我们把事件发生的可能性的大小称为事件发生的概率。
我们知道,事件发生的可能性大小是由发生事件的条件来决定的.如果几个事件的发生条件相同,那么这些事件发生的可能性相同。
一般地,如果在一次试验中,事件发生的各种可能结果的可能性相同,结果总数为n,其中事件A 发生的可能的结果总数为m,那么事件A 发生的概率为()m A P A n ==事件发生的次数所有事件发生的次数,显然0()1P A ≤≤ 在概率计算中,我们常用到树状图、列表、面积法、枚举等方法。
★ 利用树形图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率。
当试验包含两步时,列表法比较方便。
当然,此时也可以用树形图法,当试验在三步或三步以上时,用树形图法方便。
★ 当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表的办法例1、一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。
从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。
(1)写出两次摸球的所有可能的结果; (2)摸出一个红球,一个白球的概率; (3)摸出2个红球的概率;例2、如右图,转盘的白色扇形和红色扇形的圆心角分别为120°和240°,让转盘自由转动2次,求指针一次落在白色区域,另一次落在红色区域的概率例3、某城市有一万辆自行车,分别编以00001到10000的车照,如果检查一辆自行车,其车照号码有数字8的可能性有多大? 练习1、200名青年工人,250名大学生,300名青年农民在一起联欢。
如果任意找其中一个青年 谈话,这个青年是大学生的机会是多大?2、在100范围内随意抽取一个正整数,估计能被10或11整除的机会是多少?3、扔两枚一元硬币,估计至少有一枚出现反而的可能性是多大?4、从装有2个白球和1个红球的袋中,同时取出两个球时,估计都是白球的机会是多大?5、从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这两位数大于40的概 率是 。
九年级数学上期末复习第二章简单事件的概率试卷(浙教版含解析)
期末复习:浙教版九年级数学学上册第二章简单事件的概率一、单选题(共10题;共30分)1.抛掷一枚均匀的硬币一次,出现正面朝上的概率是()A. B. C. D. 12.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.3.某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众”.小明给此直播节目发了一条短信,他成为“幸运观众”的概率是()A. B. C. D.4.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C. 1 D.5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.6.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A. 游戏的规则由甲方确定B. 游戏的规则由乙方确定C. 游戏的规则由甲乙双方商定D. 游戏双方要各有50%赢的机会7.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为()A. B. C. D.8.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )A. B. C. D.9.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A. 此规则有利于小玲B. 此规则有利于小丽C. 此规则对两人是公平的D. 无法判断10.小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择()获胜的可能性较大.A. 5B. 6C. 7D. 8二、填空题(共10题;共30分)11.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里大约有鲢鱼________尾.12.一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是________.13.某厂生产了1200件衬衫,根据以往经验其合格率为0.95左右,则这1200件衬衫中次品(不合格)的件数大约为________.14.某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________ 个.15.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到________球的可能性最大.16.某口袋中有红色、黄色、蓝色玻璃共60个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________ 个.17.一个不透明的袋子中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入20个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为 ________个.18.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.19.口袋中装有除颜色外完全相同的红球3个,白球n个,如果从袋中任意摸出1个球,摸出红球的概率是,那么n= ________个.20.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是________.三、解答题(共8题;共60分)21.现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)22.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.23.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.24.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从,两个景点中任意选择一个游玩,下午从、、三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点和的概率.25.一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.26.甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.27.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?28.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?答案解析部分一、单选题1.【答案】A【考点】概率公式【解析】【分析】列举出所有情况,看硬币正面朝上的情况数占总情况数的多少即可.【解答】共抛掷一枚均匀的硬币一次,有正反两种情况,有一次硬币正面朝上,所以概率为.故选A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到至少有一次硬币正面朝上的情况数是解决本题的关键.2.【答案】B【考点】概率公式【解析】【分析】让是3的倍数的数的个数除以数的总个数即为所求的概率.【解答】∵1、2、3、4、5、6、7、8、9、10这十个数中,3的倍数的有3、6、9共3个数,∴取出的数是3的倍数的概率是:.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.【答案】B【考点】概率公式【解析】【分析】5000条短信有5000名不同的观众发出,每个观众被抽到的机会是相同的,让“幸运观众”数除以短信总条数即为所求概率.【解答】抽取一名幸运观众有5000个结果,小明成为“幸运观众”只要成为所抽的10名中的一个就可以,因而有10个可能结果,所以P(小明成为“幸运观众)==.故选B【点评】本题的解决关键是理解列举法求概率的条件,事件有有限个结果,每个结果出现的机会相等.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】A【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与总情况数之比.因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选A.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.5.【答案】C【考点】概率公式【解析】【分析】∵共8球在袋中,其中5个红球,∴其概率为,故选C.6.【答案】D【考点】游戏公平性【解析】【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏共是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选:D.【分析】根据游戏共是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可.7.【答案】D【考点】概率公式【解析】【解答】解:因为有36000名学生要抽1200名学生,所以被抽中的概率为:.故选D.8.【答案】C【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
第二章 简单事件的概率复习 课件1
这里是多题一解,其概率都 是1/6,你体会到它们是同一 数学模型了吗?
白绿
红
黄
蓝黑
例3、在有一个10万人的小镇,随机调查了2000人,其 中有250人看中央电视台的早间新闻.在该镇随便问 一个人,他看早间新闻的概率大约是多少?该镇看中 央电视台早间新闻的大约是多少人?
解:根据概率的意义,可以认为其概率大约等于 250/2000=0.125.
例2、(1)连掷两枚骰子,它们点数相同的概率是多少?
(2)转动如图所示的转盘两次,两次所得颜色相同的概率
是多少?
(3)某口袋里放有编号1~6的6个球,先从中摸索出一球,将
它放回口袋中后,再摸一次,两次摸到的球相同的概率是
多少?
(4)利用计算器产生1~6的随机数(整数),连续两次随机数
相同的概率是多少?
1.什么叫概率?
事件发生的可能性的大小叫这一事件发生的概率
2.概率的计算公式:
若事件发生的所有可能结果总数为n,事件A发
生的可能结果数为m,则P(A)= m n
等 画树状图
摸牌游戏
可 能 事 随件
P( A)
பைடு நூலகம்
A可能发生的次数 总可能数
摸球游戏 配紫色游戏
机
事
转
件
化
的 概非
抛一次性纸杯游戏
率等
抛图钉游戏
A2 A3 A1 A
B2 B1
B
11 1 22 4
O
拓展训练
一只位于O点的蚂蚁在如图所示的树枝上往前寻觅粮食
(假设带箭头的树枝上有粮食), 已知蚂蚁在每个岔路口
都会随机地选择一条路径,问它获得粮食的概率是多少?
A2 A3
C1 C
2021-2022学年浙教版九年级上册数学第2章《简单事件的概率》单元复习测试
浙教版九年级上册数学第2章 简单事件的概率单元强化培优测试一、选择题1.下列事件中,必然事件是( )A.掷一枚硬币,正面朝上B.a 是实数,|a|≥0C.某运动员跳高的最好成绩是20.1米D.从车间刚生产的产品中任意抽取一个,是次品2.已知抛一枚均匀硬币正面朝上的概率是0.5,下列说法正确的是( )A.连续抛一枚均匀硬币2次,必有1次正面朝上B.连续抛一枚均匀硬币2次,一次是正面一次是反面的概率是14C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的3.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( ) A.110 B.19 C.13 D.124.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( ) A.112 B.512 C.16 D.125.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是( ) A.m =3,n =5 B.m =n =4 C.m +n =4 D.m +n =86.在x 2□2xy□y 2的□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( ) A.1 B.34 C.12 D.147.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( ) A.2π B.π2 C.12π D.2π28.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是( )A.14B.12C.34D.569.如图,A,B是数轴上两点.在线段AB上任取一整数点C,则点C到表示-1的点的距离不大于2的概率是( )A.12B.23C.34D.4510.已知A,B两个口袋中都有6个分别标有数字0,1,2,3,4,5的彩球,所有彩球除标示的数字外没有区别.甲、乙两位同学分别从A,B两个口袋中随意摸出一个球.记甲摸出的球上数字为x,乙摸出的球上数字为y,数对(x,y)对应平面直角坐标系内的点Q,则点Q落在以原点为圆心,半径为5的圆上或圆内的概率为( )A.29B.825C.112D.536二、填空题11.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.12. 在一个不透明的布袋中装有除颜色外其余都相同的红、黄、蓝球共200个,墨墨通过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在25%和55%,则口袋中可能有黄球________个.13.任意掷一枚质地均匀的骰子,掷出的点数是6的概率是________.14.已知四个点的坐标分别是(﹣1,1),(2,2),(23,32),(﹣5,﹣15),从中随机选取一个点,在反比例函数y= 1x图象上的概率是________.15.在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有________ 个.16.表格记录了一名球员在罚球线上罚篮的结果.这名球员投篮一次,投中的概率约是________.17.一个不透明的盒子中装有除颜色外部相同的20个小球.从中每次摸出一个球,记下颜色,再放回,如此反复,经多次摸取后,发现摸出红色小球的频率大约为40%,则盒子中红球的个数应为________ 个.18.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是2,则袋中红球约7为________个.19.在两只不透明的袋子中,各有10个除颜色外完全一样的小球.第一个袋子中有2个红球、8个白球,第二个袋子中有8个红球、2个白球,分别从每个袋子中任意摸出一个球,则第________个袋子中摸出白球的可能性大.20.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是________.三、解答题21.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.22.小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.23.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.24.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?25.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起就配成了紫色,其中A盘中红色和蓝色均为半圆,B盘中红色、蓝色、绿色所在扇形圆心角均为120度).小亮和小刚同时用力转动两个转盘,当转盘停下时,两枚指针停留的区域颜色刚好配成紫色时小亮获胜,否则小刚获胜.判断这个游戏对双方是否公平,并借助树状图或列表说明理由.26.小军和小刚两位同学在学习”概率“时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次试验,实验的结果如下:(1)计算“2点朝上”的频率和“5点朝上”的频率.”;小军的这一说法正确(2)小军说:“根据实验,一次实验中出现3点朝上的概率是110吗?为什么?(3)小刚说:“如果掷600次,那么出现6点朝上的次数正好是100次.”小刚的这一说法正确吗?为什么?27.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.甲同学的方案公平吗?请用列表或画树状图的方法说明.28.小华和小军做摸卡片游戏,规则如下:甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.若点A在第一象限,则小华胜,若点A在第三象限则小军胜.这个游戏对双方公平吗?请说明理由.29.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球,问至少取出了多少个黑球?的概率不小于13参考答案 一.选择题 1-5BDAAD 6-10CACDA 二、填空题11.【答案】3812.【答案】40 13.【答案】1614.【答案】1215.【答案】1216.【答案】0.602 17.【答案】8 18.【答案】25 19.【答案】一 20.【答案】三、解答题21.【答案】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果, ∴两次摸到卡片字母相同的概率为: 59 ;∴小明胜的概率为 59,小明胜的概率为 49,∵ 59≠ 49,∴这个游戏对双方不公平22.【答案】解:这个游戏规则对双方公平.理由如下: 画树状图为:共有9种等可能的结果数,其中摸出的两张卡片的正面数字之积小于10的结果数为4;摸出的两张卡片的正面数字之积超过10的结果数为4, 所以小明获胜的概率= 49 ,小亮获胜的概率= 49 .所以这个游戏规则对双方公平 23.【答案】解:游戏不公平,理由如下: 游戏结果分析如下:“√”表示配成紫色,“×”表示不能够配成紫色.P (配紫色)= ,P (没有配紫色)= ,∵ ,∴这个游戏对双方不公平.24.【答案】解:(1)3点朝上的频率为660=110; 5点朝上的频率为2060=13;(2)小颖和小红说法都错,因为实验是随机的,不能反映事物的概率. 25.【答案】解:不公平, 根据题意画树状图如下:由树状图可知共有6种等可能结果,其中能配成紫色的2种, ∴小亮获胜的概率为 26= 13 ,则小刚获胜的概率为1﹣ 13= 23,∵ 13 ≠ 23 ,∴这个游戏对双方不公平.26.【答案】解:(1)2点朝上出现的频率=960=320;5点朝上的概率=2060=13;(2)小军的说法不正确,因为3点朝上的概率为110,不能说明3点朝上这一事件发生的概率就是110,只有当实验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近,才可以将这个频率的稳定值作为该事件发生的概率.(3)小刚的说法是不正确的,因为不确定事件发生具有随机性,所以6点朝上出现的次数不一定是100次.27.【答案】解:甲同学的方案不公平.理由如下: 列表法,所有可能出现的结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为: = ,则小刚获胜的概率为: ,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平. 28.【答案】解:列表如下:点A (x ,y )共9种情况,∴P(小华胜)= 29 ,P (小军胜)= 29 ,∴游戏公平. 29.【答案】解:(1)如图;(2)这批乒乓球“优等品”概率的估计值是0.946;(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球, ∴从袋中摸出一个球是黄球的概率为:540=18;②设从袋中取出了x 个黑球,由题意得5+x40≥13,解得x≥813, 故至少取出了9个黑球.。
浙教版九年级上册数学第2章 简单事件的概率含答案(历年真题)
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.一颗质地均匀的骰子已连续抛投了2015次,其中抛掷出5点的次数最少,则第2016次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2、一个骰子,六个面上的数字分别为1、2、3、4、5、6,连续投掷两次,两次向上的面出现数字之和为偶数的概率是()A. B. C. D.3、下列事件中,是必然事件的是()A.直角三角形的两个锐角互余.B.买一张电影票,座位号是偶数号. C.投掷一个骰子,正面朝上的点数是7. D.打开“酷狗音乐盒”,正在播放歌曲《我和我的祖国》.4、一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A. B. C. D.5、如图,是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是()A. B. C. D.6、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③7、在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2B.12C.18D.248、下列说法正确的是()A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.抛掷一枚均匀的硬币,正面朝上的概率是,若抛掷10次,就一定有5次正面朝上. D.甲、乙两人射中环数的方差分别为,,说明乙的射击成绩比甲稳定9、在下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水会结冰B.随意翻到一本书的某页,这页的页码是奇数C.明天的太阳从东方升起D.在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球10、对一批衬衣进行抽检,统计合格衬衣的件数,得到如下的频数表:抽查件数(件)100 150 200 500 800 1000合格频数85 141 176 445 724 900根据表中数据,下列说法错误的是()A.抽取100件的合格频数是85B.任抽取一件衬衣是合格品的概率是0.8 C.抽取200件的合格频率是0.88 D.出售1200件衬衣,次品大约有120件11、下列事件是必然事件的是( )A.打开电视机,任选一个频道,屏幕上正在播放天气预报B.到电影院任意买一张电影票,座位号是奇数C.在地球上,抛出去的篮球会下落D.掷一枚均匀的骰子,骰子停止转动后偶数点朝上12、在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是()A. B. C. D.13、桌上放着25粒棋子,小明和小刚两人轮流拿,一次可以拿走1粒棋子、2粒棋子或者3粒棋子,但不可以不拿,拿到最后一粒棋子的算输,该游戏()A.公平B.不公平C.对小明有利D.不确定14、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A. B. C. D.15、下列事件中,是随机事件的是()A.抛出的篮球会下落B.爸爸买彩票中奖了C.地球绕着太阳转 D.一天有24小时二、填空题(共10题,共计30分)16、在中,给出以下4个条件:⑴ ;⑵ ;⑶ ;⑷ ;从中任取一个条件,可以判定出是直角三角形的概率是________.17、四张完全相同的卡片上,分别画有等边三角形、平行四边形、矩形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为________.18、事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是________19、某事件发生的可能性是99.9%.下面的三句话:①发生的可能性很大,但不一定发生;②发生的可能性较小;③肯定发生.以上三句话对此事件描述正确的是________(选填序号).20、从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是________.21、从1、﹣1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是________.22、四个实数,,,π中,任取一个数是无理数的概率为________.23、若我们把十位上的数字比个位和百位上的数字都小的三位数称为凹数,如:768,645.则由1,2,3这三个数字构成的,数字不重复的三位数是“凹数”的概率是________ .24、一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球________个(以上球除颜色外其他都相同).25、某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是________ .三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、某公司举行一个游戏,规则如下:有4张背面相同的卡片,分别对应1000元、600元、400元、200元的奖金,现将4张纸牌洗匀后背面朝上摆放到桌上,让员工抽取,每人有两次抽奖机会,两次抽取的奖金之和作为公司发的奖金.现有两种抽取的方案:①小芳抽取方案是:直接从四张牌中抽取两张.②小明抽取的方案是:先从四张牌中抽取一张后放回去,再从四张中再抽取一张.你认为是小明抽到的奖金不少于1000元的概率大还是小芳抽取到的奖金少于1000元的概率大?请用树形图或列表法进行分析说明.28、小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1-4的四个球(除编号不同外其它都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜.这个游戏对双方公平吗?请说明理由.29、一个不透明盒子中放有三张除所标数字不同外其余均相同的卡片,卡片上分别标有数字1,2,从盒子中随机抽取一张卡片,记下数字后放回,再次随机抽取一张一记下数字,请用画树状图或列表的方法,求第二次抽取的数字大于第一次抽取的数字的概率.30、某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一个区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?参考答案一、单选题(共15题,共计45分)1、D2、B4、C5、B6、B7、C8、D9、B10、B11、C12、D13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、30、。
《第2章 简单事件的概率》单元测试卷2021-2022学年浙教版九年级上册数学
2021-2022学年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷一.选择题1.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”算甲赢,掷出“和为8”算乙赢,这个游戏是否公平?()A.公平B.对甲有利C.对乙公平D.不能判断2.在一个不透明的袋中,装有1个白球、2个红球、2个黄球、3个黑球,它们除颜色外都相同,从袋中任意摸出:一个球,可能性最大的是()A.白球B.红球C.黄球D.黑球3.若气象部门预报明天下雨的概率是80%,下列说法正确的是()A.明天有80%的地方下雨B.明天一定会下雨C.明天有80%的时间下雨D.明天下雨的可能性比较大4.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大5.小芳掷一枚硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为()A.B.C.D.16.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.B.C.D.7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点8.下列成语或词语所反映的事件中,可能性最小的是()A.瓜熟蒂落B.旭日东升C.守株待兔D.夕阳西下9.某林业局将一种树苗移植成活的情况绘制成如统计图,由此可估计这种树苗移植成活的概率约为()A.0.95B.0.90C.0.85D.0.8010.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计二.填空题11.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率稳定在.12.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为.(结果要求保留两位小数)13.某班有男生和女生各若干,若随机抽取1人,抽到男生的概率是0.4,则抽到女生的概率是.14.小丽与小华做硬币游戏,任意掷一枚均匀的硬币两次,游戏规定:如果两次朝上的面不同,那么小丽获胜;如果两次朝上的面相同,那么小华获胜.你认为这样的游戏公平吗(填“公平”,“不公平”).15.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.16.一只不透明的袋子中装有10个白球、20个黄球和30个红球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球,则下列事件:①该球是白球;②该球是黄球;③该球是红球,按发生的可能性大小从小到大依次排序为(只填写序号).17.事件A发生的概率为,大量重复做这种试验,平均每5000次事件A发生的次数是.18.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是.19.同时掷两个质地均匀的骰子,则两个骰子的点数和是10的概率为.20.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方(填“公平”或“不公平”).三.解答题21.随着互联网的快速发展,人们的生活越来越离不开快递,某快递公司邮寄每件包裹的收费标准是:重量小于或等于1千克的收费10元;重量超过1千克的部分,每超过1千克(不足1千克按1千克计算)需再收费2元.下表是该公司某天9:00~10:00统计的收件情况:重量G(千克)0<G≤11<G≤22<G≤33<G≤44<G≤5G>5件数13514011065500试根据以上所提供的信息,解决下列问题:(1)求包裹重量为1<G≤2的概率;(2)小东打算在该公司邮寄一批每件3千克的包裹到不同地方,现有两种付费方式供他选择:①按该公司收费标准付费;②按上表中的平均费用付费.问:他选择哪种方式付费合算?说明理由.22.一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?23.口袋里有除颜色外都相同的4个球,其中有红球、白球和蓝球.甲乙两名同学玩摸球游戏.规定:无论谁从口袋里随意摸出一个球,摸到红球,算甲赢;摸到白球,算乙赢;摸到蓝球,不分输赢.每一次摸球,根据球的颜色决定输赢后,将球放回口袋里搅匀后下次再摸球.设计下列游戏:(1)要使甲、乙两人赢的可能性相等,口袋里应放红球、白球和蓝球各多少个?(2)要使甲赢的可能性比乙赢的可能性大,口袋里应放红球、白球和蓝球各多少个?24.某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.如图1和图2为经销人员正在绘制的两幅统计图,请根据图中信息回答下列问题.(1)第四个月两品牌电视机的销售量是多少台?(2)先通过计算,再在图2中补全表示B品牌电视机月销量的折线:(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,抽到A品牌和抽到B品牌电视机的可能性哪个大?请说明理由.25.如图,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜.猜数的规则从下面三种中选一种:(1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”;(3)猜“是大于6的数”或“不是大于6的数”.如果轮到你猜数,那么为了尽可能获胜,你将选择哪一种猜数方法?怎样猜?请说明理由!26.甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下:甲公司规定底薪80元,每销售一件产品提成1元;乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.(1)请将两家公司各一名推销员的日工资y(单位:元)分别表示为日销售件数n的函数关系式;(2)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图、若记甲公司该推销员的日工资为y1,乙公司该推销员的日工资为y2(单位:元),将该频率视为概率,请回答下面问题:某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.27.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸棋的次数n1002003005008001000摸到黑棋的次数m2451761242012500.2400.2550.2530.2480.2510.250摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由参考答案与试题解析一.选择题1.解:两骰子上的数字之和是7的有3+4=7;4+3=7,2+5=7;5+2=7,1+6=7;6+1=7共6种情况,和为8的有2+6=8;6+2=8,3+5=8;5+3=8;4+4=8共5种情况,甲赢的概率大,故选:B.2.解:∵不透明的袋中,装有1个白球、2个红球、2个黄球、3个黑球,共有8个球,∴摸出白球的概率是,摸出红球的概率是=,摸出黄球的概率是=,摸出黑球的概率是,∵<=<,∴从袋中任意摸出:一个球,可能性最大的是黑球;故选:D.3.解:气象部门预报明天下雨的概率是80%,说明明天下雨的可能性比较大.所以只有D 合题意.故选:D.4.解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是,摸出白球的概率是,摸出红球的概率是,∵<<,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.5.解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第11次掷这枚硬币时,正面向上的概率是:.故选:B.6.解:∵六张卡片上分别写有,π,1.5,5,0,六个数,无理数的是π,,∴从中任意抽取一张卡片上的数为无理数的概率是:.故选:B.7.解:∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:B.8.解:A.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;B.旭日东升,是必然事件,发生的可能性为1,不符合题意;C.守株待兔所反映的事件可能发生也可能不发生,是不确定事件,符合题意;D.夕阳西下,是必然事件,发生的可能性为1,不符合题意.故选:C.9.解:这种树苗成活的频率稳定在0.9,成活的概率估计值约是0.90.故选:B.10.解:需要大量重复实验,才能得出结论.本题无法估计盒中红球和白球的个数.故选:D.二.填空题11.解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.12.解:∵抽检某一产品2020件,发现产品合格的频率已达到0.9911,∴依此我们可以估计该产品合格的概率为0.99,故答案为:0.99.13.解:抽到女生的概率是1﹣0.4=0.6.14.解:任意掷一枚均匀的硬币两次,朝上的情况有正正、反反、正反、反正四种情况,所以两次朝上的面不同或两次朝上的面相同的概率相等,即游戏公平.15.解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.16.解:∵共有10+20+30=60(个)球,∴①摸到白球的概率是=,②摸到黄球的概率是=,③摸到红球的概率是=,∴发生的可能性大小从小到大依次排序为①②③,故答案为①②③.17.解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:5000×=200.故答案为:200.18.解:∵1,2,3,4,5,6这六个数字中大于3的数字有3个:4、5、6,∴P(甲获胜)=;∵1,2,3,4,5,6这六个数字中小于3的数字有2个:1、2,∴P(乙获胜)=;∵,∴获胜的可能性比较大的是甲.故答案为:甲.19.解:易得有6×6=36种可能,两个骰子的点数和是10的有4,6;5,5;6,4共3种,所以概率是.20.解:列树状图得:共有9种情况,和为偶数的有5种,所以哥哥赢的概率是,那么弟弟赢的概率是,所以该游戏对双方不公平.三.解答题21.解:(1)1<G≤2的概率记为P,则P=,∴包裹重量为1<G≤2的概率为28%;(2)①按公司收费标准付费,则费用S1=10+2×(3﹣1)=10+4=14(元);②按平均费用付费,则费用S2==;∵13.02<14,∴选择平均费用付费合算.22.解:(1)∵从中随意摸出一个球的所有可能的结果个数是5,随意摸出一个球是红球的结果个数是2,∴从中随意摸出一个球,摸出红球的可能性是;(2)设需再加入x个红球.依题意可列:,解得x=4,经检验x=4是原方程的解,∴要使从中随意摸出一个球是红球的可能性为,袋子中需再加入4个红球.23.解:(1)要使甲、乙两人赢的可能性相等,口袋里应放红球1个,白球1个,蓝球2个;(2)要使甲赢的可能性比乙赢的可能性大,口袋里应放红球2个,白球1个,蓝球1个.24.解:(1)根据题意得:400×(1﹣15%﹣30%﹣25%)=120(台),答:第四个月两品牌电视机的销售量是120台;(2)三月份的销售额是:400×25%=100(台),则三月份B品牌电视机销量是100﹣50=50(台),四月份B品牌电视机销量是400×30%﹣40=80(台),补图如下:(3)∵第四个月售出的电视机共有120台,其中销售A品牌有40台,B品牌有80台,∴抽到A品牌的概率是=,抽到B品牌电视机的概率是=,∴抽到B品牌电视机的可能性大.25.解:(1)共有10种等可能出现的结果数,其中“是奇数”的有5种,“是偶数”的也有5种,因此“是奇数”“是偶数”的可能性都是50%,(2)共有10种等可能出现的结果数,其中“是3的倍数”的有3种,“不是3的倍数”的7种,因此“是3的倍数”可能性是30%,“不是3的倍数”的可能性是70%,(3)共有10种等可能出现的结果数,其中“是大于6的数”的有4种,“不是大于6的数”的有6种,因此“是大于6的数”可能性是40%,“不是大于6的数”的可能性是60%,因此,猜数者选择“不是3的倍数”,这样获胜的可能性为70%,获胜的可能性最大.26.解:(1)y甲=80+n,当n≤45时,y乙=120,当n>45时,y乙=120+8(n﹣45)=8n﹣240,所以y乙=,答:两家公司的推销员日工资y与日销售件数n的函数关系式分别为y甲=80+n,y乙=;(2)选择乙公司,理由如下:从条形统计图所反映的数据可计算:甲公司销售员的日销售工资为y1=80+=125(元),乙公司销售员的日销售工资为y2==136(元),因为125<136,所以选择乙公司,27.解:(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为:0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.。
第2章 简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)
第2章简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A. B. C. D.2、一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.3、下列事件中,属于确定事件的个数是( )⑴打开电视,正在播广告;⑵投掷一枚普通的骰子,掷得的点数小于10;⑶射击运动员射击一次,命中10环;⑷在一个只装有红球的袋中摸出白球.A.0B.1C.2D.34、有一“抢30”游戏,规则是:甲先说“1”或“1、2”,当甲先说“1”时,乙接着说“2”或“2、3”;当甲先说“1、2”时,乙接着说“3”或“3、4”,然后甲再接着按次序往下说一个或二个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.其结果是()A.后报数者可获胜B.先报数者可获胜C.两者都可能胜D.很难预料5、根据电视台天气预报:庐江县明天降雨的概率80%。
对此信息,下列几种说法中正确的是()A.庐江县明天一定会下雨;B.庐江县明天有%的地区会降雨; C.庐江县明天有%的时间会降雨; D.庐江县明天下雨的可能性比较大。
6、下列事件⑴打开电视机,正在播放新闻;⑵父亲的年龄比他儿子年龄大;⑶下个星期天会下雨;⑷向上用力抛石头,石头落地;⑸一个实数的平方是负数.属于确定事件的有()个.A.1B.2C.3D.47、在一个不透明的盒子里装有只有颜色不同的10个红球和若中个黄球每次从盒子里摸出一个球,记录下颜色后再放回,经过多次重复试验,发现摸到黄球的频率稳定在0.8.请估计盒子里黄球约有()A.20个B.40个C.60个D.80个8、在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.9、下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口 C.掷两次质地均匀的骰子,其中有一次正面朝上 D.对顶角相等10、某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”D.掷一枚质地均匀的硬币,落地时结果是“正面向上”11、下列事件(1)打开电视机,正在播放新闻;(2)父亲的年龄比他儿子年龄大;(3)下个星期天会下雨;(4)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(5)一个实数的平方是正数(6)若a、b异号,则a+b<0.属于确定事件的有()个.A.1B.2C.3D.412、在不透明的布袋中,装有大小、形状完全相同的3个黑球、1个红球,从中摸一个球,摸出1个黑球这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件13、一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的不一一定是红球C.第一次摸出的球是红球的概率是D.两次摸出的球都是红球的概率是14、一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.15、下列事件中,是随机事件的是()A.通常温度降到0°C以下,纯净水结冰.B.随意翻到一本书的某页,这页的页码是偶数.C.我们班里有46个人,必有两个人是同月生的. D.一个不透明的袋中有2个红球和1个白球,它们除了颜色外都相同,从中任意摸出一个球,摸到白球比摸到红球的可能性大.二、填空题(共10题,共计30分)16、小林和小华参加社会实践活动,随机选择“打扫社区卫生”“参加社会调查”其中一项.那么两人同时选择“参加社会调查”的概率是________.17、下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相除,商为负数;④异号两数相乘,积为正数.必然事件是________.(将事件的序号填上即可)18、3张除所标数值外完全相同的卡片,它们标有的数值分别为1、2、-3.把这3张卡片,背面朝上放在桌面上,随机抽取2张,把抽到卡片上的数值分别作为A点的横坐标、纵坐标,则A点落在第一象限的概率是________.19、抛掷一枚质地均匀的硬币,落地后正面朝上的概率是________.20、甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每上面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是________.21、“抛掷一枚质地均匀的硬币,正面向上”是________事件(从“必然”、“随机”、“不可能”中选一个).22、在不透明的袋中装有除颜色外其它都相同的3个红球和2个白球,搅匀后从中随机摸出2个球,则摸出的两个球恰好一红一白的概率是________.23、从一副扑g牌中任意抽取1张.①这张牌是“A”;②这张牌是“红桃”;③这张牌是“大王”;④这张牌是“红色的”.将这些事件按发生的可能性从小到大顺序排列________.(填序号,用“<”连接)24、盒子里有4支红色笔芯,3支黑色笔芯,每支笔芯除颜色外均相同.从中任意摸出一支笔芯,则摸出黑色笔芯的概率是________.25、大冶市现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为参加全市汉字听写大赛,则恰好选中一男一女两位同学参赛的概率是________.三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、1路公共汽车大部分是双门的大车,少数是单门的小车.在车站等车,等来的车是双门大车还是单门小车的可能性大?说明理由.28、为丰富学生的校园文化生活,珠海第十中学举办了“十中好声音”才艺比赛,三个年级都有男、女各一名选手进入决赛.初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.比赛规则是男、女各一名选手组成搭档展示才艺.(1)用列举法说明所有可能出现搭挡的结果;(2)求同一年级男、女选手组成搭档的概率;(3)求高年级男选手与低年级女选手组成搭档的概率.29、用如图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,游戏者同时转动两个转盘,配成紫色的概率是多少?请用树状图或列表说明理由(蓝色和红色能配成紫色).30、如图,有两个构造完全相同(除所标数字外)的转盘A,B,每个转盘都被分成3个大小相同的扇形,指针位置固定,游戏规定,转动两个转盘各一次,转盘停止后若A盘指针指示区域数字比B盘指针指示区域数字大则小明胜,否则小亮胜(指针指向两个扇形的交线时,当作指向右边的扇形).你认为这个游戏规则公平吗?为什么?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、A5、D6、C8、D9、D10、B11、B12、B13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷(标准难度)(含答案解析)
浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷考试范围:第二章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.我国南方地区冬至的传统习俗是吃汤圆,其寓意团团圆圆冬至这一天,小红家煮了30个汤圆,其中有12个黑芝麻馅的,14个枣泥馅的,4个豆沙馅的,煮完之后的汤圆看起来都一样,小红盛了1个汤圆,下列各种描述正确的是( )A. 她吃到黑芝麻馅汤圆和枣泥馅汤圆可能性一样大B. 她吃到枣泥馅汤圆比豆沙馅汤圆的可能性大很多C. 她不可能吃到豆沙馅汤圆D. 她一定能吃到枣泥馅汤圆2.某班有25名男生和20名女生,现随机抽签确定一名学生做代表参加学代会,则下列选项中说法正确的是( )A. 男、女生做代表的可能性一样大B. 男生做代表的可能性较大C. 女生做代表的可能性较大D. 男、女生做代表的可能性的大小不能确定3.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A. 36种B. 48种C. 96种D. 192种4.将三幅完全相同的图片,分别剪成大小相同的上、中、下三段,每张图片的三段放在一起组成三部分,若从每一部分中抽取一段,则正好拼成一幅完整图片的概率是( )A. 227B. 29C. 13D. 495.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A. 15B. 14C. 13D. 126.下列说法中,正确的是( )A. 不可能事件发生的概率为0B. 随机事件发生的概率为12C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A. 从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率B. 掷一枚质地均匀的硬币,正面朝上的概率C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D. 任意买一张电影票,座位号是2的倍数的概率8.下图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断: ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618; ③若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A. ①B. ②C. ① ②D. ① ③9.一个不透明的袋子中有1个红球,1个绿球和n个白球,这些球除颜外都相同.从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则白球的个数n的值可能是( )A. 1B. 2C. 4D. 510.某校九年级百日誓师大会的学生代表王红,李明和张敏三人按顺序先后发言,但是教务处认为采用抽签方式决定发言顺序比较公平.经过抽签后,只有李明顺序不变的概率为( )A. 112B. 16C. 13D. 1211.小明和小刚各自掷一枚质地均匀的正方体骰子,若两人的点数之和是奇数,则小明积1分,若两人的点数之和是偶数,则小刚积1分,此游戏( )A. 对小明有利B. 对小刚有利C. 是公平的D. 无法判断12.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A. 23B. 13C. 29D. 19第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.小东认为:任意抛掷一个啤酒盖,啤酒盖落地后印有商标一面向上的可能性的大小是12,你认为小东的想法______(“合理”或“不合理”),理由是______.14.如图,小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为________.15.从一个不透明的口袋中随机摸出1个球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___________个白球.16.名额分配综合评价是2022年上海市高中阶段学校的招生录取方式之一.市实验性示范性高中将对入围学生开展现场综合评价并赋分,为更好保证打分的公平,将以所有打分的截尾平均数作为考生的分数,即去掉一个最高分和一个最低分以后的平均分数.如果7位高中老师的打分如表所示,那么这位学生的现场综合评价得分是______分.老师1老师2老师3老师4老师5老师6老师7打分910788910三、解答题(本大题共9小题,共72.0分。
浙教版数学第2章期末复习:简单事件的概率知识点
浙教版数学第2章期末复习:简单事件的概率知识点这一单元让大家主要让大家掌握的是关于概率的相关知识,今天就带大家一起来复习一下简单事件的概率知识点,希望对大家备战期末有帮助。
知识点一、事件的可能性随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。
另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。
二、简单事件的概率1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;3.确定事件:必然事件和不可能事件都是确定的;4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
三、用频率估计概率1、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
四、概率的简单应用1.有些随机事件不可能用树状图和列表法求其发生的概率,只能用试验、统计的方法估计其发生的概率。
2.对于作何一个随机事件都有一个固定的概率客观存在。
3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:(1)尽量经历反复实验的过程,不能想当然的作出判断;(2)做实验时应当在相同条件下进行;(3)实验的次数要足够多,不能太少;简单事件的概率知识点的全部内容就是这些,更多的精彩内容会持续为大家更新,预祝大家可以在即将到来期末考试中取得优异的成绩。
【练习】第二章《简单事件的概率》章末小结
法来分析,公平吗?
解:(3)不公平.可能出现的所有结果列表如下: 小李抛到 的数字 小樱抛到 的数字 1 2 3 4
1 (1,1) (2,1) (3,1) (4,1)
2 (1,2) (2,2) (3,2) (4,2)
3 (1,3) (2,3) (3,3) (4,3)
4 (1,4) (2,4) (3,4) (4,4) 6 3 = ;则 16 8
知识要点二:概率的估计与计算 5.(2016·慈溪)下列说法正确的是( D ) A.天气预报说明天下雨的概率是99%,说明明天一定会下雨 B.从正方形的四个顶点中,任取三个连成三角形,事件“这个三角形是等腰三角形”是随机事件
3 10
C.某同学连续10次投掷质量均匀的硬币,3次正面向上,因此正面向上的概率是
12.五一黄金周期间,公司组织员工到A,B,C三地旅游,公司购买前往各地的车票种类、数量绘制成
条形统计图,如图.请回答:
30 张,前往C地的车票数占总票数的____% 20 ; (1)前往A地的车票有____
(2)若公司决定采用随机抽取的方式把车票分配给100个员工,在看不到票的情况下(其他条件完全相 同),员工小风抽到去B地的车票的概率为____ 2 ; (3)若剩最后一张车票,小李和小樱都想要,决定采用抛掷四面骰子(1,2,3,4)来确定,规则是 “每人各抛一次,若小李的数字比小樱的大,车票就给小李,否则就给小樱”.试用列表法或树状图
C.14个 D.35个
2 ,则袋中红球约有( B ) 7
7.经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性的大小相同,则经过这 个十字路口的两辆汽车一辆左转,一辆右转的概率是( B ) 4 2 C. 4 D. 1 A. B. 7 9 9 9
浙教版九年级数学上册第二章简单事件的概率单元测试卷(二)及答案.docx
第二章简单事件的概率单元测试卷(二)(本试卷共三大题, 26 个小题 试卷分值:150 分考试时间: 120 分钟)姓名:班级:得分:一、填空题(本题有 10 个小题,每小题 4 分,共 40 分)1.一只蚂蚁在如图所示的树枝上寻找食物,蚂蚁在每个岔路口食物 食物都会随机地选择一条路径,则它获得食物的概率是 ( )1 1 C .1 1A .B .4D .236蚂蚁2.( 2014?湖州) 已知一个布袋里装有 2 个红球, 3 个白球和 a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出 1 个球,是红球的概率为,则 a 等于( )A . 1B . 2C .3D . 43.随机从三男一女四名学生的学号中抽取两个人的学号,被抽中的两人性别不同的概率为( )A .1B .3C .1D .14 4 3 24.有五条线段长分别为 1,3, 5, 7, 9,从中任取三条,能组成三角形的概率是()A.1 3 1 35B. C. D.10255. 在一个口袋中有 4 个完全相同的小球,把它们分别标号为 1,2, 3, 4,随机地摸出一个小球然后放回,再随机地摸出一个小球。
则两次摸出的小球的标号的和等于 6 的概率为()A 、1B 、1C 、3D 、116 81646.下列事件中是确定事件的是 ()A .篮球运动员身高都在 2 米以上B .弟弟的体重一定比哥哥的轻C .明年教师节一定是晴天D .吸烟有害身体健康7.在一个不透明的口袋中装有 4 个红球, 3 个绿球, 2 个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是( )4 2 1 2 A .B .C .D .99338.在一个口袋中有 4 个完全相同的小球,把它们分别标号为1,2, 3, 4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( )A .1B .2C .1D .533 669.在盒子里放有三张分别写有整式 a+1、 a+2、 2 的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的可能性是( ).A .11 23 6B .C .D .33410.关于四边形 ABCD 有以下 4 个条件:①两组对边分别平行;②两条对角线互相平分; ③两条对角线互相垂直;④一组邻边相等.从中任取 2 个条件,能得到四边形 ABCD是菱形的概率是( )A .2B .1C .1D .533 26二、认真填一填(本题有 8 个小题 , 每小题 4 分 , 共 32 分 )11.学校组织秋游,安排九年级三辆车,小强和小明都可以从三辆车中任选一辆搭乘,则小强和小明乘同一辆车的概率是 .12.小明同时掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1 到 6的点数,掷得面朝上的点数之和是3 的倍数的概率是 .13.一个不透明的口袋中有三个除了标号外完全相同的小球,小球上分别标有数字2, 3,4,从中随机取出一个小球,用 a 表示取出小球上标有的数字,不放回再取出一个,用b 表示取出小球上标有的数字(a ≠b ),构成函数y =ax - 2 和y = x + b ,则这样的有序数对(a,b )使这两个函数图象的交点落在直线x = 2 的右侧的概率是.14.某商场为吸引顾客设计了如图所示的自由转盘,当指针指向阴影部分时,该顾客可获奖品一份,那么该顾客获奖的概率为15.为了估计不透明的袋子里装有多少白球,先从袋中摸出10 个球都做上标记,然后放回袋中去,充分摇匀后再摸出10 个球,发现其中有一个球有标记,那么你估计袋中大约有 ______个白球16.已知a i0 (i=1,2,,2012)满足a1a2a3a2011a20121968,a1a2a3a2011a2012使直线 y a i x i (i=1,2,,2012)的图像经过一、二、四象限的a i概率是17.在一个不透明的袋子里装有黄色、白色乒乓球共40 个 ,除颜色外其他完全相同.从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近 ,则袋中黄色球可能有个.18.暑假期间,瑞瑞打算参观上海世博会.她要从中国馆、澳大利亚馆、德国馆、英国馆、日本馆和瑞士馆中预约两个馆重点参观,想用抽签的方式来作决定,于是她做了分别写有以上馆名的六张卡片,从中任意抽取两张来确定预约的场馆,则他恰好抽中中国馆、澳大利亚馆的概率是___________.三、解答题 (本题有 8 个小题,共78 分.解答应写出文字说明,证明过程或推演步骤.) 19.( 6 分)算式: 1△ 1△ 1=□,在每一个“△”中添加运算符号“ +或”“﹣”后,通过计算,“□”中可得到不同的运算结果.求运算结果为 1 的概率.20.( 8 分)某学校课程安排中,各班每天下午只安排三节课.(1)初一( 1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;( 2)星期三下午,初二( 1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是1.已36知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果).21.( 8 分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中蓝球 2 个,红球 1 个,若从中任意摸出一个球,它是红球的概率为 1 .4(1)求袋中黄球的个数(2) 第一次任意摸出一个球( 不放回 ),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.22.( 10 分)端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;(2)在吃粽子之前,小明准备用一格均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数 2 向上代表香肠馅,点数 3 ,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.23.( 10 分)阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b) 的所有取值;(2) 求点(a,b)在一次函数y x 1图像上的概率.我的袋子中也有我的袋子中有三张除数字外完四张除数字外全相同的卡片:完全相同的卡片:小兵小丽我先从小丽的袋子中抽出—张卡片,再从小兵的袋子中抽出—张卡片 .小冬24.( 10 分)将分别标有数字1, 2,3 的三张卡片洗匀后,背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32 的概率是多少 .25.( 12 分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级: A.非常了解; B.比较了解; C.基本了解; D.不了解.根据调查统计结果,绘制了不完整的两种统计图表.请结合统计图表,回答下列问题.( 1)本次参与调查的学生共有人,m=,n=;( 2)请补全图 1 所示数的条形统计图;( 3)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”等级中的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字 1, 2,3, 4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,记下数字后放回袋中,另一人再从袋中中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.26.( 14 分)如图,某电脑公司现有A, B, C三种型号的甲品牌电脑和D, E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案 ( 利用树状图或列表方法表示);(2)如果 (1) 中各种选购方案被选中的可能性相同,那么 A 型号电脑被选中的概率是多少?(3)现知希望中学用10 万元购买甲、乙两种品牌电脑共36 台 (价格如图所示),其中甲品牌电脑为 A 型号电脑,求购买的 A 型号电脑有多少台?参考解答本试卷共三大题,26 个小题试卷分值:150分考试时间:120分钟姓名:班级:得分:一、填空题(本题有10 个小题,每小题 4 分,共 40 分)1.一只蚂蚁在如图所示的树枝上寻找食物,蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是()食物食物11C.11A.B. D .6234【答案】 B.蚂蚁【解析】试题分析:共有 6 条路径,有食物的有 2 条,所以概率是2 1 ,63故选 B.考点 : 概率公式 .2.( 2014?湖州)已知一个布袋里装有 2 个红球, 3 个白球和 a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出 1 个球,是红球的概率为,则 a 等于()A. 1B. 2C. 3D. 4【答案】 A3.随机从三男一女四名学生的学号中抽取两个人的学号,被抽中的两人性别不同的概率为()1311 A.B.C.D.4432【答案】 D【解析】∵从中任意选出两人,共有12 种情况,其中两人性别不同的共有 6 种情况,1∴性别不同的可能性是2.故选: D.4.有五条线段长分别为1,3, 5, 7, 9,从中任取三条,能组成三角形的概率是()1B.313A.10C. D.525【答案】 B【解析】从 5 个数中取 3 个数,共有10 种可能的结果,能构成三角形,满足两边之和大于第三边的有:3、 5、 7; 3、7、 9; 5、7、 9 三种,∴P(从中任取三条,能组成三角形)= 3.故选 B.105.在一个口袋中有 4 个完全相同的小球,把它们分别标号为1,2, 3, 4,随机地摸出一个小球然后放回,再随机地摸出一个小球。
2020年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷(解析版)
2020年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷一.选择题(共10小题)1.中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.2.在有22名男生和20名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定3.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%4.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次5.我们知道:用形状,大小完全相同的一种或几种平面图形进行拼接,彼此间不留空隙,不重叠地铺成一片,就是平面图形的镶嵌.那么从若干正三角形,正四边形,正五边形,正六边形中,只选择一种正多边形进行拼接,能够镶嵌的概率是()A.B.C.D.16.A、B、C、D四名同学随机分为两组,两个人一组去参加辩论赛,问A、B两人恰好分到一组的概率()A.B.C.D.7.教科书117页游戏1中的“抢30”游戏,规则是:第一人先说“1”或“1,2”,第二个要接着往下说一个或两个数,然后又轮到第一个,再接着往下说一个或两个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.若按同样的规则改为抢“40”,其结果是()A.后报数者胜B.先报数者胜C.两者都可能胜D.很难预料8.桌子上放着20颗糖果,小明和小军玩游戏,两人商定的游戏规则为:两人轮流拿糖果,每人每次至少要拿1颗,至多可以拿2颗,谁先拿到第10颗谁就获胜,获胜者可以把剩下的10颗糖果全部拿走,其结果是()A.后拿者获胜B.先拿者获胜C.两者都可能胜D.很难预料9.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个10.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在()A.25%B.50%C.75%D.100%二.填空题(共8小题)11.从一副扑克牌中任意抽取1张.①这张牌是“A”;②这张牌是“红桃”;③这张牌是“大王”;④这张牌是“红色的”.将这些事件按发生的可能性从小到大顺序排列.(填序号,用“<”连接)12.在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:(1)恰好取出白球;(2)恰好取出红球;(3)恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大的顺序排列(只需填写序号).13.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第题使用“求助”.14.某彩票的中奖率是1‰,某人一次购买一盒(200张)其中每张彩票的中奖率为.15.在一个不透明的袋子里装有2个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是白球的概率为,则袋子内黄色乒乓球的个数为.16.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是.17.甲乙两人用2张红心和1张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:.18.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.三.解答题(共8小题)19.下列事件:(1)从装有1个红球和2个黄球的袋子中摸出的1个球是白球;(2)随意调查1位青年,他接受过九年制义务教育;(3)花2元买一张体育彩票,喜中500万大奖;(4)抛掷1个小石块,石块会下落.估计这些事件的可能性大小,在相应位置填上序号.一定会发生的事件:;发生的可能性非常大的事件:;发生的可能性非常小的事件:;不可能发生的事件:.20.一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?21.某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?他获得九折,八折,七折,五折待遇的概率分别是多少?22.酒局上经常两人玩猜拳游戏.游戏规则是:每人同时伸出一只手的几个手指(手指数可以是0、1、2、3、4、5),并同时口中喊出一个数,若某人喊出的数恰好等于两人的手指数的和,而另一个人喊出的数与两人的手指数的和不等,就算喊对的人赢,输的人就要喝酒,两人都喊对了或都没喊对,就重来.在某次甲乙两人猜拳时,甲说:“我让让你,我就喊一个数5,其他的数我都不喊,都归你喊,如何?”请你用学过的概率知识加以分析,试说明甲是否作出了让步.23.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.24.某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.(1)每摸一次球所获购物卷金额的平均值是多少?(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?25.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:落在“铅笔”的频率(2)请估计,当n很大时,频率将会接近(精确到0.1)(3)假如你去转动该转盘一次,你获得铅笔的概率约是,理由是:.26.在一个不透明的盒子里装有黑、白两种颜色的球共20只,这些球除颜色外其余完全相同,小明做摸球试验,搅匀后,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸到白球的概率(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1).(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为.(3)试估算盒子里黑、白两种颜色的球各有多少只?2020年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷参考答案与试题解析一.选择题(共10小题)1.中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【分析】让可能得到礼物的2种情况数除以总情况数即为得到礼物的可能性.【解答】解:三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此,有一个打进电话的观众,选择并打开后得到礼物的可能性是为.故选D.【点评】用到的知识点为:可能性=所求情况数与总情况数之比.2.在有22名男生和20名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定【分析】根据题意,只要求出男生和女生当选的可能性,再进行比较即可解答.【解答】解:∵某班有25名男生和18名女生,∴用抽签方式确定一名学生代表,男生当选的可能性为=,女生当选的可能性为=,∴男生当选的可能性大于女生当选的可能性.故选:B.【点评】此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%【分析】降水概率就是降水的可能性,根据概率的意义即可作出判断.【解答】解:“明天A地区降水概率为80%”是指明天A地区下雨的可能性是80%.且明天下雨的可能性较大,故A、B、C都错误,只有D正确;故选:D.【点评】本题主要考查了概率的意义,掌握概率是反映出现的可能性大小的量是解题的关键.4.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次【分析】根据概率的意义,可得事件A发生的概率是,表示事件A可能发生7次,但不是一定发生7次,或者只发生了7次,也不表示事件A发生的频率是,据此判断即可.【解答】解:∵事件A发生的概率是,不表示事件A发生的频率是,∴选项A不正确;∵事件A发生的概率是,不表示事件A只发生了7次,可能比7次多,也有可能比7次少,∴选项B不正确;∵事件A发生的概率是,不表示事件A一定发生7次,∴选项C不正确;∵事件A发生的概率是,表示事件A可能发生7次,∴选项D正确.故选:D.【点评】此题主要考查了概率的意义,要熟练掌握,解答此题的关键是要明确:一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p 就叫做事件A的概率,记为P(A)=p.5.我们知道:用形状,大小完全相同的一种或几种平面图形进行拼接,彼此间不留空隙,不重叠地铺成一片,就是平面图形的镶嵌.那么从若干正三角形,正四边形,正五边形,正六边形中,只选择一种正多边形进行拼接,能够镶嵌的概率是()A.B.C.D.1【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.再根据概率公式计算即可求解.【解答】解:从若干正三角形,正四边形,正五边形,正六边形中,只选择一种正多边形进行拼接,能够镶嵌的有正三角形,正四边形,正六边形,一共3种,故概率是3÷4=.故选:C.【点评】考查了概率公式,平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.6.A、B、C、D四名同学随机分为两组,两个人一组去参加辩论赛,问A、B两人恰好分到一组的概率()A.B.C.D.【分析】画出树状图,再根据概率公式列式计算即可.【解答】解:根据题意画树状图如下:共有12种情况,A,B两名同学分在同一组的情况有4种,则A、B恰好分到同一组的概率为=;故选:C.【点评】本题考查了概率公式、树状图法,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.7.教科书117页游戏1中的“抢30”游戏,规则是:第一人先说“1”或“1,2”,第二个要接着往下说一个或两个数,然后又轮到第一个,再接着往下说一个或两个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.若按同样的规则改为抢“40”,其结果是()A.后报数者胜B.先报数者胜C.两者都可能胜D.很难预料【分析】为了抢到30,那就必须抢到27,这样无论对方叫“28”或“29”,你都获胜.所以为了抢到40,必需抢到37,游戏的关键是报数先后顺序,并且每次报的个数和对方合起来是三个,即对方报a(1≤a≤2)个数字,你就报(3﹣a)个数.抢数游戏,它的本质是一个是否被“3”整除的问题.【解答】解:谁先抢到37,对方无论叫“38”或“39”你都获胜.若甲同学先报数1,为抢到37,甲每次报的个数和对方合起来是三个,(37﹣1)÷3=12,先报数者胜.故选:B.【点评】此题属基本知识的考查,关键是得到需抢到的数字.8.桌子上放着20颗糖果,小明和小军玩游戏,两人商定的游戏规则为:两人轮流拿糖果,每人每次至少要拿1颗,至多可以拿2颗,谁先拿到第10颗谁就获胜,获胜者可以把剩下的10颗糖果全部拿走,其结果是()A.后拿者获胜B.先拿者获胜C.两者都可能胜D.很难预料【分析】通过从第20颗开始向前推,要拿10,必须拿7,以此类推,即可算出结果.【解答】解:最多拿2个,最少拿1个,和为3;则要是想拿到第十颗就必须拿到第7颗,以此类推,必须拿到4,1;所以先拿者获胜.故选:B.【点评】本题主要考查对于题目的推演,要充分考虑会出现的情况.关键是得到需抢到的数字.9.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.【点评】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.10.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在()A.25%B.50%C.75%D.100%【分析】抛掷两枚均匀的硬币,可能会出现四种情况,而出现出现两个反面的机会为四分之一.【解答】解:抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正,∴出现两个反面的概率为,∴抛掷多次以后,出现两个反面的成功率大约稳定在25%.故选:A.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.二.填空题(共8小题)11.从一副扑克牌中任意抽取1张.①这张牌是“A”;②这张牌是“红桃”;③这张牌是“大王”;④这张牌是“红色的”.将这些事件按发生的可能性从小到大顺序排列③①②④.(填序号,用“<”连接)【分析】首先分别求出一副扑克牌中含“A”、“红桃”、“大王”、“红色的”的张数各是多少,然后根据每张牌被抽到的机会相等,只要比较出哪个事件的可能结果最多,即可判断出这些事件发生的可能性的大小,并将这些事件按发生的可能性从小到大顺序排列即可.【解答】解:一副扑克牌中含“A”4张,“红桃”13张,“大王”1张,“红色的”26张,∵1<4<13<26,∴将这些事件按发生的可能性从小到大顺序排列:③①②④.故答案为:③①②④.【点评】此题主要考查了随机事件发生的可能性的大小问题,要熟练掌握,解答此题的关键是判断出一副扑克牌中含“A”、“红桃”、“大王”、“红色鹅”的张数各是多少.12.在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:(1)恰好取出白球;(2)恰好取出红球;(3)恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大的顺序排列(1)(3)(2)(只需填写序号).【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【解答】解:根据题意,袋子中共6个球,其中有1个白球,2个黄球和3个红球,故将球摇匀,从中任取1球,①恰好取出白球的可能性为,②恰好取出红球的可能性为=,③恰好取出黄球的可能性为=,故这些事件按发生的可能性从小到大的顺序排列是(1)(3)(2).故答案为:(1)(3)(2).【点评】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.13.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第一题使用“求助”.【分析】首先根据概率的求法,求出第一题使用“求助”小明顺利通关的概率是多少,然后求出在第二题使用“求助”小明顺利通关的概率为多少;最后比较大小,判断出小明在第几题使用“求助”即可.【解答】解:第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.【点评】此题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是分别求出第一题使用“求助”小明顺利通关的概率、第二题使用“求助”小明顺利通关的概率各是多少.14.某彩票的中奖率是1‰,某人一次购买一盒(200张)其中每张彩票的中奖率为1‰.【分析】这道题是有关不确定事件中可能性大小的问题,可能性的大小是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,小也可能发生.福利彩票的中奖率是1%,说明中奖是不确定事件,无论买多少张彩票,每张彩票的中奖率为1‰.【解答】解:每张彩票的中奖率为1‰.【点评】这道题是有关可能性(概率)的问题,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,关键是理解概率是反映事件的可能性大小的量.15.在一个不透明的袋子里装有2个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是白球的概率为,则袋子内黄色乒乓球的个数为3.【分析】设袋子内黄色乒乓球的个数为x,利用概率公式可得=,解出x的值,可得黄球数量即可.【解答】解:设袋子内黄色乒乓球的个数为x,由题意得:=,解得:x=3,经检验,x=3是原方程的解.故答案为:3.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.16.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是.【分析】本题属于比较简单的概率计算问题,用红球总数除以袋中球的总数即可.【解答】解:∵20个球中共有2个红球,∴任意摸出一个球是红球的概率是.故答案是:.【点评】考查了概率的公式,此题是比较简单的概率计算问题,用符合要求的球的总数除以袋子中球的个数即可.17.甲乙两人用2张红心和1张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:不公平.【分析】分别求得两人获胜的概率后比较,若概率相等则公平,否则就不公平.【解答】解:列表得:共9种情况,同一花色的有5种情况,花色不同的有4种情况,∴甲获胜的概率为:,乙获胜的概率为,故不公平,故答案为:不公平.【点评】本题考查了游戏的公平性,正确地列表或树状图是解决此类问题的关键,难度不大.18.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有9张.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手求解.【解答】解:∵共有36张扑克牌,红心的频率为25%,∴扑克牌花色是红心的张数=36×25%=9张.故本题答案为:9.【点评】部分的具体数目=总体数目×相应频率.三.解答题(共8小题)19.下列事件:(1)从装有1个红球和2个黄球的袋子中摸出的1个球是白球;(2)随意调查1位青年,他接受过九年制义务教育;(3)花2元买一张体育彩票,喜中500万大奖;(4)抛掷1个小石块,石块会下落.估计这些事件的可能性大小,在相应位置填上序号.一定会发生的事件:(4);发生的可能性非常大的事件:(2);发生的可能性非常小的事件:(3);不可能发生的事件:(1).【分析】根据其发生的概率即可比较出事件发生的可能性的大小.【解答】解:(1)从装有1个红球和2个黄球的袋子中摸出的1个球是白球的概率是0,不可能发生;(2)随意调查1位青年,他接受过九年制义务教育概率较大,发生的可能性较大;(3)花2元买一张体育彩票,喜中500万大奖,概率较小,发生的可能性较小;(4)抛掷1个小石块,石块会下落,概率为1,一定会发生.故答案为:(4);(2);(3);(1).【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待,最准确的方法是计算出事件发生的概率进行比较.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.20.一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?【分析】(1)求出摸到红球的概率即可;(2)设需再加入x个红球,根据摸出红球的概率为列出方程求解即可.【解答】解:(1)∵从中随意摸出一个球的所有可能的结果个数是5,随意摸出一个球是红球的结果个数是2,∴从中随意摸出一个球,摸出红球的可能性是.….(3分)(2)设需再加入x个红球.依题意可列:,解得x=1∴要使从中随意摸出一个球是红球的可能性为,袋子中需再加入1个红球.【点评】考查了可能性的大小,对于这类题目,可算出球的总个数,要求某种球被摸到的可能性,就看这种球占总数的几分之几就可以了.21.某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?他获得九折,八折,七折,五折待遇的概率分别是多少?。
2019年(期末复习)九年级上《第2章简单事件的概率》单元检测试题有答案-(浙教版数学)-原创精品
期末专题复习:浙教版九年级数学上册第二章简单事件的概率单元检测试卷一、单选题(共10题;共30分)1.有一个不透明的盒子中装有个除颜色外完全相同的球,这个球中只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则的值大约是()A.12B.15C.18D.212.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越越接近概率3.小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的频率约是( )A. 38%B. 60%C. 63%D. 无法确定4.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. B.C.D.5.下列说法中正确的是()A. 一个事件发生的机会是99.99%,所以我们说这个事件必然会发生B. 抛一枚硬币,出现正面朝上的机会是,所以连续抛2次,则必定有一次正面朝上C. 甲、乙两人掷一枚正六面体骰子做游戏,规则是:出现1点时甲赢,出现2点时乙赢,出现其它点数时大家不分输赢,这个游戏对两人说是公平的D. 在牌面是1~9的九张牌中随机地抽出一张,抽到牌面是奇数和偶数的机会是一样的6.在1,2,3三个数中任取两个,组成一个两位数,则组成的两位数是偶数的概率为()A. B.C.D.7.投掷一枚普通的六面体骰子,有下列事件①掷得的点数是 ;②掷得的点数是奇数;③掷得的点数不大于 ;④掷得的点数不小于2.这些事件发生的可能性由大到小排列正确的是( )A. ①②③④B. ④③②①C. ③④②①D. ②③①④8.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A. B.C.D..“上海地区明天降水概率是 5%”,下列说法中,正确的是().A. 上海地区明天降水的可能性较小B. 上海地区明天将有15%的时间降水C. 上海地区明天将有15%的地区降水D. 上海地区明天肯定不降水10.下列说法正确的是().①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A. ①②B. ②③C. ③④D. ①③二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是________ .13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到0.1).14.一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是________.15.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为________16.如图,在 × 正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是________.17.—个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是________18.同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是 ________。
2022九年级数学上册第2章简单事件的概率本章复习总结作业课件新版浙教版202211231154
=1 6
.
三、用频率估计概率
【例3】下表记录了某种幼树在一定条件下移 植成活情况:
由此估计这种幼树在此条件下移植成活的概 率约是___0_.9____(精确到0.1).
含有4种花色的36张扑克牌的牌面都 朝下,每次抽出一张记下花色后再原样放回, 洗匀牌后,不断重复上述过程,记录抽到红 心的频率为25%,那么其中扑克牌花色是红 心的大约有_____9_张.
任意摸出一个球,将对应字母记入图中的右边方格
内.则两个方格中的字母从左往右恰好组成“OK”的概
率( D )
A.1 3
B.2 9
C .4 9
D.1 9
(2020·江 西 ) 某 校 合 唱 团 为 了 开 展 线 上 “百人合唱一首歌”的“云演出”活动,需招 收新成员.小贤、小晴、小艺、小志四名同学 报名参加了应聘活动,其中小贤、小艺来自七 年级,小志、小晴来自八年级.现对这四名同 学采取随机抽取的方式进行线上面试.
解:(1)丫丫随机掷一次骰子,她跳跃后落回到圈 A 的概率=1 ; 4
ቤተ መጻሕፍቲ ባይዱ
(2)这个游戏规则不公平.
(3)理由如下:画树状图为:
共有 16 种等可能的结果,
其中甲甲随机投掷两次骰子,
最终落回到圈 A 的结果数为 5,所以甲甲随机投掷两次骰子,
最终落回到圈 A 的概率= 5 ,因为1 < 5 ,所以这个游戏规
16
4 16
则不公平.
3
从-5,-10 ,- 6 ,-1,0,2,π这七个数中随 3
机抽取一个数,恰好为负整数的概率为( A )
A.27
B.37
C.4 7
D.5 7
(2020· 宿 迁 改 编 ) 将 4 张 印 有
第2章简单事件的概率(易错40题5个考点)(原卷版)
第2单元简单的事件概率(易错40题5个考点)一.可能性的大小(共1小题)1.在如图所示的转盘中,转出的可能性最大的颜色是()A.红色B.黄色C.白色D.黑色二.概率的意义(共15小题)2.连续掷一枚硬币100次,前99次都是正面向上,则第100次出现正面向上的概率为()A.1B.C.D.3.某商店开展“有奖销售活动”:凡购物满100元,就可以获得一次抽奖机会,中奖的可能性是85%,也就是说抽奖()A.100个人抽奖必有85个人中奖B.抽100次必有85次中奖C.一定中奖D.有可能中奖4.下列说法中,正确的是()A.为了保证大家端午节吃上放心的粽子,质监部门对长沙市市场上的粽子质量实行全面调查B.一组数据﹣1,2,5,7,7,7,4的众数是7,中位数是7C.明天的降水概率为60%,则明天60%的时间下雨D.若平均数相同的甲、乙两组数据,s甲2=0.3,s乙2=0.02,则乙组数据更稳定5.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是()A.B.C.D.6.小敏同学连续抛了两次硬币,都是正面朝上,那么他第三次抛硬币时,出现正面朝上的概率是()A.0B.1C.D.7.抛掷一枚均匀的硬币,前4次都是正面朝上,第5次正面朝上的概率()A.大于B.等于C.小于D.不能确定8.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖9.抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为()A.800B.1000C.1200D.140010.气象台预报“本市明天降水概率是90%”.对此信息,下列说法正确的是()A.本市明天将有90%的时间降水B.本市明天降水的可能性比较大C.本市明天肯定下雨D.本市明天将有90%的地区降水11.含盐率为0.8%,表示盐占水的0.8%.(判断对错)12.小明抛掷一枚质地均匀的硬币,连续抛掷9次,7次正面朝上,则他抛掷第10次时,正面朝上的概率是.13.如果事件A是“上学时,在路上遇到班主任”,事件B是“上学时,在路上遇到同班同学”,那么P(A)P(B).(填“>”、“<”或“=”)14.某家庭,打进的响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,则在响第五声之前被接的概率为.15.一则广告声称本次活动的中奖率为20%,其中一等奖的中奖率为1%.小明看到这则广告后,想:“我抽5张就会有1张中奖,抽100张就会有1张中一等奖.”你认为小明的想法对吗?16.一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如表,将日销售量落入各组的频率视为概率.日销售量x(枝)0≤x <50 50≤x <100 100≤x <150 150≤x <200 200≤x <250 销售天数 2天 3天 13天 8天 4天(1)试求这30天中日销售量低于100枝的概率;(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.三.概率公式(共19小题)17.用6个球设计一个摸球的游戏,小明想出了下面四个方案,你认为不能成功的是( )A .摸到黄球的概率是,摸到红球的概率是B .摸到黄球的概率是,摸到红球、白球的概率是C .摸到黄球、红球、白球的概率是D .摸到黄球的概率是,摸到红球的概率是,摸到白球的概率是18.一个不透明的袋中装有11个只有颜色不同的球,其中4个白球,5个红球,2个黄球.从中任意摸出1个球是红球的概率为( )A .B .C .D .19.如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A .B .C .D .20.袋中有红球4个,白球若干,抽到红球的概率为,则白球有( )个.A .8B .6C .4D .221.福彩“五位数”玩法规定所购买的彩票的5位数字与开奖结果的5位数字相同,则中一等奖,则购买一张彩票中一等奖的概率是()A.B.C.D.22.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.B.C.D.23.如图,当关闭开关K1,K2,K3中的两个,能够让灯泡发光的概率为()A.B.C.D.24.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.25.一个均匀的立方体各面上分别标有数字:1,2,3,4,6,8,其表面展开图是如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是()A.B.C.D.26.一个不透明袋子中装有若干个除颜色外完全相同的小球,其中白球有5个,要让摸得红球的概率大于摸得白球的概率,红球最少有()个.A.4B.5C.6D.727.六一儿童节期间,小丁去“杭州乐园”的概率是,小李、小聪去“杭州乐园”的概率分别为、,假定三人的行动相互之间没有影响,那么这段时间内三人中至少有1人去“杭州乐园”的概率为()A.B.C.D.28.张老汉今年春天在自家池塘里放入1000尾鱼苗,成活率为95%,为了了解鱼的生长情况,他在夏天捕捞出50条称重,并做了记号,然后再放回,到了秋天,他又准备捕捞出一部分,为了确保能够捞出5条做记号的鱼,他这一次至少应捕捞()A.6条B.95条C.110条D.120条29.现有4种物质:①HCl;②NaOH;③H2O;④NaCl,任取两种混合能发生化学变化的概率为()A.B.C.D.30.现有某种产品100件,其中5件次品,从中随意抽出1件,恰好抽到次品的概率是.31.从﹣3.﹣1,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是.32.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为.33.张家界国际乡村音乐周活动中,来自中、日、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“美﹣日﹣中”顺序演奏的概率是.34.为了能够帮助武汉疫情,某公司通过武汉市慈善总会二维码给武汉捐款,根据捐款情况制成不完整的扇形统计图(图1)、条形统计图(图2).(1)根据以上信息可知参加捐款总人数为,m=,捐款金额中位数为,请补全条形统计图;(2)若从捐款的人中,随机选一人代表公司去其它公司做捐款宣传,求选中捐款不低于150元的人的概率;(3)若其它公司有几人参与了捐款活动,把新捐款数与原捐款数合并成一组新数据,发现众数发生改变,请求出至少有几人参与捐款.35.在一个不透明的袋子中装有三个小球,分别标有数字﹣2、2、3,这些小球除数字不同外其余均相同,现从袋子中随机摸出一个小球记下数字后放回,搅匀后再随机摸出一个小球,用画树状图或列表的方法,求两次摸出的小球上数字之和是正数的概率.四.游戏公平性(共1小题)36.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只.“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋;③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C棋的概率是多少?(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?五.利用频率估计概率(共4小题)37.某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以上”的频率0.750.8250.780.790.80250.801则该运动员“射中9环以上”的概率约为(结果保留一位小数)()A.0.7B.0.75C.0.8D.0.938.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有只A种候鸟.39.在课外实践活动中,甲、乙、丙、丁四个小组用投掷啤酒瓶盖的方法估计落地时瓶盖“正面朝上”的概率,其试验次数分别为10次、50次、100次、500次,其中试验相对科学的是组.40.下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:50010001500200030004000试验的种子数n4719461425189828533812发芽的粒数m发芽频率0.9420.946x0.949y0.953(1)求表中x,y的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 概率的简单应用
人们在生活、生产和科学研究中,经常需要知道一些事 件发生的可能性有多大.概率与人们的生活密切相关,能帮 助我们对许多事件作出判断和决策,因此在生活、生产和 科研等各领域都有着广泛应用.
1.如图,电路图上有四个开关A、B、C、D 和一个小灯炮,闭合开关D或同时闭合开关 A、B、C都可使小灯炮发光,则任意闭合其 中两个开关,小灯炮发光的概率是( A ) 1 2 1 2 A. B. C. D. 2 3 4 5
第2章 简单事件的概率
复习课
本章主要知识内容
2.1事件的可能性
简 单 事 件 的 概 率 2.2简单事件的概率 2.3用频率估计概率 2.4概率的简单应用
2.1 事件的可能性
1.必然事件 在一定条件下一定会发生的事件叫做必然事件. 2.不可能事件 在一定条件下一定不会发生的事件叫做不可能事件. 3.随机事件 在一定条件下可能发生,也可能不发生的事件叫做不确定 事件或随机事件. 注意:列表或画树状图是人们用来确定事件发生的所有 不同可能结果的常用方法,它可以帮助我们分析问题, 避免重复和遗漏,既直观又条理分明.
3.(2015兰州)为了参加中考体育测试,甲、乙、丙三们同学 进行足球传球训练,球从一个人脚从一个人脚下随机传到 另一个人脚下,且每位传球人传给其余两人的机会是均等 的,由甲开始传球,共传球三次. (1)求三次传球后,球回到脚下的概率; (2)三次传球后,球回到甲脚下的概率; (3)三次传球后,球回到甲脚下的概率大还是传到乙脚下 的概率大?
2.(2015山西)在大量重复试验中,关于随机事件发 生的频率 与概率,下列说法正确的是( D ) A.频率就是概率 B.频率与试验次数无关 C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率 3.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的 概 D 率为 0.5,是指( ) A. 连续掷 2次,结果一定是“正面朝上”和“反面朝上”各 一次 B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上” 各50次 C.抛掷2n次硬币,恰好有n次“正面朝上”
A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢
1 A. 12 5 B. 12 1 C. 6 1 D. 2
B.同时掷两枚硬币,两枚都正面向上,可可赢,一正一反 向上妹妹赢 C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢 D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余 均相同,随机摸出一个是黑球则可哥赢,是红球则妹妹赢
2.(2015福建)在一个不透明的盒子里装有3个黑球和1个白 球,每个球除颜色外都相同,从中任意摸出2个球,下列 事件中,不可能事件是( A )
A.摸出的2个球都是白球 B.摸出的2个球有一个是白球 C.摸出的2个球都是黑球 D.摸出的2个球有一个是黑球 3.(2015龙岩)下列事件中,属于随机事件的是( B ) A. 63 的值比8大 B.购买一张彩票,中奖 C.地球自转的同时也在绕日公转 D.袋中只有5个黄球,摸出一个球是白球
1 A. 3
2 B. 5
1 C. 2
3 D. 5
3.(2015泰安)如图,在方格纸中,随机选择
标有序号①②③④⑤中的一个小正方形涂 黑,与图中阴影部分构成轴对称图形的概 率是( C )
1 A. 5 2 B. 5 3 C. 5 4 D. 5
4.(2015西宁)有四张分别画有线段、等边三角形、平行四边 形和正方形的四个图形的卡片,它们的背面都相同,现将
4.可能性的大小 事件发生的可能性大小往往是由发生事件的条件来 决定的,我们可以通过比较各种事件发生的条件及其对 事件发生的影响来比较事件发生的可能性大小.
1. (2015盐城)下列事件中,是必然事件的是( C ) A.3天内会下雨 B.打开电视机,正在播放广告 C. 367人中至少有2人公历生日相同 D.某妇产医院里,下一个出生的婴儿是女孩
它们背面朝上,从中翻开任意一张的图形是中心对称图形,
但不是轴对称图形的概率是( A ) 1 1 3 A. B. C. 4 2 4
D.1
5.(2015内江)某十字路口的交通信号灯每分钟红灯亮30秒, 绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯 的概率是( A) 6.暑假快到了,父母打算带兄妹俩去某个景点旅游一次, 长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执 不 下,父母为了公平起见,决定设计一款游戏,若哥哥 赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选 用的是( B )
1.(2015德阳)下列事件发生的概率为0的是( C )
A.射击运动员只射击1次,就会中靶心
B.任取一个实数x,都有 x ≥0 C.画一个三角形,使其三边的长分别为8cm,6cm,2cm D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体 骰子,朝上一面的点数为6 2.(2015义乌)在一个不透明的袋子中装有除颜色外其它均相 同的3个红球和2个白求,从中任意摸出一个球,则摸出白 球的概率是( B )
D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳 定于0.5
4.甲、乙两名同学在一次用频率去估计概率的实验中,统计 了某一结果出现的频率绘出的统计图如图所示,则符合这 一结果的实验可能是( D )
A.掷一枚正六面体的骰子,出现1点的概率 B.抛一枚硬币,出现正面的概率 C.任意写一个整数,它能被2整除的概率 D.从一个装有2个白球和1个红球的袋子中任取一球, 取到红球的概率
解:(1)∵4件同型号的产品中,有1件不合格,
1 ∴P(不合格品)= 4
(2)
共有12种情况,抽到的都是合格的情况有6种,
6 1 P (抽到的都是合格品)= = ; 12 2
(3)∵大量重复试验后发现,抽到合格品的频率稳定 在0.95, ∴抽到合格品的概率等于0.95, x3 0.95, 解得:x=16, x4
2.3 用频率估计概率
在相同条件下,当重复试验的次数大量增加时,事件 发生的频率就稳定在相应的概率附近,因此,我们可以通 过大量重复试验,用一个事件发生的频率来估计这一事件 发生的概率.
1.(2015南通)在一个不透明的盒子中装有a个除颜色外完全相 同的球,这a个球中只有3个红球,若每次将球充分搅匀后, 任意摸出1个球记下颜色再放回盒子,通过大量重复试后, 发现摸到红球的频率稳定在20%左右,则a的值约为( B ) A.12 B.15 C.18 D.21
P ( A)
n
.
m 注意:运用公式 P ( A) . 求简单事件发的概率时,首先 n
应确定所有结果的可能性都相等,然后确定所有可能的结果 总数n和事件A包含其中的结果数m. 4.求事件A发生的概率的方法:通常采用列表或画树状图的 方法. 5.机会均等:对于比赛或游戏制定的规则是否公平,就看 在客观条件下如果能使参加的各方获胜的概率相等(也称 机会均等),那么比赛或游戏是公平的,反之则不公平.
2.(2015广州)4件同型号的产品中,有1件不合格品和3件 合格品. (1)从这4件产品中随机抽取1件进行检测,求抽到的是不 合格品的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是 合格品的概率; (3)在这4件产品中加入x件合格品后,进行如下试验:随 机抽取1件进行检测,然后放回,多次重复这个实验,通 过大量重复试验后发现,抽到合格品的频率稳定在0.95, 则可以推算出x的值大约是多少?
2.2 简单事件的概率
1.概率:在数学上,我们把事件发生的可能性大小称为事件 发生的概率.一般用P表示,事件A发生的概率记为P(A). 2.一般地,必然事件发生的概率为100%,即P(必然事件)=1; 不可能事件发生的概率为0,即P(不可能事件)=0; 随机事件发生的概率介于0与1之间,即0<P(随机事件) <1. 3.概率计算公式 如果事件发生的各种结果的可能性相同且互相排斥,结 果总数为n,事件A包含其中的结果数m(m≤n),那么事件A 发生的概率为 m
4.(2015湖北)下列说法正确的是( B )
A.“任意画出一个等边三角形,它是轴对称图形”是随机事件 B.“任意画出一个平行四边形,它是中心对称图形”是必然事件
C.“概率为0.0001的事件”是不可能事件
D.任意抛一枚质地均匀的硬币,出现正面朝上的 可能性是( B ) A. 25% B.50% C.75% D.85% 6.(2015武汉)桌上倒扣着背面相同的5张扑克牌,其中3张黑 挑、2张红桃.从中随机抽取一张,则( B ) A.能够事先确定抽取的扑克牌是花色 B.抽到黑桃的可能更大 C.抽到黑桃和抽到红桃的可能性一样大 D.抽到红桃的可能性更大
解:(1)根据题意画出树状图如下:
2 1 (2)由(1)知三次传球后,球回到甲脚下的概率= 8 4 1 (3)由(1)可知球回到甲脚下的概率= ,
3 传到乙脚下的概率= , 8 4
由树状图可知三次传球有8种等可能结果;
所以球回到脚下的概率大.