动量守恒定律单元测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律单元测试题
一、动量守恒定律 选择题
1.如图所示,足够长的光滑水平面上有一质量为2kg 的木板B ,质量为1kg 的木块C 叠放在B 的右端点,B 、C 均处于静止状态且B 、C 之间的动摩擦因数为μ = 0.1。

质量为1kg 的木块A 以初速度v 1 = 12m/s 向右滑动,与木板B 在极短时间内发生碰撞,碰后与B 粘在一起。

在运动过程中C 不从B 上滑下,已知g = 10m/s 2,那么下列说法中正确的是( )
A .A 与
B 碰撞后A 的瞬时速度大小为3m/s
B .A 与B 碰撞时B 对A 的冲量大小为8N∙s
C .C 与B 之间的相对位移大小为6m
D .整个过程中系统损失的机械能为54J
2.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与
小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )
A .物块滑上小车后,系统动量守恒和机械能守恒
B .增大物块与车面间的动摩擦因数,摩擦生热不变
C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24s
D .若要保证物块不从小车右端滑出,则0v 不得大于5m/s
3.如图甲所示,一轻弹簧的两端与质量分别为1m 、2m 的两物块A 、B 相连接,并静止在光滑水平面上。

现使B 获得水平向右、大小为6m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )
A .在1t 、3t 两个时刻,两物块达到共同的速度2m/s ,且弹簧都处于伸长状态
B .在3t 到4t 时刻之间,弹簧由压缩状态恢复到原长
C .两物体的质量之比为1m :2m =2:1
D .运动过程中,弹簧的最大弹性势能与B 的初始动能之比为2:3
4.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )
A .1木块相对静止前,木板是静止的
B .1木块的最小速度是
023v C .2木块的最小速度是056
v D .木块3从开始运动到相对静止时位移是204v g
5.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则
A .碰撞发生在M 、N 中点之外
B .两球同时返回M 、N 两点
C .两球回到原位置时动能比原来大些
D .两球回到原位置时动能不变
6.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03
v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()
A .若m 0=3m ,则能够射穿木块
B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动
C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零
D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 2
7.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )
A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mg
B .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为
32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()
gR m M M m + D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR M
m M m + 8.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )
A .A 、
B 两球碰撞前的总动量为3 kg·m/s
B .碰撞过程A 对B 的冲量为-4 N·s
C .碰撞前后A 的动量变化为4kg·m/s
D .碰撞过程A 、B 两球组成的系统损失的机械能为10 J
9.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则
A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒
B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒
C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒
D .小球离开弹簧后能追上圆弧槽
10.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )
A .细绳被拉断瞬间木板的加速度大小为
F M B .细绳被拉断瞬间弹簧的弹性势能为
212mv C .弹簧恢复原长时滑块的动能为212
mv D .滑块与木板AB 间的动摩擦因数为2
2v gl
11.如图所示,一辆质量M =3kg 的小车A 静止在光滑的水平面上,A 上有一质量m =1kg 的光滑小球B ,将一左端固定于A 上的轻质弹簧压缩并锁定,此时弹簧的弹性势能E p =6J ,B 与A 右壁距离为l 。

解除锁定,B 脱离弹簧后与A 右壁的油灰阻挡层(忽略其厚度)碰撞并被粘住,下列说法正确的是( )
A .碰到油灰阻挡层前A 与
B 的动量相同
B .B 脱离弹簧时,A 的速度为1m/s
C .B 和油灰阻挡层碰撞并被粘住,该过程B 受到的冲量大小为3N·s
D .整个过程B 移动的距离为34
l 12.如图所示,一块质量为M 的木板停在光滑的水平面上,木板的左端有挡板,挡板上固定一个小弹簧.一个质量为m 的小物块(可视为质点)以水平速度v 0从木板的右端开始向左运动,与弹簧碰撞后(弹簧处于弹性限度内),最终又恰好停在木板的右端.根据上述情景和已知量,可以求出 ( )
A .弹簧的劲度系数
B .弹簧的最大弹性势能
C .木板和小物块组成的系统最终损失的机械能
D .若再已知木板长度l 可以求出木板和小物块间的动摩擦因数
13.如图所示,轻弹簧的一端固定在竖直墙上,一质量为m 的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一质量也为m 的小物块从槽上高h 处开始下滑,下列说法不正确的是( )
A.在下滑过程中,物块和槽组成的系统机械能守恒
B.在下滑过程中,物块和槽组成的系统动量守恒
C.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒
D.被弹簧反弹后,物块能回到槽上高h处
14.如图所示,内壁光滑的半圆形的圆弧槽静止在光滑水平地面上,其左侧紧靠固定的支柱,槽的半径为R。

有一个可视为质点的小球,从槽的左侧正上方距槽口高度为R处由静止释放,槽的质量等于小球的质量的3倍,重力加速度为g,空气阻力忽略不计,则下列关于小球和槽的运动的说法正确的是()
A.小球运动到槽的底部时,槽对地面的压力大小等于小球重力的5倍
B.小球第一次离开槽后能沿圆弧切线落回槽内
C.小球上升的最大高度为(相对槽口)R
D.小球上升的最大高度为(相对槽口)1 2 R
15.如图所示,一个质量为m、半径足够大的1/4光滑圆弧体,静止放在光滑水平面上.有一个质量也为m的小球,以v0的初速度从最低点冲上圆弧体到又滑回到最低点的过程中,下列结论正确的是(已知重力加速度为g)( )
A.整个过程中,圆弧体的速度先增大后减小
B.小球能上升的最大高度为
2 0 4 v g
C.圆弧体所获得的最大速度为v0
D.在整个作用的过程中,小球对圆弧体的冲量大于mv0
16.如图所示,ab、cd是竖直平面内两根固定的光滑细杆,ab>cd。

ab、cd的端点都在同一圆周上,b点为圆周的最低点,c点为圆周的最高点,若每根杆上都套着一个相同的小滑环(图中未画出),将甲、乙两滑环分别从a、c处同时由静止释放,则()
A .两滑环同时到达滑杆底端
B .两滑环的动量变化大小相同
C .重力对甲滑环的冲量较大
D .弹力对甲滑环的冲量较小
17.带有14
光滑圆弧轨道、质量为M 的小车静止置于光滑水平面上,如图所示,一质量为m 的小球以速度0v 水平冲上小车,到达某一高度后,小球又返回车的左端,则( )
A .小球一定向左做平抛运动
B .小球可能做自由落体运动
C .若m M =,则此过程小球对小车做的功为2012
Mv D .若m M <,则小球在弧形槽上升的最大高度将大于204v g
18.如图所示,两条足够长、电阻不计的平行导轨放在同一水平面内,相距l 。

磁感应强度大小为 B 的范围足够大的匀强磁场垂直导轨平面向下。

两根质量均为m 、电阻均为 r 的导体杆a 、b 与两导轨垂直放置且接触良好,开始时两杆均静止。

已知 b 杆光滑与导轨间无摩擦力,a 杆与导轨间最大静摩擦力大小为F 0,现对b 杆施加一与杆垂直且大小随时间按图乙规律变化的水平外力 F ,已知在t 1 时刻,a 杆开始运动,此时拉力大小为F 1.则下列说正确的是( )
A .当 a 杆开始运动时,b 杆的速度大小为022
2F r B l
B .在0~ t 1这段时间内,b 杆所受安培力的冲量大小为
01122212mF r Ft B l - C .在t 1~ t 2 这段时间内,a 、b 杆的总动量增加了1221()()2
F F t t +- D .a 、b 两杆最终速度将恒定,且a 、b 两杆速度大小之和不变,两杆速度大小之差等于t 1 时刻 b 杆速度大小
19.如图所示,光滑金属轨道由圆弧部分和水平部分组成,圆弧轨道与水平轨道平滑连接,水平部分足够长,轨道间距为L =1m ,平直轨道区域有竖直向上的匀强磁场,磁感应强度为IT ,同种材料的金属杆a 、b 长度均为L ,a 放在左端弯曲部分高h =0.45m 处,b 放在水平轨道上,杆ab 的质量分别为m a =2kg ,m b =1kg ,杆b 的电阻R b =0.2Ω,现由静止释放a ,已知杆a 、b 运动过程中不脱离轨道且不相碰,g 取10m/s 2,则( )
A .a 、b 匀速运动时的速度为2m/s
B .当b 的速度为1m/s 时,b 的加速度为3.75m/s 2
C .运动过程中通过b 的电量为2C
D .运动过程中b 产生的焦耳热为1.5J
20.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )
A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒
B .小球在槽内运动的B 至
C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动
D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒
二、动量守恒定律 解答题
21.如图,一根水平杆上等距离地穿着n 个半径相同的珠子,珠子可以在杆上无摩擦移动,珠子的质量依次为m ,km ,k 2m ,k 3m ……,k n-1m ,其中k 的取值范围是
122
k ≤≤.使第一颗珠子在极短时间内获得初速度v 0,之后每当珠子之间发生碰撞时都
会粘在一起.
a.分析并说明当k 取何值时,碰撞全部结束后系统的总动能最大;k 取何值时,碰撞全部结束后系统的总动能最小;
b.求出碰撞结束后系统相应的最小总动能和最大总动能的比值。

22.如图所示,在竖直平面内倾角37θ︒=的粗糙斜面AB 、粗糙水平地面BC 、光滑半圆轨道CD 平滑对接,CD 为半圆轨道的竖直直径。

BC 长为l ,斜面最高点A 与地面高度差1.5h l =,轨道CD 的半径4R l =。

质量为m 的小滑块P 从A 点静止释放,P 与AB 、BC 轨道间的滑动摩擦因数为18
μ=。

在C 点静止放置一个质量也为m 的小球Q ,P 如果能与Q 发生碰撞,二者没有机械能损失。

已知重力加速度为g ,sin370.6︒=。


(1)通过计算判断,滑块P 能否与小球Q 发生碰撞;
(2)如果P 能够与Q 碰撞,求碰后Q 运动到D 点时对轨道的压力大小;
(3)如果小球Q 的质量变为km (k 为正数),小球Q 通过D 点后能够落在斜面AB 上,求k 值范围?
23.如图甲所示,长木板和四分之一光滑圆弧轨道分别放置在两个光滑的水平面上,长木板右端上表面和圆弧轨道底端相切,长木板的质量21kg m =,圆弧轨道的质量为M ,半径2m R =,O 为圆心,一个小滑块(可视为质点)放在长木板左端,质量12kg m =,小滑块与长木板间的动摩擦因数0.3μ=,以OB 为边界,小滑块在OB 左侧总是受到一个水平向右、大小为6N F =的恒力,现给小滑块一个水平向右的大小为012m /s v =的初速度,使其沿长木板向右滑行,然后从B 端平滑地进入圆弧轨道,长木板每次和两个水平面的交界处相撞后立即停止运动(不粘连),已知重力加速度210m /s g =,忽略空气阻力。

(1)若圆弧轨道锁定不动,小滑块第一次到达与圆弧轨道圆心等高处C 点时对轨道的作用力是多少?
(2)若小滑块第二次从B 处进入圆弧轨道的瞬间,解除对圆弧轨道的锁定,小滑块刚好能到达与圆弧轨道圆心等高点处C 点,则圆弧轨道的质量M 是多少?
(3)在第(1)(2)问基础上,若小滑块第二次从B 处进入圆弧轨道的瞬间,将圆弧轨道换成一个与其质量相同且倾角45θ=︒的光滑斜面,如图乙所示,斜面的高度 1.2m h =,为使滑块与第(2)问中上升的最大高度相同,小滑块进入光滑斜面瞬间没有能量损失,则小滑块的初
速度应调为多大?
24.如图所示,两平行圆弧导轨与两平行水平导轨平滑连接,水平导轨所在空间有竖直向上的匀强磁场,磁感应强度 1.0T B =,两导轨均光滑,间距0.5m L =。

质量为
10.1kg m =的导体棒ab 静止在水平导轨上,质量20.2kg m =的导体棒cd 从高0.45m h =的圆弧导轨上由静止下滑。

两导体棒总电阻为5ΩR =,其它电阻不计,导轨足够长,210m /s g =。

求:
(1)cd 棒刚进入磁场时ab 棒的加速度;
(2)若cd 棒不与ab 棒相碰撞,则两杆运动过程中释放出的最大电能是多少;
(3)当cd 棒的加速度为220.375m /s a =时,两棒之间的距离比cd 棒刚进入磁场时减少了多少?
25.如图所示,电阻不计的光滑金属导轨由弯轨AB ,FG 和直窄轨BC ,GH 以及直宽轨DE 、IJ 组合而成,AB 、FG 段均为竖直的14
圆弧,半径相等,分别在B ,G 两点与窄轨BC 、GH 相切,窄轨和宽轨均处于同一水平面内,BC 、GH 等长且与DE ,IJ 均相互平行,CD ,HI 等长,共线,且均与BC 垂直。

窄轨和宽轨之间均有竖直向上的磁感强度为B 的匀强磁
场,窄轨间距为2
L ,宽轨间距为L 。

由同种材料制成的相同金属直棒a ,b 始终与导轨垂直且接触良好,两棒的长度均为L ,质量均为m ,电阻均为R 。

初始时b 棒静止于导轨BC 段某位置,a 棒由距水平面高h 处自由释放。

已知b 棒刚到达C 位置时的速度为a 棒刚到达B 位置时的15
,重力加速度为g ,求:
(1)a 棒刚进入水平轨道时,b 棒加速度a b 的大小;
(2)b 棒在BC 段运动过程中,a 棒产生的焦耳热Q a ;
(3)若a 棒到达宽轨前已做匀速运动,其速度为a 棒刚到达B 位置时的
12
,则b 棒从刚滑上宽轨到第一次达到匀速的过程中产生的焦耳热Q b 。

26.如图所示,为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆形轨道组成,Q 点为圆形轨道最低点,M 点为最高点,水平轨道PN 右侧的光滑水平地面上并排放置两块木板c 、d ,两木板间相互接触但不粘连,木板上表面与水平轨道PN 平齐,小滑块b 放置在轨道QN 上.现将小滑块a 从P 点以某一水平初速度v 0向右运动,沿圆形轨道运动一周后进入水平轨道与小滑块b 发生碰撞,碰撞时间极短且碰撞过程中无机械能损失,碰后a 沿原路返回到M 点时,对轨道压力恰好为0,碰后滑块b 最终恰好没有离开木板d .已知:小滑块a 的质量为1 kg ,c 、d 两木板质量均为3 kg ,小滑块b 的质量也为3 kg , c 木板长为2 m ,圆形轨道半径为0.32 m ,滑块b 与两木板间动摩擦因数均为0.2,重力加速度g =10 m/s 2.试求:
(1)小滑块a 与小滑块b 碰后,滑块b 的速度为多大?
(2)小滑块b 刚离开长木板c 时b 的速度为多大?
(3)木板d 的长度为多长?
【参考答案】***试卷处理标记,请不要删除
一、动量守恒定律 选择题
1.B
解析:BCD
【解析】
【分析】
【详解】
A .A 与
B 碰撞过程动量守恒,有
()A 1A B 2m v m m v =+
代入数据解得
A 21A B
4m/s m v v m m ==+ 即碰后A 的瞬时速度大小为4m/s ,故A 错误;
B .A 与B 碰撞,对A ,由动量定理得
A 2A 18N s I m v m v =-=-⋅
所以A 与B 碰撞时B 对A 的冲量大小为8N∙s ,故B 正确;
C .在运动过程中C 不从B 上滑下,则A 与B 碰撞后与C 相互作用过程中,由动量守恒得
()()A B 2A B C 3m m v m m m v +=++
代入数据解得
A B
32A B C
3m/s m m v v m m m +=
=++
此过程根据能量守恒有
()()22C A B 2A B C 311
6J 22
Q m gl m m v m m m v μ==
+-++= 所以C 与B 之间的相对位移大小为
6m l =
故C 正确;
D .整个过程中系统损失的机械能为
()22
A 1A
B
C 311Δ54J 22
E m v m m m v =-++=
故D 正确。

故选BCD 。

2.B
解析:BD 【解析】
物块与小车组成的系统所受合外力为零,系统动量守恒;物块滑上小车后在小车上滑动过程中系统要克服摩擦力做功,部分机械能转化为内能,系统机械能不守恒,故A 错误;系统动量守恒,以向右为正方向,由动量守恒定律得:m 2v 0=(m 1+m 2)v ;系统产生的热
量:2
22
12020121211()=
222()
m m v Q m v m m v m m =-++,则增大物块与车面间的动摩擦因数,摩擦生热不变,选项B 正确;若v 0=2.5m/s ,由动量守恒定律得:m 2v 0=(m 1+m 2)v ,解得:v=1m/s ,
对物块,由动量定理得:-μm 2gt=m 2v-m 2v 0,解得:t=0.3s ,故C 错误;要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v′,以向右为正方向,由动量守恒定律得:m 2v 0′=(m 1+m 2)v',由能量守恒定律得:12m 2v 0′2=1
2
(m 1+m 2)v′2+μm 2gL ,解得:v 0′=5m/s ,故D 正确;故选BD .
点睛:本题考查了动量守恒定律即能量守恒定律的应用,分析清楚物体运动过程是解题的前提,注意求解时间问题优先选用动量定理;系统摩擦产生的热量等一系统的机械能的损失.
3.B
解析:BCD 【解析】
【分析】
两个滑块与弹簧系统机械能守恒、动量守恒,结合图象可以判断它们的能量转化情况和运动情况。

【详解】
A.从图象可以看出,从0到t 1的过程中弹簧被拉伸,t 1时刻两物块达到共同速度2m/s ,此时弹簧处于伸长状态,从t 2到t 3的过程中弹簧被压缩,t 3时刻两物块达到共同速度2m/s ,此时弹簧处于压缩状态,故A 错误;
B.由图示图象可知,从t 3到t 4时间内A 做减速运动,B 做加速运动,弹簧由压缩状态恢复到原长,故B 正确;
C.由图示图象可知,t 1时刻两物体速度相同,都是2m/s ,A 、B 系统动量守恒,以B 的初速度方向为正方向,由动量守恒定律得:
()11122m v m m v =+,

()21262m m m =+⨯,
解得:
12:2:1m m =,
故C 正确; D.由图示图象可知, 在初始时刻,B 的初动能为:
22KB 20221161822
E m v m m =
=⨯= 在t 1时刻,A 、B 两物块的速度是2m/s ,A 、B 两物块动能之和为:
()22k 122211
+32622
E m m v m m =
=⨯⨯= 所以,这时候,最大的弹性势能为
kB k 22218612P E E E m m m =-=-=,
所以:
p KB 2212:182:3E E m m ==:
故D 正确。

4.C
解析:CD 【解析】 【分析】 【详解】
A 、木板开始运动时,木块对木板的摩擦力30f mg => ,木板发生运动,故A 错误;
B 、设木块1的最小速度为1v , 木块1的加速度1f ma = 做匀减速;木板的加速度为
33mg ma = 做匀加速;当两者速度相等时木块1的速度达到最小
即10v v at at =-= 解得101
2
v v =
,故B 错误; C 、设木块2的最小速度为2v ,此过程木块2的速度该变量为02v v - ,而木块3速度改变量与木块2速度该变量相等,即木块3的速度为02v v + 由动量守恒可得
000202(23)5()m v v v mv m v v ++=++ ,解得: 205
6
v v = ,故C 正确;
D 、当木块3相对静止时,速度达到最小,此时四个物体共速,设速度为3v ,则由动量守恒可得:0003(23)6m v v v mv ++= 解得:30v v =
对木块3,由动能定理可知22
3011(3)22
mgs mv m v μ-=- ,解得:204v s g μ= ,故D 正确; 故选CD
5.B
解析:BC 【解析】
由于两球在任何时刻所受的电场力相等,则加速度相等,速度大小相等,可知碰撞发生在中点,且同时返回M 、N 点,A 错误B 正确;两球碰撞后,电量重新分布,两球在同样的
位置间的作用力由122q q F k r
=变为
2
122
(
)
2q q F k r +=
,故根据12q q +>
12q q +≥用力比之前增大,可知整个过程中电场力做正功,知返回到出发点的速度比较之前大,则两球回到原位置时动量比原来大些,C 正确D 错误.
6.B
解析:B 【解析】 【分析】 【详解】
A 、木块固定时,子弹射穿木块,设子弹在木块中所受阻力为f ,木块长度为d ,对子弹由
动能定理得:fd =12mv 02-12m 2
03v ⎛⎫ ⎪⎝⎭=4
9
mv 02;木块放在光滑的水平面上不固定时,子弹射
入木块,系统动量守恒,假设子弹能刚好穿出木块;由动量守恒定律得:mv 0=(m 0+m )v ,由能量守恒定律得:
12mv 02=1
2
(m 0+m )v 2+Q ,Q =fd ,解得:m 0=8m ,则子弹要穿出木块m 0≥8m ,故A 、C 错误,B 正确;
D 、子弹以3v 0速度射向木块,并从木块中穿出,则子弹以4v 0速度射向木块时,子弹也能从木块中穿出,木块宽度一定,子弹速度越大,子弹穿过木块的时间t 越短,由于子弹穿
过木块时受到的阻力f相同,对木块由动量定理得:ft=m0v-0,可知时间t越短,木块获得的速度越小,则v2<v1,故D错误.
7.B
解析:BC
【解析】
【分析】
【详解】
AB.若地面粗糙且小车能够静止不动,设圆弧半径为R,当小球运动到半径与竖直方向的夹角为θ时,速度为v.
根据机械能守恒定律有:
1
2
mv2=mgR cosθ
由牛顿第二定律有:
N-mg cosθ=m
2 v R
解得小球对小车的压力为:
N=3mg cosθ其水平分量为
N x=3mg cosθsinθ=3
2
mg sin2θ
根据平衡条件知,地面对小车的静摩擦力水平向右,大小为:
f=N x=3
2
mg sin2θ
可以看出:当sin2θ=1,即θ=45°时,地面对车的静摩擦力最大,其值为f max=3
2 mg.
故A错误,B正确.
CD.若地面光滑,当小球滑到圆弧最低点时,小车的速度设为v′,小球的速度设为v.小球与小车组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得:
mv-Mv′=0;
系统的机械能守恒,则得:
mgR=1
2
mv2+
1
2
Mv′2,
解得:
v ′=
故C 正确,D 错误. 故选BC . 【点睛】
本题中地面光滑时,小车与小球组成的系统在水平方向所受合外力为零,系统在水平方向动量守恒,但系统的总动量并不守恒.
8.B
解析:BCD 【解析】 【分析】 【详解】
A 、由s-t 图像可以知道:碰撞前A 的速度为410
3/2
A v m s -==- ; 碰撞前
B 的速度40
2/2
B v m s -=
= , 碰撞后AB 的速度为24
1/2C v m s -=
=- 根据动量守恒可知 ()b B a A a b C m v m v m m v -=-+ 代入速度值可求得:43
b m kg =
所以碰撞前的总动量为 10
/3
b B a A m v m v kg m s -=-
⋅ ,故A 错误; B 、碰撞时A 对B 所施冲量为即为B 的动量变化量4B b C b B P m v m v N s ∆=--=-⋅ 故B 正确;
C 、根据动量守恒可知44/A B P P N s kg m s ∆=-∆=⋅=⋅ ,故C 正确;
D 、碰撞中A 、B 两球组成的系统损失的动能为()22211110222
a A
b B a b C m v m v m m v J +-+= ,故D 正确, 故选BCD 【点睛】
结合图像求出碰前碰后的速度,利用动量守恒求出B 的质量,然后根据定义求出动量的变化量.
9.A
解析:AC 【解析】 【详解】
A .小球和圆弧槽在竖直方向上受力不平衡,故竖直方向系统动量不守恒,水平方向受力
平衡,系统动量守恒,故A 正确;
B .小球和圆弧槽在水平方向动量守恒,故系统机械能守恒,故小球开始时的重力势能转化为小球和圆弧槽的动能,故小球的机械能减少,故B 错误;
C .小球压缩弹簧时,只有弹簧弹力做功系统机械能守恒,故C 正确;
D .小球与槽组成的系统动量守恒,球与槽的质量相等,小球沿槽下滑,球与槽分离后,小球与槽的速度大小相等,小球被反弹后球与槽的速度相等,小球不能追上圆弧槽,故D 错误. 故选AC .
点睛:解答本题要明确动量守恒的条件,以及在两物体相互作用中同时满足机械能守恒,应结合两点进行分析判断.
10.A
解析:ABD 【解析】 【分析】 【详解】
A .细绳被拉断瞬间,对木板分析,由于OA 段光滑,没有摩擦力,在水平方向上只受到弹簧给的弹力,细绳被拉断瞬间弹簧的弹力等于F ,根据牛顿第二定律有:
F Ma =
解得F
a M
=
,A 正确; B .滑块以速度v 从A 点向左滑动压缩弹簧,到弹簧压缩量最大时速度为0,由系统的机械能守恒得:细绳被拉断瞬间弹簧的弹性势能为
2
12
mv ,B 正确; C .弹簧恢复原长时木板获得的动能,所以滑块的动能小于
2
12
mv ,C 错误; D .由于细绳被拉断瞬间,木板速度为零,小滑块速度为零,所以小滑块的动能全部转化为弹簧的弹性势能,即2
12
p E mv =
,小滑块恰未掉落时滑到木板的右端,且速度与木板相同,设为v ',取向左为正方向,由动量守恒定律和能量守恒定律得
()0m M v =+'
()21
2
p E m M v mgl μ=
+'+ 联立解得2
2v gl
μ=,D 正确。

故选ABD 。

11.B
解析:BCD 【解析】。

相关文档
最新文档