高唐县三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高唐县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知是虚数单位,若复数22ai
Z i
+=
+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 2. 给出下列命题:
①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3
中有三个是增函数;
②若log m 3<log n 3<0,则0<n <m <1;
③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;
④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.
其中假命题的个数为( )
A .1
B .2
C .3
D .4
3. ()0﹣(1﹣0.5﹣2
)÷
的值为( )
A .﹣
B .
C .
D . 4. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的
个数为( ) A .1
B .2
C .3
D .4
5. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6
A π
∠=
,则
B ∠=( )111]
A .4π
B .4π或34π
C .3π或23π
D .3
π
6. 设实数
,则a 、b 、c 的大小关系为( )
A .a <c <b
B .c <b <a
C .b <a <c
D .a <b <c
7. 已知向量=(1,),=(
,x )共线,则实数x 的值为( )
A .1
B .
C .
tan35°
D .tan35°
8. 设函数()()()
21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )
A .
94 B . C.9
2
D .4 9. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )
A.83 B .4 C.163
D .203
10.设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则
f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0
D .4
列11n n a a +⎧
⎫
⎨
⎬
+⎩⎭
11.已知数列{}n a 的各项均为正数,12a =,114
n n n n
a a a a ++-=+,若数
的前n 项和为5,则n =( )
A .35
B . 36
C .120
D .121
12.设函数f (x )
=,则f (1)=( )
A .0
B .1
C .2
D .3
二、填空题
13.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,
{,0x x x f x x lnx x a
+≤=->在其定义域上恰有两
个零点,则正实数a 的值为______.
14.命题“若1x ≥,则2421x x -+≥-”的否命题为
.
15.在(x 2
﹣)9的二项展开式中,常数项的值为 .
16.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;
②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2; ⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.
17.已知
||=1,
||=2
,
与
的夹角为
,那么
|
+
||
﹣|= .
18.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.
【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.
三、解答题
19.椭圆C
:
=1,(a >b >0
)的离心率
,点(2
,
)在C 上.
(1)求椭圆C 的方程;
(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM
的斜率与l 的斜率的乘积为定值.
20.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C
过点P ⎛ ⎝⎭
,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.
(1)求椭圆C 的方程;
(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.
1818 0792 4544 1716 5809 7983 8619
6206 7650 0310 5523 6405 0526 6238
21.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0.
(1)求顶点C的坐标;
(2)求△ABC的面积.
22.在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极
轴建立极坐标系.,直线l的参数方程为:(t为参数).
(1)求圆C和直线l的极坐标方程;
(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.
23.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.24.求下列函数的定义域,并用区间表示其结果.
(1)y=+;
(2)y=.
高唐县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】
试题分析:
()()
()()
22
24(22)
2225
ai i
ai a a i
i i i
+-
+++-
==
++-
,对应点在第四象限,故
40
220
a
a
+>
⎧
⎨
-<
⎩
,A选项正确.
考点:复数运算.
2.【答案】A
【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,
1)上减,在(1,+∞)上增.函数y=x3是增函数.
∴有两个是增函数,命题①是假命题;
②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;
③若函数f(x)是奇函数,则其图象关于点(0,0)对称,
∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;
④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,
也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.
∴假命题的个数是1个.
故选:A.
【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.
3.【答案】D
【解析】解:原式=1﹣(1﹣)÷
=1﹣(1﹣)÷
=1﹣(1﹣4)×
=1﹣(﹣3)×
=1+
=.
故选:D.
【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.
4.【答案】B
【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)
|}
将x2﹣y=0代入x2+y2=1,
得y2+y﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M∩N中元素的个数为2个,
故选B.
【点评】本题既是交集运算,又是函数图形求交点个数问题
5.【答案】B
【解析】
试题分析:由正弦定理可得
:()
,sin0,,
sin24
sin
6
B B B
B
π
π
π
=∴=∈∴=或
3
4
π
,故选B.
考点:1、正弦定理的应用;2、特殊角的三角函数. 6.【答案】A
【解析】解:
∵,b=20.1>20=1,0
<<0.90=1.
∴a<c<b.
故选:A.7.【答案】B
【解析】
解:∵向量=(1
,
),=
(,x)共线,
∴
x=
=
=
=,
故选:B.
【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.
8. 【答案】] 【解析】
试题分析:设()()
2ln 31g x ax x =-+的值域为A ,因为函数(
)1f x =-[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940
a a >⎧⎨∆=-≥⎩,解得94a ≤.
考点:函数的性质.
【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。
首先求出A ,再利用转化思想将命题条件转化为(0]A -∞⊆,,进而转化为()231h x ax x =-+至少要取遍(01],中的每一个数,再利用数形结合思想建立不等式组:0a ≤或0940
a a >⎧⎨∆=-≥⎩,从而解得9
4a ≤.
9. 【答案】
【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面
为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=20
3,故选D.
10.【答案】B
【解析】解:因为f (x )+f (y )=f (x+y ), 令x=y=0,
则f (0)+f (0)=f (0+0)=f (0), 所以,f (0)=0; 再令y=﹣x ,
则f (x )+f (﹣x )=f (0)=0, 所以,f (﹣x )=﹣f (x ), 所以,函数f (x )为奇函数. 又f (3)=4,
所以,f (﹣3)=﹣f (3)=﹣4, 所以,f (0)+f (﹣3)=﹣4. 故选:B .
【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f (x )为奇函数是关键,考查推理与运算求解能力,属于中档题.
11.【答案】C
【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114
n n n n
a a a a ++-=
+得
2214n n a a +-=,∴{}
2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >
得
n a =
111
2n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n
项和为
1111
1)(1)52222
n
+++==,∴120n =,选C . 12.【答案】D
【解析】解:∵f (x )=,
f (1)=f[f (7)]=f (5)=3. 故选:D .
二、填空题
13.【答案】e
【解析】考查函数()()20{x x x f x ax lnx
+≤=-,其余条件均不变,则: 当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,
由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,
即有ln x
a x =
有且只有一个实根。
令()()2
ln 1ln ,'x x
g x g x x x
-==, 当x >e 时,g ′(x )<0,g (x )递减; 当0<x <e 时,g ′(x )>0,g (x )递增。
即有x =e 处取得极大值,也为最大值,且为
1
e
,
如图g (x )的图象,当直线y =a (a >0)与g (x )的图象
只有一个交点时,则1a e
=
. 回归原问题,则原问题中a e =.
点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 14.【答案】若1x <,则2421x x -+<- 【解析】
试题分析:若1x <,则2421x x -+<-,否命题要求条件和结论都否定. 考点:否命题. 15.【答案】 84 .
【解析】解:(x 2﹣)9
的二项展开式的通项公式为 T r+1=
•(﹣1)r •x 18﹣3r ,
令18﹣3r=0,求得r=6,可得常数项的值为T 7===84,
故答案为:84.
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.
16.【答案】 ②③④
【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误; 对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),
可以认为是圆(x ﹣1)2+(y ﹣2)2
=1的切线系,故②正确;
对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,
如圆C :(x ﹣1)2+(y ﹣2)2
=100,故③正确;
对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确; 对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误. 故答案为:②③④.
【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.
17.【答案】 .
【解析】解:∵||=1,||=2,与的夹角为,
∴==1×=1.
∴|+||﹣|====.
故答案为:.
【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.
18.【答案】19
【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.
三、解答题
19.【答案】
【解析】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,
,解得a2=8,b2=4,所求椭圆C方程为:.
(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),
把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,
故x M==,y M=kx M+b=,
于是在OM的斜率为:K OM==,即K OM k=.
∴直线OM的斜率与l的斜率的乘积为定值.
【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.
20.【答案】(1)
2
21
2
x
y
+=;(2)证明见解析.
【解析】
试
题解析:
(1)22PF QO =,∴212PF F F ⊥,∴1c =,
2222
221121,1a b c b a b +==+=+, ∴22
1,2b a ==,
即2
212
x y +=; (2)设AB 方程为y kx b =+代入椭圆方程
222
12102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22
221
,112
2
A B A B kb b x x x x k k --+==++,
11,A B MA MB A B y y k k x x --==,∴()
112A B A B A B A B MA MB A B
A B
y x x y x x y y k k x x x x +-+--+=+=
=,
∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.
【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关
系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 21.【答案】
【解析】解:(1)由高BH 所在直线方程为4x+2y ﹣9=0,∴
=﹣2.
∵直线AC⊥BH,∴k AC k BH=﹣1.
∴,
直线AC的方程为,
联立
∴点C的坐标C(1,1).
(2),
∴直线BC的方程为,
联立,即.
点B到直线AC:x﹣2y+1=0的距离为.
又,
∴.
【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.
22.【答案】
【解析】解:(1)圆C的直角坐标方程为(x﹣2)2+y2=2,
代入圆C得:(ρcosθ﹣2)2+ρ2sin2θ=2
化简得圆C的极坐标方程:ρ2﹣4ρcosθ+2=0…
由得x+y=1,∴l的极坐标方程为ρcosθ+ρsinθ=1…
(2)由得点P的直角坐标为P(0,1),
∴直线l的参数的标准方程可写成…
代入圆C得:
化简得:,
∴,∴t1<0,t2<0…
∴…
23.【答案】
【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},
∴∁U B={x|x≥4},
又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},
∴A∩(∁U B)={x|4≤x≤5};
(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,
∴a的范围为a≤﹣1.
【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.
24.【答案】
【解析】解:(1)∵y=+,
∴,
解得x≥﹣2且x≠﹣2且x≠3,
∴函数y的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,
∴,
解得x≤4且x≠1且x≠3,
∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].。