江苏省无锡市天一中学2015-2016学年高一(上)期末数学试卷(解析版)
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案
![XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案](https://img.taocdn.com/s3/m/6d98a32bb6360b4c2e3f5727a5e9856a561226f0.png)
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
(完整word版)江苏省无锡市天一中学2016-2017学年高一(上)期末数学试卷(解析版)
![(完整word版)江苏省无锡市天一中学2016-2017学年高一(上)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/aeccc1471711cc7930b7161d.png)
2016-2017学年江苏省无锡市天一中学高一(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.已知集合A={0,1,2,3,4,5},B={﹣1,0,1,6},且A∩B=.2.函数的定义域是.3.cos24°cos36°﹣cos66°cos54°的值等于.4.已知向量、满足,它们的夹角为60°,那么=.5.若幂函数f(x)的图象过点,则f(x)=.6.函数f(x)=1﹣2sin2x的最小正周期为.7.方程lgx+x=2的根x0∈(k,k+1),其中k∈Z,则k=.8.设定义域为R的偶函数f(x)满足:对任意的x1,x2∈(0,+∞),(x1﹣x2)[f(x1)﹣f(x2)]>0,则f(﹣π)f(3.14).(填“>”、“<”或“=”)9.将函数y=sinx的图象上每个点的横坐标变为原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度,所得图象的函数解析式为.10.函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π))的图象如图所示,则φ=.11.如图,在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,则•=.12.已知角α、β的顶点在坐标原点,始边与x轴的正半轴重合,α、β∈(0,π),角β的终边与单位圆交点的横坐标是,角α+β的终边与单位圆交点的纵坐标是,则cosα=.13.若奇函数f(x)在其定义域R上是减函数,且对任意的x∈R,不等式f (cos2x+sinx)+f(sinx﹣a)≤0恒成立,则a的最大值是.14.已知△ABC的边长为2的等边三角形,动点P满足,则的取值范围是.二、解答题:本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤.15.已知(1)求tanθ的值;(2)求的值.16.已知向量,向量,向量满足.(1)若,且,求的值;(2)若与共线,求实数k的值.17.已知函数(1)求函数f(x)的单调增区间;(2)若,求cos2α的值.18.某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.19.在平面直角坐标系中,O为坐标原点,已知向量=(﹣1,2),又点A(8,0),B(n,t),C(ksinθ,t),θ∈R.(1)若⊥,且,求向量;(2)若向量与向量共线,常数k>0,求f(θ)=tsinθ的值域.20.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.(1)给出函数,h(x)是否为f1(x),f2(x)的生成函数?并说明理由;(2)设,生成函数h(x).若不等式3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,求实数t的取值范围;(3)设,取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1.试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m 的值;如果不存在,请说明理由.2016-2017学年江苏省无锡市天一中学高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.已知集合A={0,1,2,3,4,5},B={﹣1,0,1,6},且A∩B={0,1} .【考点】交集及其运算.【分析】利用交集定义直接求解.【解答】解:∵集合A={0,1,2,3,4,5},B={﹣1,0,1,6},∴A∩B={0,1}.故答案为:{0,1}.2.函数的定义域是(﹣1,0)∪(0,+∞).【考点】函数的定义域及其求法.【分析】由对数式的真数大于0,分式的分母不为0联立不等式组求解.【解答】解:要使原函数有意义,则,得x>﹣1且x≠0.∴函数的定义域是:(﹣1,0)∪(0,+∞).故答案为:(﹣1,0)∪(0,+∞).3.cos24°cos36°﹣cos66°cos54°的值等于.【考点】两角和与差的余弦函数.【分析】利用互余两角的诱导公式,算出cos66°=sin24°、cos54°=sin36°.将此代入题中式子并利用两角和的余弦公式加以计算,可得所要求的值.【解答】解:∵24°+66°=90°,∴cos66°=sin24°,同理可得cos54°=sin36°.由此可得cos24°cos36°﹣cos66°cos54°=cos24°cos36°﹣sin24°sin36°=cos(24°+36°)=cos60°=.故答案为:4.已知向量、满足,它们的夹角为60°,那么=.【考点】平面向量数量积的运算.【分析】根据平面向量的数量积与模长公式,计算即可.【解答】解:向量、满足,它们的夹角为60°,∴=+2•+=12+2×1×2×cos60°+22=7∴=.故答案为:.5.若幂函数f(x)的图象过点,则f(x)=x﹣2.【考点】幂函数的概念、解析式、定义域、值域.【分析】设出幂函数的解析式,然后把点的坐标代入求出幂指数即可.【解答】解:设幂函数为y=xα,因为图象过点,则,所以,α=﹣2.所以f(x)=x﹣2.故答案为x﹣2.6.函数f(x)=1﹣2sin2x的最小正周期为π.【考点】三角函数的周期性及其求法;二倍角的余弦.【分析】先利用二倍角公式对函数解析式进行化简整理,进而利用三角函数最小正周期的公式求得函数的最小正周期.【解答】解:f(x)=1﹣2sin2x=cos2x∴函数最小正周期T==π故答案为:π.7.方程lgx+x=2的根x0∈(k,k+1),其中k∈Z,则k=1.【考点】对数函数的图象与性质.【分析】设f(x)=lgx+x﹣2,求出函数f(x)的定义域,并判断出函数的单调性,验证f(1)<0和f(2)>0,可确定函数f(x)在(0,+∞)上有一个零点,再转化为方程lgx+x=2的一个根x0∈(1,2),即可求出k的值.【解答】解:由题意设f(x)=lgx+x﹣2,则函数f(x)的定义域是(0,+∞),所以函数f(x)在(0,+∞)是单调增函数,因为f(1)=0+1﹣2=﹣1<0,f(2)=lg2+2﹣2=lg2>0,所以函数f(x)在(0,+∞)上有一个零点,即方程lgx+x=2的一个根x0∈(1,2),因为x0∈(k,k+1),k∈Z,所以k=1,故答案为:1.8.设定义域为R的偶函数f(x)满足:对任意的x1,x2∈(0,+∞),(x1﹣x2)[f(x1)﹣f(x2)]>0,则f(﹣π)>f(3.14).(填“>”、“<”或“=”)【考点】抽象函数及其应用.【分析】根据已知分析出函数的单调性,结合函数f(x)是定义域为R的偶函数,可得答案.【解答】解:∵函数f(x)满足:对任意的x1,x2∈(0,+∞),(x1﹣x2)[f(x1)﹣f(x2)]>0,∴函数f(x)在(0,+∞)上为增函数,又由函数f(x)是定义域为R的偶函数,故f(﹣π)=f(π)>f(3.14).故答案为:>.9.将函数y=sinx的图象上每个点的横坐标变为原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度,所得图象的函数解析式为y=sin(2x+).【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:将函数y=sinx的图象上每个点的横坐标变为原来的倍(纵坐标不变),可得y=sin2x的图象;再将得到的图象向左平移个单位长度,可得y=sin2(x+)=sin(2x+)的图象,故答案为:y=sin(2x+).10.函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π))的图象如图所示,则φ=.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】通过函数的图象求出A,T然后求出ω,通过函数经过(3,0),求出φ的值.【解答】解:由题意可知A=3,T=8,所以ω==,因为函数经过(3,0),所以═3sin(),φ∈[0,2π),所以φ=.故答案为:.11.如图,在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,则•= .【考点】平面向量数量积的运算.【分析】法一:选定基向量,将两向量,用基向量表示出来,再进行数量积运算,求出的值.法二:由余弦定理得可得分别求得,又夹角大小为∠ADB,,所以=.【解答】解:法一:选定基向量,,由图及题意得,=∴=()()=+==法二:由题意可得BC 2=AB 2+AC 2﹣2AB•ACcosA=4+1+2=7,∴BC=,∴cosB===AD==,∵,∴=.故答案为:﹣.12.已知角α、β的顶点在坐标原点,始边与x轴的正半轴重合,α、β∈(0,π),角β的终边与单位圆交点的横坐标是,角α+β的终边与单位圆交点的纵坐标是,则cosα=.【考点】任意角的三角函数的定义.【分析】根据角的范围及同角三角函数的基本关系求出sinβ,根据α+β 的范围及cos(α+β)的值求出sin (α+β)的值,利用两角差的余弦公式计算cosα=cos[(α+β)﹣β]的值.【解答】解:由题意得α、β∈(0,π),cosβ=﹣,∴sinβ=,故<β<π.∵sin(α+β)=,∴<α+β<π,∴cos(α+β)=﹣,∴cosα=cos[(α+β)﹣β]=cos(α+β)cosβ+sin(α+β)sinβ=,故答案为.13.若奇函数f(x)在其定义域R上是减函数,且对任意的x∈R,不等式f (cos2x+sinx)+f(sinx﹣a)≤0恒成立,则a的最大值是﹣3.【考点】二倍角的余弦;奇偶性与单调性的综合;复合三角函数的单调性.【分析】根据函数是奇函数且在R上是减函数,将原不等式变形为cos2x+2sinx ≥a恒成立,结合二倍角的三角函数公式和二次函数在闭区间上求最值的方法,即可得到a的最大值.【解答】解:不等式f(cos2x+sinx)+f(sinx﹣a)≤0恒成立,即f(cos2x+sinx)≤﹣f(sinx﹣a)恒成立又∵f(x)是奇函数,﹣f(sinx﹣a)=f(﹣sinx+a)∴不等式f(cos2x+sinx)≤f(﹣sinx+a)在R上恒成立∵函数f(x)在其定义域R上是减函数,∴cos2x+sinx≥﹣sinx+a,即cos2x+2sinx≥a∵cos2x=1﹣2sin2x,∴cos2x+2sinx=﹣2sin2x+2sinx+1,当sinx=﹣1时cos2x+2sinx有最小值﹣3.因此a≤﹣3,a的最大值是﹣3故答案为:﹣314.已知△ABC的边长为2的等边三角形,动点P满足,则的取值范围是[﹣,0] .【考点】平面向量数量积的运算.【分析】根据题意,画出图形,结合图形化简,得出=cos2θ•,O为BC的中点,P在线段OA上,再设||=t,t∈[0,],计算(+)•的最大最小值即可.【解答】解:如图所示,△ABC中,设BC的中点为O,则=2,∵=sin2θ•+cos2θ•=sin2θ•+cos2θ•=(1﹣cos2θ)•+cos2θ•=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OA上,由于BC边上的中线OA=2×sin60°=,因此(+)•=2•,设||=t,t∈[0,],可得(+)•=﹣2t(﹣t)=2t2﹣2t=2(t﹣)2﹣,∴当t=时,( +)•取得最小值为﹣;当t=0或时,( +)•取得最大值为0;∴的取值范围是[﹣,0].故答案为:[﹣,0].二、解答题:本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤.15.已知(1)求tanθ的值;(2)求的值.【考点】同角三角函数基本关系的运用.【分析】(1)根据角的范围,利用二倍角的正切公式,求得tanθ的值.(2)利用二倍角的余弦公式、同角三角函数的基本关系,求得tanθ的值.【解答】解:(1)∵,∴,∵π<θ<2π,∴<θ<π,∴tanθ=﹣2.(2)=.16.已知向量,向量,向量满足.(1)若,且,求的值;(2)若与共线,求实数k的值.【考点】平面向量数量积的运算.【分析】(1)由已知求得及,再由且列式求得k值,进一步得到的坐标,代入向量模的公式求的值;(2)由已知可得,则,由与共线可得,由此求得k值.【解答】解:(1)∵,∴,又,∴,而,且,∴,得k=﹣,∴=,则||=;(2)由,得,∴,∵与共线,∴,解得:k=1.17.已知函数(1)求函数f(x)的单调增区间;(2)若,求cos2α的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)化简函数f(x)为正弦型函数,根据正弦函数的单调性写出它的单调增区间;(2)根据f(x)的解析式,结合α的取值范围,利用三角函数关系即可求出cos2α的值.【解答】解:(1)函数=sin2x+2•﹣=sin2x+cos2x+=sin(2x+)+,令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z;(2)∵f(α)=sin(2α+)+=2,∴sin(2α+)=,又α∈[,],∴≤2α+≤,∴2α+=,∴2α=,∴cos2α=.18.某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.【考点】解三角形的实际应用;函数的值域;二次函数的性质.【分析】(1)当MN和AB之间的距离为1米时,MN应位于DC上方,且此时△EMN中MN边上的高为0.5米,从而可求MN的长,由三角形面积公式求面积(2)当MN在矩形区域内滑动,即时,由三角形面积公式建立面积模型.当MN在半圆形区域内滑动,即时,由三角形面积公式建立面积模型.(3)根据分段函数,分别求得每段上的最大值,最后取它们当中最大的,即为原函数的最大值,并明确取值的状态,从而得到实际问题的建设方案.【解答】解:(1)由题意,当MN和AB之间的距离为1米时,MN应位于DC上方,且此时△EMN中MN边上的高为0.5米,又因为EM=EN=1米,所以MN=米,所以,即三角通风窗EMN的通风面积为(2)当MN在矩形区域内滑动,即时,△EMN的面积;当MN在半圆形区域内滑动,即时,△EMN的面积综上可得;(3)当MN在矩形区域内滑动时,f(x)在区间上单调递减,则f(x)<f(0)=;当MN在半圆形区域内滑动,等号成立时,因此当(米)时,每个三角形得到最大通风面积为平方米.19.在平面直角坐标系中,O为坐标原点,已知向量=(﹣1,2),又点A(8,0),B(n,t),C(ksinθ,t),θ∈R.(1)若⊥,且,求向量;(2)若向量与向量共线,常数k>0,求f(θ)=tsinθ的值域.【考点】平面向量的坐标运算.【分析】(1)=(n﹣8,t),由⊥,且,可得﹣(n﹣8)+2t=0,=8,联立解出即可得出.(2)=(ksinθ﹣8,t),由向量与向量共线,常数k>0,可得t=﹣2ksinθ+16,f(θ)=tsinθ=﹣2ksin2θ+16sinθ=﹣2k+.对k分类讨论,利用三角函数的值域、二次函数的单调性即可得出.【解答】解:(1)=(n﹣8,t),∵⊥,且,∴﹣(n﹣8)+2t=0,=8,解得t=±8,t=8时,n=24;t=﹣8时,n=﹣8.∴向量=(24,8),(﹣8,﹣8).(2)=(ksinθ﹣8,t),(2)∵向量与向量共线,常数k>0,∴t=﹣2ksinθ+16,∴f(θ)=tsinθ=﹣2ksin2θ+16sinθ=﹣2k+.①k>4时,,∴sinθ=时,f(θ)=tsinθ取得最大值,sinθ=﹣1时,f(θ)=tsinθ取得最小值﹣2k﹣16,此时函数f(θ)的值域为.②4>k>0时,>1.∴sinθ=1时,f(θ)=tsinθ取得最大值﹣2k+16,sinθ=﹣1时,f(θ)=tsinθ取得最小值﹣2k﹣16,此时函数f(θ)的值域为[﹣2k﹣16,﹣2k+16].20.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.(1)给出函数,h(x)是否为f1(x),f2(x)的生成函数?并说明理由;(2)设,生成函数h(x).若不等式3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,求实数t的取值范围;(3)设,取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1.试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m 的值;如果不存在,请说明理由.【考点】函数恒成立问题.【分析】(1)根据新定义h(x)=a•f1(x)+b•f2(x),判断即可.(2)根据新定义生成函数h(x),化简,讨论其单调性,利用换元法转化为二次函数问题求解最值,解决恒成立的问题.(3)根据新定义生成函数h(x),利用基本不等式与生成函数h(x)图象的最低点坐标为(2,8).求解出ab.假设最大的常数m,使h(x1)h(x2)≥m恒成立,带入化简,利用换元法与基本不等式判断其最大值是否存在即可求解.【解答】解:(1)函数,若h(x)是af1(x)+bf2(x)的生成函数,则有:lgx=,由:,解得:,存在实数a,b满足题意.∴h(x)是f1(x),f2(x)的生成函数.(2)由题意,,生成函数h(x).则h(x)=2•f1(x)+f2(x)=∴h(x)是定义域内的增函数.若3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,即.设S=log2x,则S∈[1,2],那么有:y=﹣3S2﹣2S,其对称轴S=.∴﹣16≤y≤﹣5,故得t>﹣5.(3)由题意,得h(x)=a•f1(x)+b•f2(x)=ax,则h(x)=ax≥2∴,解得:a=2,b=8.∴h(x)=2x+,(x>0)假设最大的常数m,使h(x1)h(x2)≥m恒成立,令u=h(x1)h(x2)==∵x1+x2=1,∴u=,令t=x1x2,则t=x1x2≤,即,那么:u=4t,在上是单调递减,∴u≥u()=289.故最大的常数m=289.2017年3月9日。
(完整word版)江苏省无锡市天一中学2015-2016学年高一(上)期末数学试卷(解析版)
![(完整word版)江苏省无锡市天一中学2015-2016学年高一(上)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/211edd9f284ac850ac02421d.png)
2015-2016学年江苏省无锡市天一中学高一(上)期末数学试卷一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.已知全集U={1,2,3,4},集合A={2,3},B={3,4},则(∁U A)∩(∁U B)=.2.已知向量,若,则实数m=.3.已知,3sin2α=2cosα,则cos(α﹣π)=.4.函数f(x)=(sinx﹣cosx)2的最小正周期为.5.设α∈,则使幂函数y=xα的定义域为R且为奇函数的所有α的值为.6.若向量,满足||=,||=1,•(+)=1,则向量,的夹角的大小为.7.已知﹣<θ<,且sinθ+cosθ=,则tanθ的值为.8.设且,则f(f(2))=.9.设函数f(x)=3|x|,则f(x)在区间(m﹣1,2m)上不是单调函数,则实数m的取值范围是.10.已知,,则tan(β﹣2α)等于.11.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为.12.已知函数f(x)=log a(0<a<1)为奇函数,当x∈(﹣1,a]时,函数f(x)的值域是(﹣∞,1],则实数a+b的值为.13.已知函数(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列三个命题:①函数f(x)的图象关于x轴上某点成中心对称;②存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;③关于x的方程g(x)=0的解集可能为{﹣4,﹣2,0,3}.则是真命题的有.(不选、漏选、选错均不给分)14.在斜三角形△ABC中,A=45°,H是△ABC的垂心,λ=+,则λ=.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.设集合A={2,3,a2+2a﹣3},B={x||x﹣a|<2}(1)当a=2时,求A∩B;(2)若0∈A∩B,求实数a的值.16.已知向量=(4,5cosα),=(3,﹣4tanα)(1)若∥,试求sinα;(2)若⊥,且α∈(0,),求cos(2α﹣)的值.17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象上两个相邻的最值点为(,2)和(,﹣2)(1)求函数f(x)的解析式;(2)求函数f(x)在区间(0,)上的对称中心、对称轴;(3)将函数f(x)图象上每一个点向右平移个单位得到函数y=g(x),令h(x)=f(x)•g(x),求函数h(x)在区间(﹣,0)上的最大值,并指出此时x的值.18.已知A、B两地相距2R,以AB为直径作一个半圆,在半圆上取一点C,连接AC、BC,在三角形ABC内种草坪(如图),M、N分别为弧、弧的中点,在三角形AMC、三角形BNC上种花,其余是空地.设花坛的面积为S1,草坪的面积为S2,取∠ABC=θ.(1)用θ及R表示S1和S2;(2)求的最小值.19.已知函数f(x)=1+log2x,g(x)=2x.(1)若F(x)=f(g(x))•g(f(x)),求函数F(x)在x∈[1,4]的值域;(2)令G(x)=f(8x2)f()﹣kf(x),已知函数G(x)在区间[1,4]有零点,求实数k的取值范围;(3)若H(x)=,求H()+H()+H()+…+H()的值.20.对于定义在R上的函数f(x),定义同时满足下列三个条件的函数为“Z函数”:①对任意x∈(﹣∞,a],都有f(x)=C1;②对任意x∈[b,+∞),都有f(x)=C2;③对任意x∈(a,b),都有(f(x)﹣C1)(f(x)﹣C2)<0.(其中a<b,C1,C2为常数)(1)判断函数f1(x)=|x﹣1|﹣|x﹣3|+1和f2(x)=x﹣|x﹣2|是否为R上的“Z函数”?(2)已知函数g(x)=|x﹣2|﹣,是否存在实数m,使得g(x)为R上的“Z函数”?若存在,求实数m的值;否则,请说明理由;(3)设f(x)是(1)中的“Z函数”,令h(x)=|f(x)|,若h(2a2+a)=h(4a),求实数a的取值范围.2015-2016学年江苏省无锡市天一中学高一(上)期末数学试卷参考答案与试题解析一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.已知全集U={1,2,3,4},集合A={2,3},B={3,4},则(∁U A)∩(∁U B)={1} .【分析】根据交集与补集的定义,进行化简与运算即可.【解答】解:全集U={1,2,3,4},集合A={2,3},∴∁U A={1,4},B={3,4},∴∁U B={1,2},∴(∁U A)∩(∁U B)={1}.故答案为:{1}.2.已知向量,若,则实数m=﹣1.【分析】先将向量,表示出来,再由二者共线即可得到答案.【解答】解:由题意知,=(1,3)﹣(0,1)=(1,2)=(m,m)﹣(0,1)=(m,m﹣1)∵∴存在实数λ使得即(1,2)=λ(m,m﹣1)解得,λ=﹣1,m=﹣1故答案为:﹣13.已知,3sin2α=2cosα,则cos(α﹣π)=.【分析】由条件利用二倍角公式求得sinα=,再利用同角三角函数的基本关系求出cosα的值,再利用诱导公式求出cos(α﹣π)的值.【解答】解:∵,3sin2α=2cosα,∴6sinα•cosα=2cosα,解得sinα=,∴cosα=﹣.故cos(α﹣π)=cos(π﹣α)=﹣cosα=,故答案为.4.函数f(x)=(sinx﹣cosx)2的最小正周期为π.【分析】化简函数的表达式为一个角的一个三角函数的形式,然后利用周期公式求出函数的周期.【解答】解:函数f(x)=(sinx﹣cosx)2=1﹣2sinxcosx=1﹣six2x;所以函数的最小正周期为:T=,故答案为:π.5.设α∈,则使幂函数y=xα的定义域为R且为奇函数的所有α的值为{1} .【分析】分别验证α取不同的值时,函数y是否满足题意即可.【解答】解:当α=﹣1时,函数y=x﹣1的定义域为{x|x≠0},不满足题意;当α=1时,函数y=x的定义域为R,且为奇函数,满足题意;当α=时,函数y=的定义域为{x|x≥0},不满足题意;当α=时,函数y=x﹣1的定义域为R,且为偶函数,不满足题意;综上,满足题意的所有α值为{1}.故答案为:{1}.6.若向量,满足||=,||=1,•(+)=1,则向量,的夹角的大小为.【分析】先由已知条件求出•=﹣1,代入两个向量的夹角公式求出cosθ的值,结合θ的范围求出θ值.【解答】解:设,的夹角为θ.∵•(+)=1,∴+•=1,又∵||=,∴•=﹣1.∴cosθ===﹣.又∵0≤θ≤π,∴θ=.故答案为.7.已知﹣<θ<,且sinθ+cosθ=,则tanθ的值为﹣.【分析】由条件判断tanθ>﹣1,再根据sinθcosθ==﹣,求得tanθ的值.【解答】解:∵﹣<θ<,且sinθ+cosθ=,∴1+2sinθcosθ=,即sinθcosθ=﹣<0,∴θ∈(﹣,0),则tanθ>﹣1.再根据sin θcos θ===﹣,求得tan θ=﹣(舍去),或tan θ=﹣,故答案为:﹣.8.设且,则f (f (2))= 6 .【分析】通过,求出a 的值,然后求出f (2),即可求解所求表达式的值.【解答】解:因为设且,所以,所以a=7,f (2)==log 73,f (f (2))=f (log 73)=2=6.故答案为:6.9.设函数f (x )=3|x|,则f (x )在区间(m ﹣1,2m )上不是单调函数,则实数m 的取值范围是 (0,1) .【分析】由题意,函数f (x )=3|x|,关于y 轴对称,在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使f (x )在区间(m ﹣1,2m )上不是单调函数,则m ﹣1<0<2m ,解出即可.【解答】解:由题意,函数f (x )=3|x|,关于y 轴对称,在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,∵f (x )在区间(m ﹣1,2m )上不是单调函数, ∴m ﹣1<0<2m , ∴0<m <1. 故答案为:(0,1).10.已知,,则tan (β﹣2α)等于 ﹣1 .【分析】把已知条件利用二倍角的余弦函数公式及同角三角函数间的基本关系化简后,即可求出tan α的值,然后把所求式子中的角β﹣2α变为(β﹣α)﹣α,利用两角差的正切函数公式化简后,将各自的值代入即可求出值.【解答】解:由==2tanα=1,得到tanα=,又,则tan(β﹣2α)=tan[(β﹣α)﹣α]===﹣1.故答案为:﹣111.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为8.【分析】设t=1﹣x,则x=1﹣t,原函数可化为g(t)=2sinπt﹣,由于g(x)是奇函数,观察函数y=2sinπt与y=的图象可知,在[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,从而x1+x2+…+x7+x8的值.【解答】解:设t=1﹣x,则x=1﹣t,原函数可化为:g(t)=2sin(π﹣πt)﹣=2sinπt﹣,其中,t∈[﹣3,3],因g(﹣t)=﹣g(t),故g(t)是奇函数,观察函数y=2sinπt(红色部分)与曲线y=(蓝色部分)的图象可知,在t∈[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,即t1+t2+…+t7+t8=0,从而x1+x2+…+x7+x8=8,故答案为:8.12.已知函数f(x)=log a(0<a<1)为奇函数,当x∈(﹣1,a]时,函数f(x)的值域是(﹣∞,1],则实数a+b的值为.【分析】根据函数f(x)为奇函数,建立方程关系即可求出b,然后根据分式函数和对数函数的单调性建立条件关系即可求出a.【解答】解:∵函数f(x)=log a(0<a<1)为奇函数,∴f(﹣x)=﹣f(x),即f(﹣x)+f(x)=0,∴log a+log a=log a•=0,即•=1,∴1﹣x2=b2﹣x2,即b2=1,解得b=±1.当b=﹣1时,函数f(x)=log a=f(x)=log a=log a(﹣1)无意义,舍去.当b=1时,函数f(x)=log a=log a为奇函数,满足条件.∵=﹣1+,在(﹣1,+∞)上单调递减.又0<a<1,∴函数f(x)=log a在x∈(﹣1,a)上单调递增,∵当x∈(﹣1,a)时,函数f(x)的值域是(﹣∞,1),∴f(a)=1,即f(a)=log a=1,∴=a,即1﹣a=a+a2,∴a2+2a﹣1=0,解得a=﹣1±,∵0<a<1,∴a=﹣1+,∴a+b=﹣1++1=,故答案为:.13.已知函数(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列三个命题:①函数f(x)的图象关于x轴上某点成中心对称;②存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;③关于x的方程g(x)=0的解集可能为{﹣4,﹣2,0,3}.则是真命题的有①②.(不选、漏选、选错均不给分)【分析】①由f(x+b)+f(b﹣x)=0即可判断①的正误;②将(a≠0,b∈R,c>0),转化为y(x﹣b)2﹣a(x﹣b)+cy=0有实数解,由△≥0即可判断②的正误;③由f(x)=(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n=0(mn>0),可判断③的正误.【解答】解:对于①,∵f(x+b)+f(b﹣x)=+=0,∴函数f(x)的图象关于x轴上的点(b,0)成中心对称;故①正确;对于②,∵f(x)=(a≠0,b∈R,c>0),∴y(x﹣b)2﹣a(x﹣b)+cy=0有实数解,∴△=a2﹣4cy2≥0,又a≠0,c>0∴y2≤,∴﹣≤y≤.即存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;∴②正确;③∵f(x)=(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n=0(mn>0),∴=(mn>0),假设g(x)=0有四个根,令t=(x﹣b)2(t≥0),则x=b±,∴x1+x2=2b,同理x3+x4=2b,∴其解集{﹣4,﹣2,0,3}中﹣4+3≠﹣2+0,即x1+x2≠x3+x4=2b,∴③错误.故正确答案为:①②.14.在斜三角形△ABC中,A=45°,H是△ABC的垂心,λ=+,则λ=1.【分析】H是△ABC的垂心,可得tanA+tanB+tanC=.再利用向量的三角形法则、正切和差公式即可得出.【解答】解:∵H是△ABC的垂心,则tanA+tanB+tanC=.∴=+,∴=+=λ,则λ====tanA=1,故答案为:1.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.设集合A={2,3,a2+2a﹣3},B={x||x﹣a|<2}(1)当a=2时,求A∩B;(2)若0∈A∩B,求实数a的值.【分析】(1)当a=2时,分别求出集合A和B,由此能求出A∩B.(2)由已知得a2+2a﹣3=0,解得a=1或a=﹣3,再分别把a=1和a=﹣3代入集合B验证,由此能求出a.【解答】解:(1)当a=2时,集合A={2,3,a2+2a﹣3}={2,3,5},B={x||x﹣a|<2}={x||x﹣2|<2}={x|0<x<4},∴A∩B={2,3}.(2)∵A={2,3,a2+2a﹣3},B={x||x﹣a|<2},0∈A∩B,∴a2+2a﹣3=0,解得a=1或a=﹣3,当a=1时,B={x||x﹣1|<2}={x|﹣1<x<3},成立,当a=﹣3时,B={x||x+3|<2}={x|﹣5<x<﹣1},不成立.∴a=1.16.已知向量=(4,5cosα),=(3,﹣4tanα)(1)若∥,试求sinα;(2)若⊥,且α∈(0,),求cos(2α﹣)的值.【分析】(1)通过向量的平行,利用坐标运算,同角三角函数的基本关系式求出sinα即可.(2)通过向量的垂直,列出关系式,求出sinα,利用两角和的余弦函数,以及同角三角函数的基本关系式,求解所求表达式的值即可.【解答】解:(1)因为向量由得,所以15cosα+16tanα=0,即15﹣15sin2α+16sinα=0,解得:(舍)或.(2)由得,12﹣20cosα•tanα=0,∴,又,∴,,.17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象上两个相邻的最值点为(,2)和(,﹣2)(1)求函数f(x)的解析式;(2)求函数f(x)在区间(0,)上的对称中心、对称轴;(3)将函数f(x)图象上每一个点向右平移个单位得到函数y=g(x),令h(x)=f(x)•g(x),求函数h(x)在区间(﹣,0)上的最大值,并指出此时x的值.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式.(2)利用正弦函数的图象的对称性,求得函数f(x)在区间(0,)上的对称中心和对称轴.(3)根据函数y=Asin(ωx+φ)的图象变换规律,利用三角恒等变换化简h(x)的解析式,再利用正弦函数的定义域和值域,求得函数h(x)在区间(﹣,0)上的最大值以及此时x的值.【解答】解:(1)∵函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象上两个相邻的最值点为(,2)和(,﹣2),∴A=2,==﹣=,∴ω=2,再根据五点法作图,可得2•+φ=,求得φ=,∴f(x)=2sin(2x+).(2)令2x+=kπ,求得x=﹣,k∈Z,可得函数的图象的对称中心为(﹣,0),k∈Z,故函数f(x)在区间(0,)上的对称中心为(,0).令2x+=kπ+,可得x=+,k∈Z,故函数的图象的对称轴为x=+,k∈Z,故函数f(x)在区间(0,)上的对称轴为x=.(3)将函数f(x)图象上每一个点向右平移个单位得到函数y=g(x)=2sin[2(x﹣)+]=2sin(2x﹣)=﹣2cos2x的图象,令h(x)=f(x)•g(x)=﹣4sin(2x+)•cos2x=﹣4[sin2x+cos2x]•cos2x=﹣2sin2xcos2x﹣2cos22x=﹣sin4x﹣2•=﹣2sin(4x+)﹣1.在区间(﹣,0)上,4x+∈(﹣,),sin(4x+)∈[﹣1,),h(x)∈(﹣1,2],当4x+=﹣时,h(x)取得最大值为2,此时,x=﹣.18.已知A、B两地相距2R,以AB为直径作一个半圆,在半圆上取一点C,连接AC、BC,在三角形ABC内种草坪(如图),M、N分别为弧、弧的中点,在三角形AMC、三角形BNC上种花,其余是空地.设花坛的面积为S1,草坪的面积为S2,取∠ABC=θ.(1)用θ及R表示S1和S2;(2)求的最小值.【分析】(1)先利用θ及R表示出AC、BC的长,进而求出S2;再设AB的中点为O,连MO、NO,则MO⊥AC,NO⊥BC,即可求出三角形AMC、三角形BNC的面积,进而求得S1;(2)先利用(1)的结论求出关于θ的表达式;再结合三角函数以及函数单调性的知识即可求出的最小值.【解答】解:(1)因为∠ABC=θ,则AC=2Rsinθ,BC=2Rcosθ,则.设AB的中点为O,连MO、NO,则MO⊥AC,NO⊥BC.设MO交AC与点E.则ME=MO﹣OE=R﹣=R﹣Rcosθ=R(1﹣cosθ).所以:S△AMC=|AC|•|ME|=R2sinθ(1﹣cosθ);同理可得三角形BNC的面积为R2cosθ(1﹣sinθ),∴S1=R2sinθ(1﹣cosθ)+R2cosθ(1﹣sinθ)=R2(sinθ+cosθ﹣2sinθcosθ).(2)∵,令,则2sinθcosθ=t2﹣1.∴.∴的最小值为.19.已知函数f(x)=1+log2x,g(x)=2x.(1)若F(x)=f(g(x))•g(f(x)),求函数F(x)在x∈[1,4]的值域;(2)令G(x)=f(8x2)f()﹣kf(x),已知函数G(x)在区间[1,4]有零点,求实数k的取值范围;(3)若H(x)=,求H()+H()+H()+…+H()的值.【分析】(1)若F(x)=f(g(x))•g(f(x)),先求出F(x)的表达式,结合一元二次函数的性质求函数F(x)在x∈[1,4]的值域;(2)先求出G(x)=f(8x2)f()﹣kf(x)的表达式,利用换元法将函数G(x)进行转化求解;(3)若H(x)=,证明H(x)+H(1﹣x)=1,利用倒序相加法,即可求H()+H()+H()+…+H()的值.【解答】解:(1)若F(x)=f(g(x))•g(f(x))=(1+log22x)•=(1+x)•2×=2x(1+x)=2x2+2x=2(x+)2﹣当x∈[1,4]上函数F(x)为增函数,则函数的最大值为F(4)=40,函数的最小值为F(1)=4,则函数的值域为[4,40].(2)令G(x)=f(8x2)f()﹣kf(x)=(1+log28x2)(1+log2)﹣k(1+log2x)=(1+og28+log2x2))(1+log2x)﹣k(1+log2x)=(4+2log2x))(1+log2x)﹣k(1+log2x)=(log2x)2+4log2x+4﹣k﹣klog2x=(log2x)2+(4﹣k)log2x+4﹣k,设t=log2x,当x∈[1,4],则t∈[0,2],则函数等价为y=h(t)=t2+(4﹣k)t+4﹣k若函数G(x)在区间[1,4]有零点,则等价为y=h(t)=t2+(4﹣k)t+4﹣k在t∈[0,2]上有零点,即h(t)=t2+(4﹣k)t+4﹣k=0在t∈[0,2]上有解,即t2+4t+4﹣k(1+t)=0在t∈[0,2]上有解,即k===t +1++2,设m=t +1,则m ∈[1,3],则k=m ++2≥2+2=2+2,当且仅当m=,即m=取等号,当m=1时,k=1+2+2=5,当m=3时,k=2+3+=>5,∴2+2≤m ++2≤,即2+2≤k ≤,即实数k 的取值范围是2+2≤k ≤;(3)若H (x )=,则H (x )==,则H (x )+H (1﹣x )=+=+=+=1,设H ()+H ()+H ()+…+H ()=S ,H ()+H ()+…H ()+H ()=S ,两式相加得2015[H ()+H ()]=2S ,即2S=2015,则S=.20.对于定义在R 上的函数f (x ),定义同时满足下列三个条件的函数为“Z 函数”: ①对任意x ∈(﹣∞,a ],都有f (x )=C 1; ②对任意x ∈[b ,+∞),都有f (x )=C 2; ③对任意x ∈(a ,b ),都有(f (x )﹣C 1)(f (x )﹣C 2)<0.(其中a <b ,C 1,C 2为常数)(1)判断函数f 1(x )=|x ﹣1|﹣|x ﹣3|+1和f 2(x )=x ﹣|x ﹣2|是否为R 上的“Z 函数”?(2)已知函数g (x )=|x ﹣2|﹣,是否存在实数m ,使得g (x )为R 上的“Z函数”?若存在,求实数m 的值;否则,请说明理由;(3)设f (x )是(1)中的“Z 函数”,令h (x )=|f (x )|,若h (2a 2+a )=h (4a ),求实数a 的取值范围. 【分析】(1)根据“Z 函数”的定义,结合分段函数的性质作出图象进行判断即可. (2)结合“Z 函数”的定义以及根式的性质利用配方法进行判断求解.(3)求出h(x)的解析式以及作出函数h(x)的图象,讨论变量的取值范围解方程即可.【解答】解:(1)f1(x)=|x﹣1|﹣|x﹣3|+1=,作出函数f1(x)的图象如图:当x≤1时,f(x)=﹣1,当x≥3时,f(x)=3,当1<x<3时,﹣1<f(x)<3恒成立,故f1(x)=|x﹣1|﹣|x﹣3|+1是R上的“Z函数”,f2(x)=x﹣|x﹣2|=,则当x≤2时,函数f(x)不是常数,不满足条件.②,故f2(x)=x﹣|x﹣2|不是否为R 上的“Z函数”.(2)若g(x)=|x﹣2|﹣是R上的“Z函数”,则满足g(x)=|x﹣2|﹣|x+a|的形式,若=|x+a|,则平方得mx+4=2ax+a2,即或,当时,g(x)=|x﹣2|﹣|x﹣2|=0,不满足条件③,故此时g(x)不是“Z函数”,当时,g(x)=|x﹣2|﹣|x+2|=,满足条件①②③,故此时g(x)是“Z函数”,故当m=4时,g(x)为R上的“Z函数”.(3)设f(x)是(1)中的“Z函数”,则f(x)=|x﹣1|﹣|x﹣3|+1=,则h(x)=|f(x)|=,对应的图象如图:若h(2a2+a)=h(4a),则①,即,即﹣1≤a≤时,h(2a2+a)=h(4a)=1,②得即a≥1时,h(2a2+a)=h(4a)=3,③或,此时h(2a2+a)=h(4a)=1,即或,即a=或a=.④2a2+a=4a,即2a2=3a,得a=0或a=,当a=时,⑤2a2+a=﹣4a,即2a2=﹣5a,得a=0或a=﹣,综上﹣1≤a≤或a≥1或=或a=.2016年8月18日。
江苏省无锡市2016-2017学年高一(上)期末数学试卷(解析版)
![江苏省无锡市2016-2017学年高一(上)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/5129cdbd76a20029bc642d12.png)
2016-2017学年江苏省无锡市高一(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分).1.设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B=.2.函数的最小正周期为.3.若函数f(x)=,则f(f(﹣2))=.4.在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为.5.已知幂函数y=f(x)的图象过点(,),则f()=.6.已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为.7.已知sin(α+π)=﹣,则sin(2α+)=.8.函数y=log2(3cosx+1),x∈[﹣,]的值域为.9.在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=.10.将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=.11.若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是.12.若=1,tan(α﹣β)=,则tanβ=.13.已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是.14.若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是.二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R).(1)若与向量2﹣垂直,求实数k的值;(2)若向量=(1,﹣1),且与向量k+平行,求实数k的值.16.设α∈(0,),满足sinα+cosα=.(1)求cos(α+)的值;(2)求cos(2α+π)的值.17.某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•b x.(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.18.已知函数f(x)=()x﹣2x.(1)若f(x)=,求x的值;(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围.19.已知t为实数,函数f(x)=2log a(2x+t﹣2),g(x)=log a x,其中0<a<1.(1)若函数y=g(a x+1)﹣kx是偶函数,求实数k的值;(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值.20.已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R.(1)当m=0时,求f()的值;(2)若f(x)的最小值为﹣1,求实数m的值;(3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.2016-2017学年江苏省无锡市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分).1.设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B={0,2,3} .【考点】交、并、补集的混合运算.【分析】根据补集与并集的定义,写出运算结果即可.【解答】解:全集U={0,1,2,3},集合A={1,2},B={2,3},则∁U A={0,3},所以(∁U A)∪B={0,2,3}.故答案为:{0,2,3}.2.函数的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】由函数解析式找出ω的值,代入周期公式T=即可求出函数的最小正周期.【解答】解:函数,∵ω=2,∴T==π.故答案为:π3.若函数f(x)=,则f(f(﹣2))=5.【考点】函数的值.【分析】先求出f(﹣2)=(﹣2)2﹣1=3,从而f(f(﹣2))=f(3),由此能求出结果.【解答】解:∵函数f(x)=,∴f(﹣2)=(﹣2)2﹣1=3,f(f(﹣2))=f(3)=3+2=5.故答案为:5.4.在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为﹣.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义、诱导公式,可得tan300°=﹣=,从而求得m的值.【解答】解:在平面直角坐标系xOy中,∵300°角终边上一点P的坐标为(1,m),∴tan300°=tan=﹣tan60°=﹣=,∴m=﹣,故答案为:﹣.5.已知幂函数y=f(x)的图象过点(,),则f()=4.【考点】幂函数的概念、解析式、定义域、值域.【分析】在解答时可以先设出幂函数的解析式,由于过定点,从而可解得函数的解析式,故而获得问题的解答.【解答】解:∵幂函数y=f(x)=xα的图象过点(,),∴=,解得:α=﹣2,故f(x)=x﹣2,f()==4,故答案为:4.6.已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为.【考点】平面向量数量积的运算.【分析】由条件利用两个向量的数量积的定义求得cosθ的值,可得与的夹角θ 的值.【解答】解:∵向量与满足||=2,||=3,且•=﹣3,设与的夹角为θ,则cosθ===﹣,∴θ=,故答案为:.7.已知sin(α+π)=﹣,则sin(2α+)=.【考点】两角和与差的正弦函数.【分析】根据诱导公式和二倍角公式计算即可.【解答】解:∵sin(α+π)=﹣,∴sinα=,∴sin(2α+)=cos2α=1﹣2sin2α=1﹣=,故答案为:.8.函数y=log2(3cosx+1),x∈[﹣,]的值域为[0,2] .【考点】对数函数的图象与性质.【分析】根据x∈[﹣,],得出1≤3cosx+1≤4,利用对数函数的性质,即可得出结论.【解答】解:∵x∈[﹣,],∴0≤cosx≤1,∴1≤3cosx+1≤4,∴0≤log2(3cosx+1)≤2,故答案为[0,2].9.在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=﹣.【考点】平面向量的基本定理及其意义.【分析】由E是边AC的中点,=4,可得=,所以x=﹣,y=,x+y=﹣.【解答】解:∵E是边AC的中点,=4,∴=,所以x=﹣,y=,x+y=﹣.故答案为:﹣.10.将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=sin(4x+).【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先求函数y=sin(2x﹣)的图象先向左平移,图象的函数表达式,再求图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式.【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).11.若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是(0,2).【考点】一元二次方程的根的分布与系数的关系.【分析】由条件利用二次函数的性质可得,由此求得a的范围.【解答】解:∵函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,∴,求得0<a<2,故答案为:(0,2).12.若=1,tan(α﹣β)=,则tanβ=.【考点】两角和与差的正切函数.【分析】由条件利用同角三角函数的基本关系求得tanα的值,再利用两角差的正切公式求得tanβ=tan[α﹣(α﹣β)]的值.【解答】解:∵═==,∴tanα=,又tan(α﹣β)=,则tanβ=tan[α﹣(α﹣β)]===,故答案为:.13.已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是[﹣2﹣2,﹣2] .【考点】函数奇偶性的性质.【分析】根据函数奇偶性的性质求出函数的解析式,利用数形结合以及一元二次函数的性质进行求解即可.【解答】解:如x<0,则﹣x>0,∵当x>0时,f(x)=4x﹣x2,∴当﹣x>0时,f(﹣x)=﹣4x+x2,∵函数f(x)是奇函数,∴f(0)=0,且f(﹣x)=﹣4x+x2=﹣f(x),则f(x)=4x+x2,x<0,则函数f(x)=,则当x>0,f(x)=4x﹣x2=﹣(x﹣2)2+4≤4,当x<0,f(x)=4x+x2=(x+2)2﹣4≥﹣4,当x<0时,由4x+x2=4,即x2+4x﹣4=0得x==﹣2﹣2,(正值舍掉),若函数f(x)在区间[t,4]上的值域为[﹣4,4],则﹣2﹣2≤t≤﹣2,即实数t的取值范围是[﹣2﹣2,﹣2],故答案为:[﹣2﹣2,﹣2]14.若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是[,] .【考点】正弦函数的图象.【分析】由题意求得ω≤2,区间[π,]内的x值满足kπ+≤ωx+≤kπ+π,k∈z,求得k+≤ω≤(k+),k∈z,再给k取值,进一步确定ω的范围.【解答】解:∵函数f(x)=|sin(ωx+)|(ω>0)在[π,π]上单调递减,∴T=≥,即ω≤2.∵ω>0,根据函数y=|sinx|的周期为π,减区间为[kπ+,kπ+π],k∈z,由题意可得区间[π,]内的x值满足kπ+≤ωx+≤kπ+π,k∈z,即ω•π+≥kπ+,且ω•+≤kπ+π,k∈z.解得k+≤ω≤(k+),k∈z.求得:当k=0时,≤ω≤,不符合题意;当k=1时,≤ω≤;当k=2时,≤ω≤,不符合题意.综上可得,≤ω≤,故答案为:[,].二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R).(1)若与向量2﹣垂直,求实数k的值;(2)若向量=(1,﹣1),且与向量k+平行,求实数k的值.【考点】平面向量共线(平行)的坐标表示;平面向量数量积的运算.【分析】(1)由与向量2﹣垂直,可得•(2﹣)=0,解得k.(2)利用向量共线定理即可得出.【解答】解:(1)=+k=(﹣3+k,1﹣2k),2﹣=(﹣7,4).∵与向量2﹣垂直,∴•(2﹣)=﹣7(﹣3+k)+4(1﹣2k)=0,解得k=.(2)k+=(k+1,﹣2k﹣1),∵与向量k+平行,∴(﹣2k﹣1)(﹣3+k)﹣(1﹣2k)(k+1)=0,解得k=.16.设α∈(0,),满足sinα+cosα=.(1)求cos(α+)的值;(2)求cos(2α+π)的值.【考点】三角函数的化简求值.【分析】(1)利用两角和的正弦公式求得sin(α+)的值,再利用同角三角函数的基本关系求得cos(α+)的值.(2)利用二倍角公式求得cos(2α+)的值,可得sin(2α+)的值,从而求得cos(2α+π)=cos[(2α+)+]的值.【解答】解:(1)∵α∈(0,),满足sinα+cosα==2sin(α+),∴sin(α+)=.∴cos(α+)==.(2)∵cos(2α+)=2﹣1=,sin(2α+)=2sin(α+)cos(α+)=2••=,∴cos(2α+π)=cos[(2α+)+]=cos(2α+)cos﹣sin(2α+)sin=﹣=.17.某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•b x.(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.【考点】函数模型的选择与应用.【分析】(1)由题意知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数,排除另2个函数,选二次函数模型进行描述;(2)由二次函数的图象与性质,求出函数y=﹣x2+10x+220在x取何值时有最小值.【解答】解:(1)由题目中的数据知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数;所以,应选取二次函数y=﹣x2+ax+b进行描述;(2)将(1,229),(4,244)代入y=﹣x2+ax+b,解得a=10,b=220,∴y=﹣x2+10x+220,1≤x≤12,x∈N,+y=﹣(x﹣5)2+245,∴x=5,y max=245万元.18.已知函数f(x)=()x﹣2x.(1)若f(x)=,求x的值;(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围.【考点】函数恒成立问题;函数的值.【分析】(1)由f(x)=()x﹣2x=可求得2x=,从而可求得x的值;(2)由f(x)=()x﹣2x可判断f(x)为奇函数,且为减函数,不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)⇔2m﹣mcosθ>1+cosθ对所有θ∈[0,]都成立,分离参数m,利用函数的单调性可求实数m的取值范围.【解答】解:(1)令t=2x>0,则﹣t=,解得t=﹣4(舍)或t=,…3分,即2x=,所以x=﹣2…6分(2)因为f(﹣x)=﹣2﹣x=2x﹣=﹣f(x),所以f(x)是定义在R上的奇函数,…7故f(0)=0,由f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)=0得:f(2m﹣mcosθ)<f(1+cosθ) (8)分,又f(x)=()x﹣2x在R上单调递减,…9分,所以2m﹣mcosθ>1+cosθ对所有θ∈[0,]都成立,…10分,所以m>,θ∈[0,],…12分,令μ=cosθ,θ∈[0,],则μ∈[0,1],y==﹣1+,μ∈[0,1]的最大值为2,所以m的取值范围是m>2 (16)分19.已知t为实数,函数f(x)=2log a(2x+t﹣2),g(x)=log a x,其中0<a<1.(1)若函数y=g(a x+1)﹣kx是偶函数,求实数k的值;(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值.【考点】函数单调性的判断与证明;对数函数的图象与性质.【分析】(1)根据偶函数的定义可得k的值;(2)构造函数h(x)=f(x)﹣g(x),根据对数函数的图象和性质可得,只需要t>﹣2x++2恒成立,根据二次函数的性质求出t的取值范围即可;(3)先判断函数y=|f(x)|的单调性,令|2log a(2x+2)|=2,得到x=或,即可得到n﹣m的最小值为(﹣)﹣=,求出a即可.【解答】解:(1)∵函数y=g(a x+1)﹣kx是偶函数,∴log a(a﹣x+1)+kx=log a(a x+1)﹣kx,对任意x∈R恒成立,∴2kx=log a(a x+1)﹣log a(a﹣x+1)=log a()=x∴k=,(2)由题意设h (x )=f (x )﹣g (x )=2log a (2x +t ﹣2)﹣log a x <0在x ∈[1,4]恒成立,∴2log a (2x +t ﹣2)<log a x , ∵0<a <1,x ∈[1,4],∴只需要2x +t ﹣2>恒成立,即t >﹣2x ++2恒成立,∴t >(﹣2x ++2)max ,令y=﹣2x ++2=﹣2()2++2=﹣2(﹣)2+,x ∈[1,4],∴(﹣2x ++2)max =1,∴t 的取值范围是t >1, (3)∵t=4,0<a <1,∴函数y=|f (x )|=|2log a (2x +2)|在(﹣1,﹣)上单调递减,在(﹣,+∞)上单调递增,∵当x ∈[m ,n ]时,函数y=|f (x )|的值域为[0,2],且f (﹣)=0,∴﹣1<m ≤≤n (等号不同时取到),令|2log a (2x +2)|=2,得x=或,又[﹣(﹣)]﹣[(﹣)﹣]=>0,∴﹣(﹣)>(﹣)﹣,∴n ﹣m 的最小值为(﹣)﹣=,∴a=.20.已知向量=(cos ,sin),=(cos ,﹣sin ),函数f (x )=•﹣m |+|+1,x ∈[﹣,],m ∈R .(1)当m=0时,求f ()的值;(2)若f (x )的最小值为﹣1,求实数m 的值;(3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.【考点】函数零点的判定定理;三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用向量数量积的公式化简函数f(x)即可.(2)求出函数f(x)的表达式,利用换元法结合一元二次函数的最值性质进行讨论求解即可.(3)由g(x)=0得到方程的根,利用三角函数的性质进行求解即可.【解答】解:(1)•=(cos,sin)•(cos,﹣sin)=cos cos﹣sinsin=cos(+)=cos2x,当m=0时,f(x)=•+1=cos2x+1,则f()=cos(2×)+1=cos+1=;(2)∵x∈[﹣,],∴|+|===2cosx,则f(x)=•﹣m|+|+1=cos2x﹣2mcosx+1=2cos2x﹣2mcosx,令t=cosx,则≤t≤1,则y=2t2﹣2mt,对称轴t=,①当<,即m<1时,当t=时,函数取得最小值此时最小值y=﹣m=﹣1,得m=(舍),②当≤≤1,即m<1时,当t=时,函数取得最小值此时最小值y=﹣=﹣1,得m=,③当>1,即m>2时,当t=1时,函数取得最小值此时最小值y=2﹣2m=﹣1,得m=(舍),综上若f(x)的最小值为﹣1,则实数m=.(3)令g(x)=2cos2x﹣2mcosx+m2=0,得cosx=或,∴方程cosx=或在x∈[﹣,]上有四个不同的实根,则,得,则≤m<,即实数m的取值范围是≤m<.2017年1月25日。
易错汇总江苏省无锡市高一上学期期末数学试卷和答案
![易错汇总江苏省无锡市高一上学期期末数学试卷和答案](https://img.taocdn.com/s3/m/a554b46d76eeaeaad0f33062.png)
故答案为:﹣ .
10.( 5.00 分)将函数 y=sin(2x﹣ )的图象先向左平移 个单位,再将图象 上各点的横坐标变为原来的 倍(纵坐标不变),那么所得图象的解析式为 y= sin ( 4x+ ) . 【分析】 先求函数 y=sin(2x﹣ )的图象先向左平移 ,图象的函数表达式, 再求图象上所有的点的横坐标变为原来的 倍(纵坐标不变) ,则所得到的图象 对应的函数解析式. 【解答】 解:将函数 y=sin(2x﹣ )的图象先向左平移 , 得到函数 y=sin[ 2(x+ )﹣ ] =sin( 2x+ )的图象, 将所得图象上所有的点的横坐标变为原来的 倍(纵坐标不变), 则所得到的图象对应的函数解析式为: y=sin( 4x+ ) 故答案为: sin( 4x+ ).
的最小正周期为
.
3.(5.00 分)若函数 f(x)=
,则 f (f (﹣ 2))=
.
4.( 5.00 分)在平面直角坐标系 xOy 中,300°角终边上一点 P 的坐标为 (1,m),
则实数 m 的值为
.
5.(5.00 分)已知幂函数 y=f(x)的图象过点( , ),则 f( )=
.
6.( 5.00 分)已知向量 与 满足 | | =2, | | =3,且 ? =﹣3,则 与 的夹角
=4,
故答案为: 4.
6.(5.00 分)已知向量 与 满足 | | =2,| | =3,且 ? =﹣3,则 与 的夹角为 .
【分析】 由条件利用两个向量的数量积的定义求得 cosθ的值,可得 与 的夹角 θ 的值. 【解答】 解:∵向量 与 满足 | | =2,| | =3,且 ? =﹣ 3,设 与 的夹角为 θ,
2016学年江苏省无锡市天一中学高一下学期期末数学试卷及参考答案
![2016学年江苏省无锡市天一中学高一下学期期末数学试卷及参考答案](https://img.taocdn.com/s3/m/0a3150f4551810a6f5248658.png)
2015-2016学年江苏省无锡市天一中学高一(下)期末数学试卷一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.(5分)直线l经过点(0,1)且倾斜角的余弦值为,则直线l的斜截式方程为.2.(5分)在等差数列{a n}中,若a n=25﹣2n(n∈N*),那么使其前n项之和S n 取得最大值的n=.3.(5分)若直线y=x+b与圆x2+y2=2相切,则b的值为.4.(5分)各项均为正数的等比数列{a n}的前n项和为S n,若=4,则=.5.(5分)已知点A(1,2),直线l:x﹣y﹣1=0,则点A关于直线l的对称点A'的坐标为.6.(5分)圆心为(1,1)且过原点的圆的方程是.7.(5分)已知(x,y)为所表示的平面区域M内的点,则z=y﹣2x的最大值为.8.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=.9.(5分)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=点A,l∥β,m∥β,则α∥β.其中为真命题的是.10.(5分)在平面直角坐标系中,设直线l:kx﹣y+=0与圆C:x2+y2=4相交于A、B两点,,若点M在圆C上,则实数k=.11.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,c=2,a2=4b ﹣4,则a=.12.(5分)已知不等式组表示的平面区域为Ω,若在Ω中存在一点P(x,y)使得﹣2≤ax﹣y≤3成立,则实数a的取值范围是.13.(5分)对于集合A={a1,a2,…,a n}(n∈N*,n≥3),定义集合S={x|x=a i+a j,1≤i<j≤n},若a n=2n+1,则集合S中各元素之和为.14.(5分)已知x>0,y>0,且满足x+﹣﹣=8,则2x+y的最小值为.二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.(1)求证:MN∥平面AA1C1C;(2)若AC=AA1,求证:MN⊥平面A1BC.16.(14分)设等差数列{a n}的前n项和为S n,已知a3=6,S3=15.(1)求{a n}的首项a1和公差d的值;(2)设数列{b n}满足:对任意的正整数n,都有a1b1+a2b2+a3b3+…+a n b n=(n2+n)•2n+1.求数列{b n}的通项公式b n及前n项和为T n.17.(14分)在△ABC中,三边a,b,c所对应的角分别是A,B,C,已知a,b,c成等比数列.(1)若+=,求角B的值;(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.18.(16分)如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建一仓库,设AB=ykm,并在公路北侧建造边长为xkm 的正方形无顶中转站CDEF(其中边EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°.(1)求y关于x的函数解析式,并指出定义域;(2)如果中转站四堵围墙造价为1万元/km,两条道路造价为3万元/km,问:x取何值时,该公司建中转站围墙和两条道路总造价M最低?19.(16分)已知平面直角坐标系上一动点P(x,y)到点A(﹣2,0)的距离是点P到点B(1,0)的距离的2倍.(1)求点P的轨迹方程;(2)已知点Q(2,0),过点A的直线l与点P的轨迹C相交于E,F两点,当△QEF的面积最大时,求直线l的方程;(3)过直线l′:3x+4y+14=0上一点R引点P的轨迹C的两条切线,切点分别为M,N,当线段MN的长度最小时,求MN所在直线的方程.20.(16分)已知数列{a n}满足,a1+a2+…+a n﹣pa n+1=0(p≠0,p≠﹣1,n∈N*).(1)求数列{a n}的通项公式a n;(2)若对每一个正整数k,若将a k+1,a k+2,a k+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k.①求p的值及对应的数列{d k}.②记S k为数列{d k}的前k项和,问是否存在a,使得S k<30对任意正整数k恒成立?若存在,求出a的最大值;若不存在,请说明理由.2015-2016学年江苏省无锡市天一中学高一(下)期末数学试卷参考答案与试题解析一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.(5分)直线l经过点(0,1)且倾斜角的余弦值为,则直线l的斜截式方程为y=x+1.【解答】解:直线倾斜角的余弦值为,倾斜角为α,所以tanα=,∵直线l经过点(0,1),∴所求直线方程为:y﹣1=(x﹣0),即y=x+1.故答案为:y=x+1.2.(5分)在等差数列{a n}中,若a n=25﹣2n(n∈N*),那么使其前n项之和S n 取得最大值的n=12.【解答】解:由a n=25﹣2n≥0,解得n≤,又n∈N*,所以1≤n≤12,n∈N*,所以数列{a n}的前12项为正数,第13项起(含第13项)为负数,所以数列的前12项和最大,故答案为:12.3.(5分)若直线y=x+b与圆x2+y2=2相切,则b的值为±2.【解答】解:由题意知,直线y=x+b与圆x2+y2=2相切,∴=,解得b=±2.故答案为:±2.4.(5分)各项均为正数的等比数列{a n}的前n项和为S n,若=4,则=10.【解答】解:由题意可知:等比数列{a n}的公比q≠1,∵==q2+1=4,解得q2=3.则==q4+1=32+1=10.故答案为:10.5.(5分)已知点A(1,2),直线l:x﹣y﹣1=0,则点A关于直线l的对称点A'的坐标为(0,3).【解答】解:设点A(1,2)关于直线x﹣y﹣1=0的对称点A′的坐标为(a,b),则由,求得a=0,b=3,故点A′(0,3),故答案为:(0,3).6.(5分)圆心为(1,1)且过原点的圆的方程是(x﹣1)2+(y﹣1)2=2.【解答】解:∵所求圆经过坐标原点,且圆心(1,1)与原点的距离为r=,∴所求圆的方程为(x﹣1)2+(y﹣1)2=2.故答案为:(x﹣1)2+(y﹣1)2=2.7.(5分)已知(x,y)为所表示的平面区域M内的点,则z=y﹣2x的最大值为1.【解答】解:由z=y﹣2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A(0,1)时,直线y=2x+z的截距最大,此时z取得最大值,代入z=y﹣2x,得z=1﹣2×0=1,故答案为:1.8.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=30°.【解答】解:将sinC=2sinB利用正弦定理化简得:c=2b,代入得a2﹣b2=bc=6b2,即a2=7b2,∴由余弦定理得:cosA===,∵A为三角形的内角,∴A=30°.故答案为:30°9.(5分)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=点A,l∥β,m∥β,则α∥β.其中为真命题的是①②④.【解答】解:m⊂α,l∩α=A,A∉m,则l与m异面,故①正确;若m、l是异面直线,l∥α,m∥α,在则α内必然存在两相交直线a,b使a∥m,b∥l,又由n⊥l,n⊥m,则n⊥a,n⊥b,∴n⊥α,故②正确;若l∥α,m∥β,α∥β,则l与m可能平行与可能相交,也可能异面,故③错误;若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则由面面平行的判定定理可得α∥β,故④正确;故答案为:①②④10.(5分)在平面直角坐标系中,设直线l:kx﹣y+=0与圆C:x2+y2=4相交于A、B两点,,若点M在圆C上,则实数k=±1.【解答】解:由直线kx﹣y+=0与圆x2+y2=4相交于A,B两点,联立两方程得:(1+k2)x2+2kx﹣2=0∴x A+x B=﹣,y A+y B=kx A++kx B+=∵,∴M(﹣,)代入圆x2+y2=4可得∴k=±1故答案为:±111.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,c=2,a2=4b﹣4,则a=.【解答】解:在△ABC中,∵A=2C,c=2,∴由正弦定理得,,则,即a=4cosC,由余弦定理得,a=4×=2×,化简得a2(b﹣2)=2(b2﹣4),①又a2=4b﹣4,②,联立①②解得,或,∵A=2C,c=2,∴a>c=2,∴a=,故答案为:.12.(5分)已知不等式组表示的平面区域为Ω,若在Ω中存在一点P(x,y)使得﹣2≤ax﹣y≤3成立,则实数a的取值范围是﹣2≤a≤.【解答】解:作出不等式组对应的平面区域如图:则B(1,0),A(1,)则x≥1,则不等式﹣2≤ax﹣y≤3等价为y﹣2≤ax≤y+3,即≤a≤,设z=,则z的几何意义是区域内的点到点E(0,2)的斜率,则EB的斜率z==﹣2,EC的斜率z=﹣,此时﹣2≤z≤.设m=,则m的几何意义是区域内的点到点F(﹣3,0)的斜率,则FA的斜率m==,FB的斜率m=0,此时0≤m≤,若在Ω中存在一点P(x,y)使得﹣2≤ax﹣y≤3成立,则﹣2≤a≤,故答案为:﹣2≤a≤.13.(5分)对于集合A={a1,a2,…,a n}(n∈N*,n≥3),定义集合S={x|x=a i+a j,1≤i<j≤n},若a n=2n+1,则集合S中各元素之和为4n2+2n﹣12.【解答】解:a n=2n+1时,集合A={3,5,…,2n+1}(n∈N*,n≥3),由于集合S={x|x=a i+a j,1≤i<j≤n},∴集合S={6+2,6+4,6+6,…,6+2(2n﹣3)},∴集合S中的元素个数S(A)=2n﹣3(n≥3).∴集合S中各元素之和==4n2+2n﹣12.故答案为:4n2+2n﹣12.14.(5分)已知x>0,y>0,且满足x+﹣﹣=8,则2x+y的最小值为18.【解答】解:∵x>0,y>0,且满足x+﹣﹣=8,化为:=8+,令2x+y=t>0,则=8(2x+y)+(2x+y)=8(2x+y)+2+8++≥8(2x+y)+10+2=8(2x+y)+18,∴t2﹣16t﹣36≥0,解得t≥18,即2x+y≥18,当且仅当y=4x=12时取等号.故答案为:18.二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.(1)求证:MN∥平面AA1C1C;(2)若AC=AA1,求证:MN⊥平面A1BC.【解答】解:(1)连接AC1,∵矩形AA1B1B中,M为A1B与AB1的交点,∴M是AB1的中点,又∵N为棱B1C1的中点,∴△AB1C1中,MN是中位线,可得MN∥AC1,…(4分)又∵AC1⊂平面AA1C1C,MN⊄平面AA1C1C,∴MN∥平面AA1C1C.…(6分)(2)∵矩形A1C1CA中,AC=AA1,∴四边形AA1C1C是正方形,可得AC1⊥A1C,又∵直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,且BC⊂平面ABC,∴CC1⊥BC.∵∠ACB=90°,即AC⊥BC,∴结合CC1∩AC=C,得BC⊥平面AA1C1C,∵AC1⊆平面AA1C1C,∴BC⊥AC1,…(8分)∵BC、A1C是平面A1BC内的相交直线,∴AC1⊥平面A1BC又∵MN∥AC1,∴MN⊥平面A1BC.…(14分)16.(14分)设等差数列{a n}的前n项和为S n,已知a3=6,S3=15.(1)求{a n}的首项a1和公差d的值;(2)设数列{b n}满足:对任意的正整数n,都有a1b1+a2b2+a3b3+…+a n b n=(n2+n)•2n+1.求数列{b n}的通项公式b n及前n项和为T n.【解答】解:(1)由a3=6,S3=15,可得a1+2d=6,3a1+d=15,解得a1=4,d=1;(2)由(1)可得a n=4+n﹣1=n+3,对任意的正整数n,都有a1b1+a2b2+a3b3+…+a n b n=(n2+n)•2n+1,可得n=1时,a1b1=4b1=8,解得b1=2;当n>1时,a1b1+a2b2+a3b3+…+a n﹣1b n﹣1=[(n﹣1)2+n﹣1]•2n,①a1b1+a2b2+a3b3+…+a n b n=(n2+n)•2n+1,②②﹣①可得a n b n=(n2+n)•2n+1﹣[(n﹣1)2+n﹣1]•2n=n(n+3)•2n,由a n=n+3,可得b n=n•2n;则T n=1•2+2•22+3•23+…+n•2n,③即有2T n=1•22+2•23+3•24+…+n•2n+1,④③﹣④,可得﹣T n=2+22+23+…+2n﹣n•2n+1=﹣n•2n+1,化简可得T n=(n﹣1)•2n+1+2.综上可得,b n=n•2n;T n=(n﹣1)•2n+1+2.17.(14分)在△ABC中,三边a,b,c所对应的角分别是A,B,C,已知a,b,c成等比数列.(1)若+=,求角B的值;(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.【解答】解:(1)由题意得,,(2分)∵a,b,c成等比数列,∴b2=ac,○由正弦定理有sin2B=sinAsinC,(3分)∵A+C=π﹣B,∴sin(A+C)=sinB,得,即,(5分)由b2=ac知,b不是最大边,∴.(6分)(2)∵△ABC外接圆的面积为4π,∴△ABC的外接圆的半径R=2,(7分)由余弦定理b2=a2+c2﹣2accosB,得,又b2=ac,∴,当且仅当a=c时取等号,∵B为△ABC的内角,∴,(9分)由正弦定理,得b=4sinB,(10分)∴△ABC的面积,(11分)∵,∴,∴.(12分)18.(16分)如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建一仓库,设AB=ykm,并在公路北侧建造边长为xkm 的正方形无顶中转站CDEF(其中边EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°.(1)求y关于x的函数解析式,并指出定义域;(2)如果中转站四堵围墙造价为1万元/km,两条道路造价为3万元/km,问:x取何值时,该公司建中转站围墙和两条道路总造价M最低?【解答】解:(1)∵AB=y,AB=AC+1,∴AC=y﹣1.∵在Rt△BCF中,CF=x,∠ABC=60°,∴∠CBF=30°,可得BC=2x.由于2x+y﹣1>y,得x.在△ABC中,根据余弦定理AC2=AB2+BC2﹣2•AB•BC•cosB,可得(y﹣1)2=y2+(2x)2﹣2y•2x•cos60°,即(y﹣1)2=y2+4x2﹣2xy,解得y=.∵y>0且x,∴x>1.可得y关于x的函数解析式为y=,(x>1).函数的定义域为(1,+∞).(2)由题意,可得总造价M=3[y+(y﹣1)]+4x=﹣3+4x.令x﹣1=t,则M=﹣3+4(t+1)=16t++25≥=49,当且仅当16t=,即t=时,M的最小值为49.此时x=t+1=,y==.答:当x的值为时,该公司建中转站围墙和道路总造价M最低.19.(16分)已知平面直角坐标系上一动点P(x,y)到点A(﹣2,0)的距离是点P到点B(1,0)的距离的2倍.(1)求点P的轨迹方程;(2)已知点Q(2,0),过点A的直线l与点P的轨迹C相交于E,F两点,当△QEF的面积最大时,求直线l的方程;(3)过直线l′:3x+4y+14=0上一点R引点P的轨迹C的两条切线,切点分别为M,N,当线段MN的长度最小时,求MN所在直线的方程.【解答】解:(1)∵动点P(x,y)到点A(﹣2,0)的距离是点P到点B(1,0)的距离的2倍,∴(x+2)2+y2=4(x﹣1)2+4y2,∴(x﹣2)2+y2=4;(2)设直线方程为y=k(x+2),即kx﹣y+2k=0,(2,0)到直线的距离为d=,直线代入圆的方程,整理得(1+k2)x2+(4k2﹣4)x+4k2=0,∴|EF|=•,∴S=|EF|d=8△EFQ=8,设t=1+k2(t≥1),S△EFQ∴t=时,S取得最大值2,此时k=±,y=±(x+2).△EFQ(3)设R(x0,y0),M(x1,y1),N(x2,y2),则3x0+4y0+14=0,∴切线RM、RN方程分别为(x1﹣2)(x﹣2)+y1y=4,(x2﹣2)(x﹣2)+y2y=4,∵切线RM、RN都经过点R(x0,y0),∴(x1﹣2)(x0﹣2)+y1y0=4,(x2﹣2)(x0﹣2)+y2y0=4,∴直线MN方程为(x0﹣2)(x﹣2)+y0y=4,要求线段MN的长度最小,则要圆心到直线的距离最大,∴d=,∵3x0+4y0+14=0,消去y0得,(x0﹣2)2+y=(x0+)2+16,∴x0=﹣,d max=1,y0=﹣,∴当线段MN的长度最小时,MN所在直线的方程3x+4y﹣1=0.20.(16分)已知数列{a n}满足,a1+a2+…+a n﹣pa n+1=0(p≠0,p≠﹣1,n∈N*).(1)求数列{a n}的通项公式a n;(2)若对每一个正整数k,若将a k+1,a k+2,a k+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k.①求p的值及对应的数列{d k}.②记S k为数列{d k}的前k项和,问是否存在a,使得S k<30对任意正整数k恒成立?若存在,求出a的最大值;若不存在,请说明理由.【解答】解:(1)因为a1+a2+…+a n﹣pa n+1=0,所以n≥2时,a1+a2+…+a n﹣1﹣pa n=0,两式相减,得,故数列{a n}从第二项起是公比为的等比数列…(3分)又当n=1时,a1﹣pa2=0,解得,从而…(5分)(2)①由(1)得,[1]若a k+1为等差中项,则2a k+1=a k+2+a k+3,即或,解得…(6分)此时,所以…(8分)[2]若a k+2为等差中项,则2a k+2=a k+1+a k+3,即,此时无解…(9分)[3]若a k+3为等差中项,则2a k+3=a k+1+a k+2,即或,解得,此时,所以…(11分)综上所述,,或,…(12分)②[1]当时,,则由S k<30,得,当k≥3时,,所以必定有a<1,所以不存在这样的最大正整数…(14分)[2]当时,,则由S k<30,得,因为,所以a=13满足S k<30恒成立;但当a=14时,存在k=5,使得即S k>30,所以此时满足题意的最大正整数a=13…(16分)赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
无锡天一中学2015-2016学年第一学期数学期中考试试卷
![无锡天一中学2015-2016学年第一学期数学期中考试试卷](https://img.taocdn.com/s3/m/4ea29be9f61fb7360b4c6587.png)
2015-2016学年第一学期高一数学期中考试试题注意事项及答题要求:1.本试卷包含填空题(第1题~第14题,共14题)和解答题(第15题~第20题,共6题)两部分.本次考试时间为120分钟,满分为160分.考试结束后,请将答题纸交回.2.答题前,请务必将自己的班级、姓名、学号用黑色笔写在答题纸上密封线内的相应位置.3.答题时请用黑色笔在答题纸上作答.......,在试卷或草稿纸上作答一律无效. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上......... 1.若集合{}0,1A =,集合{}0,1B =-,则A B = .2.已知函数24)12(x x f =+,则=)5(f .3.函数1()f x x=的定义域是 . 4.已知函数()x f 是奇函数,且当0>x 时,()123++=x x x f ,则当0<x 时,()x f =______________ __.5.设函数2log ,0()4,0x x x f x x >⎧=⎨≤⎩,则((1))f f -的值为 . 6.已知集合{},,2A a b =,{}22,,2B b a =,且A B A B ⋂=⋃,则a =__________.7.若幂函数()y f x =的图象经过点19,3⎛⎫ ⎪⎝⎭,则()25f 的值是 .8.已知2l o g ,5.0,4.02.05.05.0===-c b a ,将c b a ,,这三个数按从小到大的顺序排列 ___________ .(用“<”连接)9.定义在[2,2]-上的奇函数)(x f y =在[0,2]上是减函数,若()(1)0f m f m +->,求实数m 的取值范围________________.1x -11.若函数ln 26y x x =+-的零点为0x ,则满足0k x ≤的最大整数k = .12.当(1,2)x ∈时,不等式240x ax ++<恒成立,则实数a 的取值范围是_________.13.设集合{}2|20A x x x =-->,集合{}2|310,0B x x ax a =--≤<,若B A ⋂中恰含有一个整数,则实数a 的取值范围是_________. 14.已知实数232,10,()log ,1x ax x a f x x x ⎧-+≤>=⎨>⎩,若方程27()16f x a =有且仅有两个不等实根,且较大的实根大于3,则实数a 的取值范围为 .二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤,请把答案直接填写在答题纸相应位置上.......... 15.(本小题满分14分)设全集为R ,集合{|3A x x =≤或}6x ≥,{}|29B x x =-<<.(1)求A B ,B A C R )(;(2)已知{}|1C x a x a =<<+,若B C C ⋂=,求实数a 的取值范围.16.(本小题满分14分)已知函数()lg(1)lg(1)()f x x a x a R =++-∈的图象关于原点对称.(1)求函数()f x 的定义域;(2)求a 的值;(3)解不等式()1f x <.已知函数()|2|21f x x x x =+--.(1)将函数()f x 写成分段函数的形式;(2)画出该函数的图像,并写出函数的单调递增区间;(3)若[,0](0)x a a ∈<,求()f x 的最小值.18.(本小题满分16分) 已知集合107x A x x ⎧-⎫=<⎨⎬-⎩⎭,{}22220B x x x a a =---< (1)当4a =时,求A B ;(2)若A B ⊆,求实数a 的取值范围.设二次函数2()f x ax bx c =++在区间[2,2]-上的最大值、最小值分别是,M m ,集合{}()A x f x x ==.(1)若{}1,2A =,且(0)2f =,求M 和m 的值;(2)若{}1A =,且1a ≥,记()g a M m =+,求()g a 的最小值.20.(本小题满分16分)设常数a R ∈,函数()22x x a f x a+=-. (1)当1a =时,判断并证明函数()f x 在()0,+∞的单调性;(2)当0a ≥时,讨论函数)(x f y =的奇偶性,并说明理由;(3)当0a ≠时,若存在区间[](),m n m n <,使得函数()f x 在[],m n 的值域为2,2m n ⎡⎤⎣⎦,求实数a 的取值范围.。
无锡市高一上册期末数学试卷含解析强化班-精编
![无锡市高一上册期末数学试卷含解析强化班-精编](https://img.taocdn.com/s3/m/b4665afb4028915f804dc293.png)
2016-2017学年江苏省无锡市中学高一(上)期末数学试卷(强化班)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.M)∩N= .1.(5分)已知M={x|﹣2≤x≤2},N={x|x<1},则(∁R2.(5分)设x,y∈R,向量,,且,,则x+y= .3.(5分)已知向量夹角为45°,且,则= .4.(5分)已知cosα=,且α∈(﹣,0),则sin(π﹣α)= .5.(5分)设2a=5b=m,且+=2,m= .6.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原的倍(纵坐标不变),那么所得图象的解析式为y= .7.(5分)若函数的图象与x轴有公共点,则m的取值范围是.8.(5分)设向量,满足,=(2,1),且与的方向相反,则的坐标为.9.(5分)若θ是△ABC的一个内角,且,则sinθ﹣cosθ的值为.10.(5分)已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则= .11.(5分)已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是.12.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.13.(5分)对于实数a和b,定义运算“*”:,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则实数m的取值范围是;x1+x2+x3的取值范围是.14.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)单调,则ω的最大值为.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.(14分)设函数,其中0<ω<2;(Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;(Ⅱ)若函数f(x)的图象的一条对称轴为,求ω的值.16.(14分)已知△ABC中.(1)设•=•,求证:△ABC是等腰三角形;(2)设向量=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,若sinA=,求sin(﹣B)的值.17.(14分)如图,半径为1,圆心角为的圆弧上有一点C.(1)若C为圆弧AB的中点,点D在线段OA上运动,求|+|的最小值;(2)若D,E分别为线段OA,OB的中点,当C在圆弧上运动时,求•的取值范围.18.(16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.19.(16分)如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.(1)求PQ的最小值;(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.20.(16分)已知函数f(x)=x|x﹣a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.高一(上)期末数学试卷(强化班)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.M)∩N= {x|x<﹣2} .1.(5分)已知M={x|﹣2≤x≤2},N={x|x<1},则(∁R【解答】解:∵M={x|﹣2≤x≤2},N={x|x<1},M={x|x<﹣2或x>2},∴∁RM)∩N={x|x<﹣2}.则(∁R故答案为:{x|x<﹣2}2.(5分)设x,y∈R,向量,,且,,则x+y= 0 .【解答】解:∵,,∴=2x﹣4=0,2y+4=0,则x=2,y=﹣2.∴x+y=0.故答案为:0.3.(5分)已知向量夹角为45°,且,则= 3.【解答】解:∵,=1∴=∴|2|====解得故答案为:34.(5分)已知cosα=,且α∈(﹣,0),则sin(π﹣α)= ﹣.【解答】解:∵cosα=,且α∈(﹣,0),∴sinα=﹣=﹣,则sin(π﹣α)=sinα=﹣.故答案为:﹣5.(5分)设2a=5b=m,且+=2,m= .【解答】解:∵2a=5b=m,∴a=log2m,b=log5m,由换底公式得,∴m2=10,∵m>0,∴故应填6.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原的倍(纵坐标不变),那么所得图象的解析式为y= sin(4x+).【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).7.(5分)若函数的图象与x轴有公共点,则m的取值范围是[﹣1,0).【解答】解:作出函数的图象如图,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得﹣1≤m<0.故答案为:[﹣1,0).8.(5分)设向量,满足,=(2,1),且与的方向相反,则的坐标为(﹣4,﹣2).【解答】解:设=(x,y),∵与的方向相反,∴=(2λ,λ),(λ<0).又∵,∴=2,解得λ=﹣2,∴=(﹣4,﹣2).故答案为:(﹣4,﹣2).9.(5分)若θ是△ABC的一个内角,且,则sinθ﹣cosθ的值为.【解答】解:∵θ是△ABC的一个内角,且,∴sinθ>0,cosθ<0,∴sinθ﹣cosθ====,故答案为.10.(5分)已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则= ﹣.【解答】解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于,∴函数f(x)的周期T=,∵ω>0∴ω=3∵角φ的终边经过点P(1,﹣2),∴sinφ=,cosφ=∴=sin(3•+φ)=sin(+φ)=(sinφ+cosφ)=•()=﹣故答案为:﹣11.(5分)已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是.【解答】解:∵f(x)=是(﹣∞,+∞)上的增函数,∴,解得:,故答案为:12.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:13.(5分)对于实数a和b,定义运算“*”:,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则实数m 的取值范围是 ;x 1+x 2+x 3的取值范围是 .【解答】解:∵,∴f (x )=(2x ﹣1)*(x ﹣1)=,则当x=0时,函数取得极小值0,当x=时,函数取得极大值故关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3时, 实数m 的取值范围是令f (x )=,则x=,或x=不妨令x 1<x 2<x 3时 则<x 1<0,x 2+x 3=1∴x 1+x 2+x 3的取值范围是故答案为:,14.(5分)已知函数f (x )=sin (ωx +φ)(ω>0,|φ|≤),x=﹣为f (x )的零点,x=为y=f (x )图象的对称轴,且f (x )在(,)单调,则ω的最大值为 9 .【解答】解:∵函数f (x )=sin (ωx +φ)(ω>0,|φ|≤),x=﹣为f (x )的零点,x=为y=f (x )图象的对称轴,∴ω(﹣)+φ=nπ,n ∈,且ω•+φ=n′π+,n′∈,∴相减可得ω•=(n′﹣n )π+=kπ+,k ∈,即ω=2k +1,即ω为奇数.∵f (x )在(,)单调,(1)若f(x)在(,)单调递增,则ω•+φ≥2kπ﹣,且ω•+φ≤2kπ+,k∈,即﹣ω•﹣φ≤﹣2kπ+①,且ω•+φ≤2kπ+,k∈②,把①②可得ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.当ω=11时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=﹣.此时f(x)=sin(11x﹣)在(,)上不单调,不满足题意.当ω=9时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=,此时f(x)=sin(9x+)在(,)上单调递减,不满足题意;故此时ω无解.(2)若f(x)在(,)单调递减,则ω•+φ≥2kπ+,且ω•+φ≤2kπ+,k∈,即﹣ω•﹣φ≤﹣2kπ﹣③,且ω•+φ≤2kπ+,k∈④,把③④可得ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.当ω=11时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=﹣.此时f(x)=sin(11x﹣)在(,)上不单调,不满足题意.当ω=9时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=,此时f(x)=sin(9x+)在(,)上单调递减,满足题意;故ω的最大值为9.故答案为:9.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.(14分)设函数,其中0<ω<2;(Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;(Ⅱ)若函数f(x)的图象的一条对称轴为,求ω的值.【解答】解:(Ⅰ)∵f(x)=sin2ωx+…(2分)=sin(2ωx+)+.…(3分)∵T=π,ω>0,∴,∴ω=1.…(4分)令,…(5分)得,…(6分)所以f(x)的单调增区间为:.…(7分)(Ⅱ)∵的一条对称轴方程为,∴.…(9分)∴.…(11分)又0<ω<2,∴.∴k=0,∴.…(13分)16.(14分)已知△ABC中.(1)设•=•,求证:△ABC是等腰三角形;(2)设向量=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,若sinA=,求sin(﹣B)的值.【解答】(1)证明:∵•=•,∴,∴,即.∴△ABC是等腰三角形;(2)解:=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,则∴,则,得,∴sin2C=0,∵C∈(0,π),∴.∵,,∴,.∴.17.(14分)如图,半径为1,圆心角为的圆弧上有一点C.(1)若C为圆弧AB的中点,点D在线段OA上运动,求|+|的最小值;(2)若D,E分别为线段OA,OB的中点,当C在圆弧上运动时,求•的取值范围.(1)以O为原点,OA为x轴建立直角坐标系,则【解答】解:设D(t,0)(0≤t≤1),则,所以,当时,.(2)由题意,设C(co sθ,sinθ),所以=.因为,则,所以.18.(16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.【解答】解:(1)由题意,当MN和AB之间的距离为1米时,MN应位于DC上方,且此时△EMN中MN边上的高为0.5米,又因为EM=EN=1米,所以MN=米,所以,即三角通风窗EMN的通风面积为(2)当MN在矩形区域内滑动,即时,△EMN的面积;当MN在半圆形区域内滑动,即时,△EMN的面积综上可得;(3)当MN在矩形区域内滑动时,f(x)在区间上单调递减,则f(x)<f(0)=;当MN在半圆形区域内滑动,等号成立时,因此当(米)时,每个三角形得到最大通风面积为平方米.19.(16分)如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.(1)求PQ的最小值;(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.【解答】解:设∠CPQ=θ,则CP=PQcosθ,CQ=PQsinθ(1)()∴∴(2)分别以AB,AD所在直线为x轴、y轴建立平面直角坐标系,设Q(x,1),P(1,y),设∠DAQ=α,∠PAB=β∴,即xy+(x+y)=1又tanα=x,tanβ=y∴,∴∴20.(16分)已知函数f(x)=x|x﹣a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.【解答】解:(1)由f(x)在R上是增函数,则即﹣2≤a≤2,则a范围为﹣2≤a≤2;(4分)(2)由题意得对任意的实数x∈[1,2],f(x)<g(x)恒成立,即x|x﹣a|<1,当x∈[1,2]恒成立,即,,,故只要且在x∈[1,2]上恒成立即可,在x∈[1,2]时,只要的最大值小于a且的最小值大于a即可,(6分)而当x∈[1,2]时,,为增函数,;当x∈[1,2]时,,为增函数,,所以;(10分)(3)当﹣2≤a≤2时,f(x)在R上是增函数,则关于x的方程f(x)=tf(a)不可能有三个不等的实数根;(11分)则当a∈(2,4]时,由得x≥a时,f(x)=x2+(2﹣a)x对称轴,则f(x)在x∈[a,+∞)为增函数,此时f(x)的值域为[f(a),+∞)=[2a,+∞),x<a 时,f(x)=﹣x2+(2+a)x对称轴,则f(x)在为增函数,此时f(x)的值域为,f(x)在为减函数,此时f(x)的值域为;由存在a∈(2,4],方程f(x)=tf(a)=2ta有三个不相等的实根,则,即存在a∈(2,4],使得即可,令,即可,而g(a)在a∈(2,4]上是增函数,,只要使t<(g(a))max故实数t的取值范围为;(15分)同理可求当a∈[﹣4,﹣2)时,t的取值范围为;综上所述,实数t的取值范围为.(16分)。
2015-2016学年天一大联考高一年级阶段性测试(一)
![2015-2016学年天一大联考高一年级阶段性测试(一)](https://img.taocdn.com/s3/m/4858ec2631126edb6f1a1061.png)
天一大联考2015-2016学年高一年级阶段性测试(一)数学本试题卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
(1)若集合{}0lg |>=x x A ,{}20|<<=x x B ,则如图所示的阴影部分所表示的集合为…………… ( ){}101|)(<<x x A {}102|)(<<x x B {}20|)(<<x x C {}21|)(<<x x D(2)满足{}{}5,3,1,01,0⊆⊆M 的集合M 的个数是………… ( ) (A )4 (B )3 (C )2 (D )1 (3)函数()113lg 2++++-=x x x y 的定义域为………… ( ) ()[)()R D C B A )(,3)(,2)(2,3)(+∞-+∞-(4)函数2xy -=与x y log21=的图象关于………………… ( )(A )x 轴对称 (B )y 轴对称(C )原点对称 (D )直线x y =对称(5)下列函数的值域是()+∞,0的是………………………… ( )()x x f D x f C k b kx x f B x x f A xx 2)()()()()0()()(32)()(log 232-==≠+=--=(6)下列各组函数的图象相同的是…………………… ( )()44222)(,)()()(,)()()(,1)()(8)(,8)()(xx xx x x g x x f D x g x f C x g x f B xx x g x x f A ======+=+=(7)在()+∞,2上,下列函数随着x 的增大,函数值y 增长最快的是……( )x y xy C y B xy A x====)D ()()()(log 22(8)定义两种运算:()b a b a +=*lg ,a ⊙b =()b a -lg ,则x)⊙1()1()(-*=x x f 是 (A )偶函数(B )奇函数(C )既是奇函数,又是偶函数 (D )非奇非偶函数 (9)若函数()112)(2-+--=m x m x f x在区间(]2,∞-上单调递减,那么实数函数m 的取值范围是……………………………………………… ( )(A )3≥m (B )1-≥m (C )3≤m (D )1-≤m(10)若2.0log3.0=a ,5.0log 2=b ,3.02=c ,则a ,b ,c 的大小关系为 ( )a cb D bc a C c b a B b a c A >>>>>>>>)()()()((11)设1>x ,1>y ,且满足()y x y x loglog log 777+=+,则()()11log log 77-+-y x 的值等于…………………………… ( ))()(1)(7)(D C B A(12)已知定义域为()()+∞∞-,00, 的函数()x f 是偶函数,且()02=f ,又函数()xx f y =在()+∞,0上是减函数,则不等式()0>x f 的解集为……( )()()()+∞-,00,2 A ()()()+∞-∞-,22, B ()()()2,00,2 -C ()()()2,02, -∞-D第II 卷二、填空题:本大题共4小题,每小题5分.(13)幂函数()x f y =的图象经过点(2,8),则⎪⎭⎫⎝⎛21f 的值为_______.(14)若53=m,103=n ,则9mn -=____________.(15)设函数()()⎪⎪⎩⎪⎪⎨⎧<-≥-=⎪⎭⎫ ⎝⎛,2,1,2,121log 2x x x x f x 若()10>x f ,则x 0的取值范围是____________.(16)若一次函数()b ax x f -=有一个零点2,那么函数()x a x bx x g lg lg -=的零点个数是___________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题10分) 已知集合⎭⎬⎫⎩⎨⎧<<=421|2x x A ,{}1lg |<=x x B , {}22|+<<=t x t x M .若 ()B A M ⊆,求实数t 的取值范围.(18)(本小题满分12分) 求下列格式的值:(I )()5297271027.0824212313222312-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--+-+⋅⋅----+;(II )()()()334433222222.1lg 1000lg 8lg 27lg ---+++-+.(19)(本小题满分12分)已知二次函数()x f y =的最小值为3,且()()1131==-f f .(I )求函数()x f 的解析式. (II )若函数()()x f x g ex-=(其中e=2.718 28…),那么()x g 在区间()2,1上是否存在零点?请说明理由.(20)(本小题12分)某市城区实行三级阶梯水价(阶梯水价就是分段累积计费),第一阶梯水量为每户每 月12吨一下(含12吨)部分,价格为1.60元/吨;第二阶梯水量为每户每月20~12 吨(含20吨),价格为2.40元/吨;第三阶梯水量为每户每月20吨以上部分,价格 为3.20元/吨。
无锡市高一上册期末数学试卷含解析强化班-推荐
![无锡市高一上册期末数学试卷含解析强化班-推荐](https://img.taocdn.com/s3/m/01752f3ccc175527072208c6.png)
2016-2017学年江苏省无锡市中学高一(上)期末数学试卷(强化班)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.M)∩N= .1.(5分)已知M={x|﹣2≤x≤2},N={x|x<1},则(∁R2.(5分)设x,y∈R,向量,,且,,则x+y= .3.(5分)已知向量夹角为45°,且,则= .4.(5分)已知cosα=,且α∈(﹣,0),则sin(π﹣α)= .5.(5分)设2a=5b=m,且+=2,m= .6.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原的倍(纵坐标不变),那么所得图象的解析式为y= .7.(5分)若函数的图象与x轴有公共点,则m的取值范围是.8.(5分)设向量,满足,=(2,1),且与的方向相反,则的坐标为.9.(5分)若θ是△ABC的一个内角,且,则sinθ﹣cosθ的值为.10.(5分)已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则= .11.(5分)已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是.12.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.13.(5分)对于实数a和b,定义运算“*”:,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则实数m的取值范围是;x1+x2+x3的取值范围是.14.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)单调,则ω的最大值为.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.(14分)设函数,其中0<ω<2;(Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;(Ⅱ)若函数f(x)的图象的一条对称轴为,求ω的值.16.(14分)已知△ABC中.(1)设•=•,求证:△ABC是等腰三角形;(2)设向量=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,若sinA=,求sin (﹣B)的值.17.(14分)如图,半径为1,圆心角为的圆弧上有一点C.(1)若C为圆弧AB的中点,点D在线段OA上运动,求|+|的最小值;(2)若D,E分别为线段OA,OB的中点,当C在圆弧上运动时,求•的取值范围.18.(16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.19.(16分)如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.(1)求PQ的最小值;(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.20.(16分)已知函数f(x)=x|x﹣a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.高一(上)期末数学试卷(强化班)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.M)∩N= {x|x<﹣2} .1.(5分)已知M={x|﹣2≤x≤2},N={x|x<1},则(∁R【解答】解:∵M={x|﹣2≤x≤2},N={x|x<1},M={x|x<﹣2或x>2},∴∁RM)∩N={x|x<﹣2}.则(∁R故答案为:{x|x<﹣2}2.(5分)设x,y∈R,向量,,且,,则x+y= 0 .【解答】解:∵,,∴=2x﹣4=0,2y+4=0,则x=2,y=﹣2.∴x+y=0.故答案为:0.3.(5分)已知向量夹角为45°,且,则= 3.【解答】解:∵,=1∴=∴|2|====解得故答案为:34.(5分)已知cosα=,且α∈(﹣,0),则sin(π﹣α)= ﹣.【解答】解:∵cosα=,且α∈(﹣,0),∴sinα=﹣=﹣,则sin(π﹣α)=sinα=﹣.故答案为:﹣5.(5分)设2a=5b=m,且+=2,m= .【解答】解:∵2a=5b=m,∴a=log2m,b=log5m,由换底公式得,∴m2=10,∵m>0,∴故应填6.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原的倍(纵坐标不变),那么所得图象的解析式为y= sin(4x+).【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).7.(5分)若函数的图象与x轴有公共点,则m的取值范围是[﹣1,0).【解答】解:作出函数的图象如图,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得﹣1≤m<0.故答案为:[﹣1,0).8.(5分)设向量,满足,=(2,1),且与的方向相反,则的坐标为(﹣4,﹣2).【解答】解:设=(x,y),∵与的方向相反,∴=(2λ,λ),(λ<0).又∵,∴=2,解得λ=﹣2,∴=(﹣4,﹣2).故答案为:(﹣4,﹣2).9.(5分)若θ是△ABC的一个内角,且,则sinθ﹣cosθ的值为.【解答】解:∵θ是△ABC的一个内角,且,∴sinθ>0,cosθ<0,∴sinθ﹣cosθ====,故答案为.10.(5分)已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则= ﹣.【解答】解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于,∴函数f(x)的周期T=,∵ω>0∴ω=3∵角φ的终边经过点P(1,﹣2),∴sinφ=,cosφ=∴=sin(3•+φ)=sin(+φ)=(sinφ+cosφ)=•()=﹣故答案为:﹣11.(5分)已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是.【解答】解:∵f(x)=是(﹣∞,+∞)上的增函数,∴,解得:,故答案为:12.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:13.(5分)对于实数a和b,定义运算“*”:,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则实数m 的取值范围是 ;x 1+x 2+x 3的取值范围是 .【解答】解:∵,∴f (x )=(2x ﹣1)*(x ﹣1)=,则当x=0时,函数取得极小值0,当x=时,函数取得极大值故关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3时, 实数m 的取值范围是令f (x )=,则x=,或x=不妨令x 1<x 2<x 3时 则<x 1<0,x 2+x 3=1∴x 1+x 2+x 3的取值范围是故答案为:,14.(5分)已知函数f (x )=sin (ωx +φ)(ω>0,|φ|≤),x=﹣为f (x )的零点,x=为y=f (x )图象的对称轴,且f (x )在(,)单调,则ω的最大值为 9 .【解答】解:∵函数f (x )=sin (ωx +φ)(ω>0,|φ|≤),x=﹣为f (x )的零点,x=为y=f (x )图象的对称轴,∴ω(﹣)+φ=nπ,n ∈,且ω•+φ=n′π+,n′∈,∴相减可得ω•=(n′﹣n )π+=kπ+,k ∈,即ω=2k +1,即ω为奇数.∵f (x )在(,)单调,(1)若f(x)在(,)单调递增,则ω•+φ≥2kπ﹣,且ω•+φ≤2kπ+,k∈,即﹣ω•﹣φ≤﹣2kπ+①,且ω•+φ≤2kπ+,k∈②,把①②可得ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.当ω=11时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=﹣.此时f(x)=sin(11x﹣)在(,)上不单调,不满足题意.当ω=9时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=,此时f(x)=sin(9x+)在(,)上单调递减,不满足题意;故此时ω无解.(2)若f(x)在(,)单调递减,则ω•+φ≥2kπ+,且ω•+φ≤2kπ+,k∈,即﹣ω•﹣φ≤﹣2kπ﹣③,且ω•+φ≤2kπ+,k∈④,把③④可得ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.当ω=11时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=﹣.此时f(x)=sin(11x﹣)在(,)上不单调,不满足题意.当ω=9时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=,此时f(x)=sin(9x+)在(,)上单调递减,满足题意;故ω的最大值为9.故答案为:9.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.(14分)设函数,其中0<ω<2;(Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;(Ⅱ)若函数f(x)的图象的一条对称轴为,求ω的值.【解答】解:(Ⅰ)∵f(x)=sin2ωx+…(2分)=sin(2ωx+)+.…(3分)∵T=π,ω>0,∴,∴ω=1.…(4分)令,…(5分)得,…(6分)所以f(x)的单调增区间为:.…(7分)(Ⅱ)∵的一条对称轴方程为,∴.…(9分)∴.…(11分)又0<ω<2,∴.∴k=0,∴.…(13分)16.(14分)已知△ABC中.(1)设•=•,求证:△ABC是等腰三角形;(2)设向量=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,若sinA=,求sin (﹣B)的值.【解答】(1)证明:∵•=•,∴,∴,即.∴△ABC是等腰三角形;(2)解:=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,则∴,则,得,∴sin2C=0,∵C∈(0,π),∴.∵,,∴,.∴.17.(14分)如图,半径为1,圆心角为的圆弧上有一点C.(1)若C为圆弧AB的中点,点D在线段OA上运动,求|+|的最小值;(2)若D,E分别为线段OA,OB的中点,当C在圆弧上运动时,求•的取值范围.【解答】解:(1)以O为原点,OA为x轴建立直角坐标系,则设D(t,0)(0≤t≤1),则,所以,当时,.(2)由题意,设C(co sθ,sinθ),所以=.因为,则,所以.18.(16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.【解答】解:(1)由题意,当MN和AB之间的距离为1米时,MN应位于DC上方,且此时△EMN中MN边上的高为0.5米,又因为EM=EN=1米,所以MN=米,所以,即三角通风窗EMN的通风面积为(2)当MN在矩形区域内滑动,即时,△EMN的面积;当MN在半圆形区域内滑动,即时,△EMN的面积综上可得;(3)当MN在矩形区域内滑动时,f(x)在区间上单调递减,则f(x)<f(0)=;当MN在半圆形区域内滑动,等号成立时,因此当(米)时,每个三角形得到最大通风面积为平方米.19.(16分)如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.(1)求PQ的最小值;(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.【解答】解:设∠CPQ=θ,则CP=PQcosθ,CQ=PQsinθ(1)()∴∴(2)分别以AB,AD所在直线为x轴、y轴建立平面直角坐标系,设Q(x,1),P(1,y),设∠DAQ=α,∠PAB=β∴,即xy+(x+y)=1又tanα=x,tanβ=y∴,∴∴20.(16分)已知函数f(x)=x|x﹣a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.【解答】解:(1)由f(x)在R上是增函数,则即﹣2≤a≤2,则a范围为﹣2≤a≤2;(4分)(2)由题意得对任意的实数x∈[1,2],f(x)<g(x)恒成立,即x|x﹣a|<1,当x∈[1,2]恒成立,即,,,故只要且在x∈[1,2]上恒成立即可,在x∈[1,2]时,只要的最大值小于a且的最小值大于a即可,(6分)而当x∈[1,2]时,,为增函数,;当x∈[1,2]时,,为增函数,,所以;(10分)(3)当﹣2≤a≤2时,f(x)在R上是增函数,则关于x的方程f(x)=tf(a)不可能有三个不等的实数根;(11分)则当a∈(2,4]时,由得x≥a时,f(x)=x2+(2﹣a)x对称轴,则f(x)在x∈[a,+∞)为增函数,此时f(x)的值域为[f(a),+∞)=[2a,+∞),x<a 时,f(x)=﹣x2+(2+a)x对称轴,则f(x)在为增函数,此时f(x)的值域为,f(x)在为减函数,此时f(x)的值域为;由存在a∈(2,4],方程f(x)=tf(a)=2ta有三个不相等的实根,则,即存在a∈(2,4],使得即可,令,即可,而g(a)在a∈(2,4]上是增函数,,只要使t<(g(a))max故实数t的取值范围为;(15分)同理可求当a∈[﹣4,﹣2)时,t的取值范围为;综上所述,实数t的取值范围为.(16分)。
无锡市天一中学高一(上)期中数学试卷(解析版)
![无锡市天一中学高一(上)期中数学试卷(解析版)](https://img.taocdn.com/s3/m/24b573fb5022aaea998f0f29.png)
2016-2017学年江苏省无锡市天一中学高一(上)期中数学试卷一、选择题(本大题共2道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x=3的倾斜角是()A.90°B.60°C.30°D.不存在2.圆(x+2)2+y2=5的圆心为()A.(2,0) B.(0,2) C.(﹣2,0)D.(0,﹣2)3.已知a∥α,b⊂α,则直线a与直线b的位置关系是()A.平行B.相交或异面C.异面D.平行或异面4.如图,水平放置的圆柱形物体的三视图是()A B C.D5.在如图的正方体中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为()A.30°B.45°C.60°D.90°6.直线2x﹣y+4=0同时过第()象限.A.一,二,三B.二,三,四C.一,二,四D.一,三,四7.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣98.以A(1,3),B(﹣5,1)为端点的线段的垂直平分线方程是()A.3x﹣y﹣8=0 B.3x+y+4=0 C.3x﹣y+6=0 D.3x+y+2=09.两个球的半径之比为1:3,那么这两个球的表面积之比为()A.1:9 B.1:27 C.1:3 D.1:10.已知以点A(2,﹣3)为圆心,半径长等于5的圆O,则点M(5,﹣7)与圆O的位置关系是()A.在圆内B.在圆上C.在圆外D.无法判断11.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A B C D12.圆x2+y2+2x+4y﹣3=0上到直线x+y+1=0)A.1个 B.2个 C.3个 D.4个二、填空题(本大题共4道小题,每小题5分,共20分.把答案填在题中横线上)13.已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m的值为.14.已知直线5x+12y+a=0与圆x2﹣2x+y2=0相切,求a的值.15.过点(1,2)且在两坐标轴上的截距相等的直线的方程.16.已知a,b为直线,α,β,γ为平面,有下列四个命题:(1)a∥α,b∥β,则a∥b;(2)a⊥γ,b⊥γ,则a∥b;(3)a∥b,b⊂α,则a∥α;(4)a⊥b,a⊥α,则b∥α;其中正确命题是.三、解答题(本大题共6道小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.如图,建造一个容积为16m3,深为2m,宽为2m的长方体无盖水池,如果池底的造价为120元/m2,池壁的造价为80元/m2,求水池的总造价.18.已知直线2x+(t﹣2)y+3﹣2t=0,分别根据下列条件,求t的值:(1)过点(1,1);(2)直线在y轴上的截距为﹣3.19.求经过点M(﹣1,2),且满足下列条件的直线方程:(1)与直线2x+y+5=0平行;(2)与直线2x+y+5=0垂直.20.求圆心在直线y=﹣4x上,并且与直线l:x+y﹣1=0相切于点P(3,﹣2)的圆的方程.21.直线l经过点P(5,5),且和圆C:x2+y2=25l 的方程.22.如图,在正方体ABCD﹣A1B1C1D1中,(1)求证直线BD与平面A1B1C1D1平行;(2)求证:面BB1DD1⊥面AB1C(3)求二面角A﹣B1C﹣C1的大小.2016-2017学年江苏省无锡市天一中学高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共2道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x=3的倾斜角是()A.90°B.60°C.30°D.不存在【考点】直线的倾斜角.【分析】直接通过直线方程,求出直线的倾斜角即可.【解答】解:∵直线方程为x=3,直线与x轴垂直,∴直线的倾斜角为90°.故选:A.2.圆(x+2)2+y2=5的圆心为()A.(2,0) B.(0,2) C.(﹣2,0)D.(0,﹣2)【考点】圆的标准方程.【分析】直接利用圆的标准方程,可得结论.【解答】解:圆(x+2)2+y2=5,圆心为(﹣2,0).故选:C.3.已知a∥α,b⊂α,则直线a与直线b的位置关系是()A.平行B.相交或异面C.异面D.平行或异面【考点】空间中直线与直线之间的位置关系.【分析】由直线a∥平面α,直线b在平面α内,知a∥b,或a与b异面.【解答】解:∵直线a∥平面α,直线b在平面α内,∴a∥b,或a与b异面,故答案为:平行或异面,4.如图,水平放置的圆柱形物体的三视图是()A B C.D【考点】简单空间图形的三视图.【分析】依据三视图的画法法则,推出几何体的三视图,即可得到正确选项.【解答】解:由题意可知:几何体的正视图是矩形,侧视图是圆,俯视图的矩形如图:故选A.5.在如图的正方体中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为()A.30°B.45°C.60°D.90°【考点】异面直线及其所成的角.【分析】连接C1B,D1A,AC,D1C,将MN平移到D1A,根据异面直线所成角的定义可知∠D1AC为异面直线AC和MN所成的角,而三角形D1AC为等边三角形,即可求出此角.【解答】解:连接C1B,D1A,AC,D1C,MN∥C1B∥D1A∴∠D1AC为异面直线AC和MN所成的角而三角形D1AC为等边三角形∴∠D1AC=60°故选C.6.直线2x﹣y+4=0同时过第()象限.A.一,二,三B.二,三,四C.一,二,四D.一,三,四【考点】直线的一般式方程.【分析】根据题意,作出直线在平面直角坐标系的图象,由图象可得答案.【解答】解:根据题意,直线的方程为2x﹣y+4=0,其与x轴交点的坐标为(﹣2,0),与y轴交点坐标为(0,4),图象如图:同时过一、二、三象限;故选:A.7.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣9【考点】三点共线.【分析】根据三点A、B、C共线⇔k AB=k AC,即可求出.【解答】解:∵三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,∴k AC=k AB b=﹣9.故选D.8.以A(1,3),B(﹣5,1)为端点的线段的垂直平分线方程是()A.3x﹣y﹣8=0 B.3x+y+4=0 C.3x﹣y+6=0 D.3x+y+2=0【考点】直线的一般式方程与直线的垂直关系.【分析】求出AB的中点坐标,求出AB的中垂线的斜率,然后求出中垂线方程.【解答】解:因为A(1,3),B(﹣5,1),所以AB的中点坐标(﹣2,2),直线AB所以AB的中垂线的斜率为:﹣3,所以以A(1,3),B(﹣5,1)为端点的线段的垂直平分线方程是y﹣2=﹣3(x+2),即3x+y+4=0.故选B.9.两个球的半径之比为1:3,那么这两个球的表面积之比为()A.1:9 B.1:27 C.1:3 D.1:【考点】球的体积和表面积.【分析】利用球的表面积公式,直接求解即可.【解答】解:两个球的半径之比为1:3,又两个球的表面积等于两个球的半径之比的平方,(球的面积公式为:4πr2)则这两个球的表面积之比为1:9.故选:A.10.已知以点A(2,﹣3)为圆心,半径长等于5的圆O,则点M(5,﹣7)与圆O的位置关系是()A.在圆内B.在圆上C.在圆外D.无法判断【考点】点与圆的位置关系.【分析】根据两点间的距离公式求出AM的长,再与半径比较确定点M的位置.【解答】解:,所以点M在⊙A上.故选:B.11.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A B C D【考点】确定直线位置的几何要素.【分析】本题是一个选择题,按照选择题的解法来做题,由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y 轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,得到结果.【解答】解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选C.12.圆x2+y2+2x+4y﹣3=0上到直线x+y+1=0)A.1个 B.2个 C.3个 D.4个【考点】直线与圆的位置关系.【分析】圆x2+y2+2x+4y﹣3=0可化为(x+1)2+(y+2)2=8,过圆心平行于直线x+y+1=0的直线与圆有两个交点,另一条与直线x+y+1=0圆相切,只有一个交点.【解答】解:圆x2+y2+2x+4y﹣3=0可化为(x+1)2+(y+2)2=8∴圆心坐标是(﹣1,﹣2),半径是∵圆心到直线的距离为∴过圆心平行于直线x+y+1=0的直线与圆有两个交点,另一条与直线x+y+1=0所以,共有3个交点.故选:C二、填空题(本大题共4道小题,每小题5分,共20分.把答案填在题中横线上)13.已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m【考点】两条直线平行的判定.【分析】两直线平行,则方程中一次项系数之比相等,但不等于常数项之比,接解出m的值.【解答】解:∵两直线平行,14.已知直线5x+12y+a=0与圆x2﹣2x+y2=0相切,求a的值.【考点】圆的切线方程.【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1∵直线与圆相切∴圆心到直线的距离为半径,求得a=8或a=﹣18.15.过点(1,2)且在两坐标轴上的截距相等的直线的方程2x﹣y=0或x+y﹣3=0.【考点】直线的两点式方程.【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,2)代入所设的方程得:a=3,则所求直线的方程为x+y=3即x+y﹣3=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,2)代入所求的方程得:k=2,则所求直线的方程为y=2x即2x﹣y=0.综上,所求直线的方程为:2x﹣y=0或x+y﹣3=0.故答案为:2x﹣y=0或x+y﹣3=016.已知a,b为直线,α,β,γ为平面,有下列四个命题:(1)a∥α,b∥β,则a∥b;(2)a⊥γ,b⊥γ,则a∥b;(3)a∥b,b⊂α,则a∥α;(4)a⊥b,a⊥α,则b∥α;其中正确命题是(2).【考点】空间中直线与平面之间的位置关系.【分析】利用空间直线与平面的平行与垂直判定及性质即可解决.【解答】解:对于(1),a∥α,b∥β,则a∥b,α、β位置关系不确定,a、b的位置关系不能确定;对于(2),由垂直于同一平面的两直线平行,知结论正确;对于(3),a∥b,b⊂α,则a∥α或a⊂α;对于(4),a⊥b,a⊥α,则b∥α或b⊂α.故答案为:(2)三、解答题(本大题共6道小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.如图,建造一个容积为16m3,深为2m,宽为2m的长方体无盖水池,如果池底的造价为120元/m2,池壁的造价为80元/m2,求水池的总造价.【考点】棱柱、棱锥、棱台的体积.【分析】求出水池的长,可得底面积与侧面积,利用池底的造价为120元/m2,池壁的造价为80元/m2,即可求水池的总造价.【解答】解:分别设长、宽、高为am,bm,hm;水池的总造价为y元,则V=abh=16,h=2,b=2,∴a=4m,2=8m2,∴S底=4×S侧=2×(2+4)×2=24m2,∴y=120×8+80×24=2880元.18.已知直线2x+(t﹣2)y+3﹣2t=0,分别根据下列条件,求t的值:(1)过点(1,1);(2)直线在y轴上的截距为﹣3.【考点】直线的截距式方程.【分析】(1)将点(1,1)代入直线方程求出t的值即可;(2)将点(0,﹣3)代入直线方程求出t的值即可.【解答】解:(1)过点(1,1),所以当x=1,y=1时,2+t﹣2+3﹣2t=0,解得:t=3;(2)直线在y轴上的截距为﹣3,所以过点(0,﹣3),故﹣3(t﹣2)+3﹣2t=0,解得:19.求经过点M(﹣1,2),且满足下列条件的直线方程:(1)与直线2x+y+5=0平行;(2)与直线2x+y+5=0垂直.【考点】直线的一般式方程与直线的垂直关系;直线的一般式方程与直线的平行关系.【分析】(1)设所求直线为:2x+y+c=0,代入点M的坐标,可得c,进而可得方程;(2)所求直线为:x﹣2y+c=0,由点M在直线上,即能求出所求直线方程.【解答】解:(1)由题意,可设所求直线为:2x+y+c=0,因为点M(﹣1,2)在直线上,所以2×(﹣1)+2+c=0,解得:c=0,所以所求直线方程为:2x+y=0;(2)同理,设所求直线为:x﹣2y+c=0.…因为点M(﹣1,2)在直线上,所以﹣1﹣2×2+c=0,解得:c=5,所以所求直线方程为:x﹣2y+5=020.求圆心在直线y=﹣4x上,并且与直线l:x+y﹣1=0相切于点P(3,﹣2)的圆的方程.【考点】直线与圆的位置关系;圆的标准方程.【分析】设圆的方程为(x﹣a)2+(y﹣b)2=r2(r>0),由圆心在直线y=﹣4x 上,并且与直线l:x+y﹣1=0相切于点P(3,﹣2),可以构造a,b,r的方程组,解方程组可得a,b,r的值,进而得到圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2(r>0)∴所求圆的方程为(x﹣1)2+(y+4)2=821.直线l经过点P(5,5),且和圆C:x2+y2=25l 的方程.【考点】直线的一般式方程;直线和圆的方程的应用.【分析】先画出图象可得到直线l的斜率k存在,然后根据直线的点斜式设出直线方程,再由Rt△AOC中,d2+AC2=OA2,k的值,进而可得到最后答案.【解答】解:如图易知直线l的斜率k存在,设直线l的方程为y﹣5=k(x﹣5)圆C:x2+y2=25的圆心为(0,0)半径r=5,圆心到直线l在Rt△AOC中,d2+AC2=OA2,2k2﹣5k+2=0,∴k=2l的方程为2x﹣y﹣5=0或x﹣2y+5=0.22.如图,在正方体ABCD﹣A1B1C1D1中,(1)求证直线BD与平面A1B1C1D1平行;(2)求证:面BB1DD1⊥面AB1C(3)求二面角A﹣B1C﹣C1的大小.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)由BD∥B1D1,能证明直线BD与平面A1B1C1D1平行.(2)推导出D1D⊥AC,AC⊥BD,从而AC⊥面DD1B1B,由此能证明面BB1DD1⊥面AB1C.(3)取B1C的中点E,连接AE,EC1.推导出∠AEC1为二面角A﹣B1C﹣C1的平面角,由此能求出二面角A﹣B1C﹣C1的大小.【解答】证明:(1)∵正方体ABCD﹣A1B1C1D1中,BD∥B1D1,BD⊄平面A1B1C1D1,B1D1⊂平面A1B1C1D1,∴直线BD与平面A1B1C1D1平行.(2)∵D1D⊥面ABCD,AC⊂面ABCD,∴D1D⊥AC,又∵在正方形ABCD中,∴由正方形性质得AC⊥BD,∵D1D∩BD=D,∴AC⊥面DD1B1B,又∵AC⊂面AB1C,∴面BB1DD1⊥面AB1C.(3)如图,取B1C的中点E,连接AE,EC1.∵AC,AB1,B1C分别为正方形的对角线,∴AC=AB1=B1C,∵E是B1C的中点∴AE⊥B1C,又∵在正方形BB1C1C中,∴由正方形性质得EC1⊥B1C,∴∠AEC1为二面角A﹣B1C﹣C1的平面角,设正方体ABCD﹣A1B1C1D1中棱长为2,则AB1=AC=B1C1AC1∴cos∠AEC1=∴∠AEC1∴二面角A﹣B1C﹣C120XX年4月4日。
2016-2017学年江苏省无锡市高一上期末数学试卷含答案解析
![2016-2017学年江苏省无锡市高一上期末数学试卷含答案解析](https://img.taocdn.com/s3/m/f6997667b307e87101f696de.png)
2016-2017学年江苏省无锡市高一(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分).1.(5分)设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B=.2.(5分)函数的最小正周期为.3.(5分)若函数f(x)=,则f(f(﹣2))=.4.(5分)在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为.5.(5分)已知幂函数y=f(x)的图象过点(,),则f()=.6.(5分)已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为.7.(5分)已知sin(α+π)=﹣,则sin(2α+)=.8.(5分)函数y=log2(3cosx+1),x∈[﹣,]的值域为.9.(5分)在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=.10.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=.11.(5分)若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是.12.(5分)若=1,tan(α﹣β)=,则tanβ=.13.(5分)已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是.14.(5分)若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是.二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.(15分)已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R).(1)若与向量2﹣垂直,求实数k的值;(2)若向量=(1,﹣1),且与向量k+平行,求实数k的值.16.(15分)设α∈(0,),满足sinα+cosα=.(1)求cos(α+)的值;(2)求cos(2α+π)的值.17.(15分)某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•b x.(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.18.(15分)已知函数f(x)=()x﹣2x.(1)若f(x)=,求x的值;(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围.19.(15分)已知t为实数,函数f(x)=2log a(2x+t﹣2),g(x)=log a x,其中0<a<1.(1)若函数y=g(a x+1)﹣kx是偶函数,求实数k的值;(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值.20.(15分)已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R.(1)当m=0时,求f()的值;(2)若f(x)的最小值为﹣1,求实数m的值;(3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.2016-2017学年江苏省无锡市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分).1.(5分)设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B={0,2,3} .【解答】解:全集U={0,1,2,3},集合A={1,2},B={2,3},则∁U A={0,3},所以(∁U A)∪B={0,2,3}.故答案为:{0,2,3}.2.(5分)函数的最小正周期为π.【解答】解:函数,∵ω=2,∴T==π.故答案为:π3.(5分)若函数f(x)=,则f(f(﹣2))=5.【解答】解:∵函数f(x)=,∴f(﹣2)=(﹣2)2﹣1=3,f(f(﹣2))=f(3)=3+2=5.故答案为:5.4.(5分)在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为﹣.【解答】解:在平面直角坐标系xOy中,∵300°角终边上一点P的坐标为(1,m),∴tan300°=tan(360°﹣60°)=﹣tan60°=﹣=,∴m=﹣,故答案为:﹣.5.(5分)已知幂函数y=f(x)的图象过点(,),则f()=4.【解答】解:∵幂函数y=f(x)=xα的图象过点(,),∴=,解得:α=﹣2,故f(x)=x﹣2,f()==4,故答案为:4.6.(5分)已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为.【解答】解:∵向量与满足||=2,||=3,且•=﹣3,设与的夹角为θ,则cosθ===﹣,∴θ=,故答案为:.7.(5分)已知sin(α+π)=﹣,则sin(2α+)=.【解答】解:∵sin(α+π)=﹣,∴sinα=,∴sin(2α+)=cos2α=1﹣2sin2α=1﹣=,故答案为:.8.(5分)函数y=log2(3cosx+1),x∈[﹣,]的值域为[0,2] .【解答】解:∵x∈[﹣,],∴0≤cosx≤1,∴1≤3cosx+1≤4,∴0≤log2(3cosx+1)≤2,故答案为[0,2].9.(5分)在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=﹣.【解答】解:∵E是边AC的中点,=4,∴=,所以x=﹣,y=,x+y=﹣.故答案为:﹣.10.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=sin(4x+).【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).11.(5分)若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是(0,2).【解答】解:∵函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,∴,求得0<a<2,故答案为:(0,2).12.(5分)若=1,tan(α﹣β)=,则tanβ=.【解答】解:∵═==,∴tanα=,又tan(α﹣β)=,则tanβ=tan[α﹣(α﹣β)]===,故答案为:.13.(5分)已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是[﹣2﹣2,﹣2] .【解答】解:如x<0,则﹣x>0,∵当x>0时,f(x)=4x﹣x2,∴当﹣x>0时,f(﹣x)=﹣4x+x2,∵函数f(x)是奇函数,∴f(0)=0,且f(﹣x)=﹣4x+x2=﹣f(x),则f(x)=4x+x2,x<0,则函数f(x)=,则当x>0,f(x)=4x﹣x2=﹣(x﹣2)2+4≤4,当x<0,f(x)=4x+x2=(x+2)2﹣4≥﹣4,当x<0时,由4x+x2=4,即x2+4x﹣4=0得x==﹣2﹣2,(正值舍掉),若函数f(x)在区间[t,4]上的值域为[﹣4,4],则﹣2﹣2≤t≤﹣2,即实数t的取值范围是[﹣2﹣2,﹣2],故答案为:[﹣2﹣2,﹣2]14.(5分)若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是[,] .【解答】解:∵函数f(x)=|sin(ωx+)|(ω>0)在[π,π]上单调递减,∴T=≥,即ω≤2.∵ω>0,根据函数y=|sinx|的周期为π,减区间为[kπ+,kπ+π],k∈z,由题意可得区间[π,]内的x值满足kπ+≤ωx+≤kπ+π,k∈z,即ω•π+≥kπ+,且ω•+≤kπ+π,k∈z.解得k+≤ω≤(k+),k∈z.求得:当k=0时,≤ω≤,不符合题意;当k=1时,≤ω≤;当k=2时,≤ω≤,不符合题意.综上可得,≤ω≤,故答案为:[,].二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.(15分)已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R).(1)若与向量2﹣垂直,求实数k的值;(2)若向量=(1,﹣1),且与向量k+平行,求实数k的值.【解答】解:(1)=+k=(﹣3+k,1﹣2k),2﹣=(﹣7,4).∵与向量2﹣垂直,∴•(2﹣)=﹣7(﹣3+k)+4(1﹣2k)=0,解得k=.(2)k+=(k+1,﹣2k﹣1),∵与向量k+平行,∴(﹣2k﹣1)(﹣3+k)﹣(1﹣2k)(k+1)=0,解得k=.16.(15分)设α∈(0,),满足sinα+cosα=.(1)求cos(α+)的值;(2)求cos(2α+π)的值.【解答】解:(1)∵α∈(0,),满足sinα+cosα==2sin(α+),∴sin(α+)=.∴cos(α+)==.(2)∵cos(2α+)=2﹣1=,sin(2α+)=2sin(α+)cos(α+)=2••=,∴cos(2α+π)=cos[(2α+)+]=cos(2α+)cos﹣sin(2α+)sin=﹣=.17.(15分)某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•b x.(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.【解答】解:(1)由题目中的数据知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数;所以,应选取二次函数y=﹣x2+ax+b进行描述;(2)将(1,229),(4,244)代入y=﹣x2+ax+b,解得a=10,b=220,,∴y=﹣x2+10x+220,1≤x≤12,x∈N+y=﹣(x﹣5)2+245,∴x=5,y max=245万元.18.(15分)已知函数f(x)=()x﹣2x.(1)若f(x)=,求x的值;(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围.【解答】解:(1)令t=2x>0,则﹣t=,解得t=﹣4(舍)或t=,…3分,即2x=,所以x=﹣2…6分(2)因为f(﹣x)=﹣2﹣x=2x﹣=﹣f(x),所以f(x)是定义在R上的奇函数,…7故f(0)=0,由f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)=0得:f(2m﹣mcosθ)<f(1+cosθ)…8分,又f(x)=()x﹣2x在R上单调递减,…9分,所以2m﹣mcosθ>1+cosθ对所有θ∈[0,]都成立,…10分,所以m>,θ∈[0,],…12分,令μ=cosθ,θ∈[0,],则μ∈[0,1],y==﹣1+,μ∈[0,1]的最大值为2,所以m的取值范围是m>2…16分19.(15分)已知t为实数,函数f(x)=2log a(2x+t﹣2),g(x)=log a x,其中0<a<1.(1)若函数y=g(a x+1)﹣kx是偶函数,求实数k的值;(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值.【解答】解:(1)∵函数y=g(a x+1)﹣kx是偶函数,∴log a(a﹣x+1)+kx=log a(a x+1)﹣kx,对任意x∈R恒成立,∴2kx=log a(a x+1)﹣log a(a﹣x+1)=log a()=x∴k=,(2)由题意设h(x)=f(x)﹣g(x)=2log a(2x+t﹣2)﹣log a x<0在x∈[1,4]恒成立,∴2log a(2x+t﹣2)<log a x,∵0<a<1,x∈[1,4],∴只需要2x+t﹣2>恒成立,即t>﹣2x++2恒成立,∴t>(﹣2x++2)max,令y=﹣2x++2=﹣2()2++2=﹣2(﹣)2+,x∈[1,4],∴(﹣2x++2)max=1,∴t的取值范围是t>1,(3)∵t=4,0<a<1,∴函数y=|f(x)|=|2log a(2x+2)|在(﹣1,﹣)上单调递减,在(﹣,+∞)上单调递增,∵当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],且f(﹣)=0,∴﹣1<m≤≤n(等号不同时取到),令|2log a(2x+2)|=2,得x=或,又[﹣(﹣)]﹣[(﹣)﹣]=>0,∴﹣(﹣)>(﹣)﹣,∴n﹣m的最小值为(﹣)﹣=,∴a=.20.(15分)已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R.(1)当m=0时,求f()的值;(2)若f(x)的最小值为﹣1,求实数m的值;(3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.【解答】解:(1)•=(cos,sin)•(cos,﹣sin)=cos cos﹣sin sin=cos(+)=cos2x,当m=0时,f(x)=•+1=cos2x+1,则f()=cos(2×)+1=cos+1=;(2)∵x∈[﹣,],∴|+|===2cosx,则f(x)=•﹣m|+|+1=cos2x﹣2mcosx+1=2cos2x﹣2mcosx,令t=cosx,则≤t≤1,则y=2t2﹣2mt,对称轴t=,①当<,即m<1时,当t=时,函数取得最小值此时最小值y=﹣m=﹣1,得m=(舍),②当≤≤1,即m<1时,当t=时,函数取得最小值此时最小值y=﹣=﹣1,得m=,③当>1,即m>2时,当t=1时,函数取得最小值此时最小值y=2﹣2m=﹣1,得m=(舍),综上若f(x)的最小值为﹣1,则实数m=.(3)令g(x)=2cos2x﹣2mcosx+m2=0,得cosx=或,∴方程cosx=或在x∈[﹣,]上有四个不同的实根,则,得,则≤m<,即实数m的取值范围是≤m<.。
(完整)江苏省无锡市2016-2017学年高一上学期期末数学试卷Word版含解析
![(完整)江苏省无锡市2016-2017学年高一上学期期末数学试卷Word版含解析](https://img.taocdn.com/s3/m/ad8a6899b7360b4c2f3f6403.png)
2016-2017学年江苏省无锡市高一(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分).1.设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B=.2.函数的最小正周期为.3.若函数f(x)=,则f(f(﹣2))=.4.在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m 的值为.5.已知幂函数y=f(x)的图象过点(,),则f()=.6.已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为.7.已知sin(α+π)=﹣,则sin(2α+)=.8.函数y=log2(3cosx+1),x∈[﹣,]的值域为.9.在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=.10.将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=.11.若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是.12.若=1,tan(α﹣β)=,则tanβ=.13.已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是.14.若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是.二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R).(1)若与向量2﹣垂直,求实数k的值;(2)若向量=(1,﹣1),且与向量k+平行,求实数k的值.16.设α∈(0,),满足sinα+cosα=.(1)求cos(α+)的值;(2)求cos(2α+π)的值.17.某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:x14712y229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•b x.(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.18.已知函数f(x)=()x﹣2x.(1)若f(x)=,求x的值;(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围.19.已知t为实数,函数f(x)=2log a(2x+t﹣2),g(x)=log a x,其中0<a<1.(1)若函数y=g(a x+1)﹣kx是偶函数,求实数k的值;(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值.20.已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R.(1)当m=0时,求f()的值;(2)若f(x)的最小值为﹣1,求实数m的值;(3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.2016-2017学年江苏省无锡市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分).1.设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B={0,2,3} .【考点】交、并、补集的混合运算.【分析】根据补集与并集的定义,写出运算结果即可.【解答】解:全集U={0,1,2,3},集合A={1,2},B={2,3},则∁U A={0,3},所以(∁U A)∪B={0,2,3}.故答案为:{0,2,3}.2.函数的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】由函数解析式找出ω的值,代入周期公式T=即可求出函数的最小正周期.【解答】解:函数,∵ω=2,∴T==π.故答案为:π3.若函数f(x)=,则f(f(﹣2))=5.【考点】函数的值.【分析】先求出f(﹣2)=(﹣2)2﹣1=3,从而f(f(﹣2))=f(3),由此能求出结果.【解答】解:∵函数f(x)=,∴f(﹣2)=(﹣2)2﹣1=3,f(f(﹣2))=f(3)=3+2=5.故答案为:5.4.在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m 的值为﹣.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义、诱导公式,可得tan300°=﹣=,从而求得m的值.【解答】解:在平面直角坐标系xOy中,∵300°角终边上一点P的坐标为(1,m),∴tan300°=tan=﹣tan60°=﹣=,∴m=﹣,故答案为:﹣.5.已知幂函数y=f(x)的图象过点(,),则f()=4.【考点】幂函数的概念、解析式、定义域、值域.【分析】在解答时可以先设出幂函数的解析式,由于过定点,从而可解得函数的解析式,故而获得问题的解答.【解答】解:∵幂函数y=f(x)=xα的图象过点(,),∴=,解得:α=﹣2,故f(x)=x﹣2,f()==4,故答案为:4.6.已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为.【考点】平面向量数量积的运算.【分析】由条件利用两个向量的数量积的定义求得cosθ的值,可得与的夹角θ的值.【解答】解:∵向量与满足||=2,||=3,且•=﹣3,设与的夹角为θ,则cosθ===﹣,∴θ=,故答案为:.7.已知sin(α+π)=﹣,则sin(2α+)=.【考点】两角和与差的正弦函数.【分析】根据诱导公式和二倍角公式计算即可.【解答】解:∵sin(α+π)=﹣,∴sinα=,∴sin(2α+)=cos2α=1﹣2sin2α=1﹣=,故答案为:.8.函数y=log2(3cosx+1),x∈[﹣,]的值域为[0,2] .【考点】对数函数的图象与性质.【分析】根据x∈[﹣,],得出1≤3cosx+1≤4,利用对数函数的性质,即可得出结论.【解答】解:∵x∈[﹣,],∴0≤cosx≤1,∴1≤3cosx+1≤4,∴0≤log2(3cosx+1)≤2,故答案为[0,2].9.在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=﹣.【考点】平面向量的基本定理及其意义.【分析】由E是边AC的中点,=4,可得=,所以x=﹣,y=,x+y=﹣.【解答】解:∵E是边AC的中点,=4,∴=,所以x=﹣,y=,x+y=﹣.故答案为:﹣.10.将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=sin(4x+).【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先求函数y=sin(2x﹣)的图象先向左平移,图象的函数表达式,再求图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式.【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).11.若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是(0,2).【考点】一元二次方程的根的分布与系数的关系.【分析】由条件利用二次函数的性质可得,由此求得a的范围.【解答】解:∵函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,∴,求得0<a<2,故答案为:(0,2).12.若=1,tan(α﹣β)=,则tanβ=.【考点】两角和与差的正切函数.【分析】由条件利用同角三角函数的基本关系求得tanα的值,再利用两角差的正切公式求得tanβ=tan[α﹣(α﹣β)]的值.【解答】解:∵═==,∴tanα=,又tan(α﹣β)=,则tanβ=tan[α﹣(α﹣β)]===,故答案为:.13.已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是[﹣2﹣2,﹣2] .【考点】函数奇偶性的性质.【分析】根据函数奇偶性的性质求出函数的解析式,利用数形结合以及一元二次函数的性质进行求解即可.【解答】解:如x<0,则﹣x>0,∵当x>0时,f(x)=4x﹣x2,∴当﹣x>0时,f(﹣x)=﹣4x+x2,∵函数f(x)是奇函数,∴f(0)=0,且f(﹣x)=﹣4x+x2=﹣f(x),则f(x)=4x+x2,x<0,则函数f(x)=,则当x>0,f(x)=4x﹣x2=﹣(x﹣2)2+4≤4,当x<0,f(x)=4x+x2=(x+2)2﹣4≥﹣4,当x<0时,由4x+x2=4,即x2+4x﹣4=0得x==﹣2﹣2,(正值舍掉),若函数f(x)在区间[t,4]上的值域为[﹣4,4],则﹣2﹣2≤t≤﹣2,即实数t的取值范围是[﹣2﹣2,﹣2],故答案为:[﹣2﹣2,﹣2]14.若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是[,] .【考点】正弦函数的图象.【分析】由题意求得ω≤2,区间[π,]内的x值满足kπ+≤ωx+≤kπ+π,k∈z,求得k+≤ω≤(k+),k∈z,再给k取值,进一步确定ω的范围.【解答】解:∵函数f(x)=|sin(ωx+)|(ω>0)在[π,π]上单调递减,∴T=≥,即ω≤2.∵ω>0,根据函数y=|sinx|的周期为π,减区间为[kπ+,kπ+π],k∈z,由题意可得区间[π,]内的x值满足kπ+≤ωx+≤kπ+π,k∈z,即ω•π+≥kπ+,且ω•+≤kπ+π,k∈z.解得k+≤ω≤(k+),k∈z.求得:当k=0时,≤ω≤,不符合题意;当k=1时,≤ω≤;当k=2时,≤ω≤,不符合题意.综上可得,≤ω≤,故答案为:[,].二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R).(1)若与向量2﹣垂直,求实数k的值;(2)若向量=(1,﹣1),且与向量k+平行,求实数k的值.【考点】平面向量共线(平行)的坐标表示;平面向量数量积的运算.【分析】(1)由与向量2﹣垂直,可得•(2﹣)=0,解得k.(2)利用向量共线定理即可得出.【解答】解:(1)=+k=(﹣3+k,1﹣2k),2﹣=(﹣7,4).∵与向量2﹣垂直,∴•(2﹣)=﹣7(﹣3+k)+4(1﹣2k)=0,解得k=.(2)k+=(k+1,﹣2k﹣1),∵与向量k+平行,∴(﹣2k﹣1)(﹣3+k)﹣(1﹣2k)(k+1)=0,解得k=.16.设α∈(0,),满足sinα+cosα=.(1)求cos(α+)的值;(2)求cos(2α+π)的值.【考点】三角函数的化简求值.【分析】(1)利用两角和的正弦公式求得sin(α+)的值,再利用同角三角函数的基本关系求得cos(α+)的值.(2)利用二倍角公式求得cos(2α+)的值,可得sin(2α+)的值,从而求得cos(2α+π)=cos[(2α+)+]的值.【解答】解:(1)∵α∈(0,),满足sinα+cosα==2sin(α+),∴sin(α+)=.∴cos(α+)==.(2)∵cos(2α+)=2﹣1=,sin(2α+)=2sin(α+)cos (α+)=2••=,∴cos(2α+π)=cos[(2α+)+]=cos(2α+)cos﹣sin(2α+)sin=﹣=.17.某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:x14712y229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•b x.(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.【考点】函数模型的选择与应用.【分析】(1)由题意知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数,排除另2个函数,选二次函数模型进行描述;(2)由二次函数的图象与性质,求出函数y=﹣x2+10x+220在x取何值时有最小值.【解答】解:(1)由题目中的数据知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数;所以,应选取二次函数y=﹣x2+ax+b进行描述;(2)将(1,229),(4,244)代入y=﹣x2+ax+b,解得a=10,b=220,,∴y=﹣x2+10x+220,1≤x≤12,x∈N+y=﹣(x﹣5)2+245,∴x=5,y max=245万元.18.已知函数f(x)=()x﹣2x.(1)若f(x)=,求x的值;(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围.【考点】函数恒成立问题;函数的值.【分析】(1)由f(x)=()x﹣2x=可求得2x=,从而可求得x的值;(2)由f(x)=()x﹣2x可判断f(x)为奇函数,且为减函数,不等式f(2m ﹣mcosθ)+f(﹣1﹣cosθ)<f(0)⇔2m﹣mcosθ>1+cosθ对所有θ∈[0,]都成立,分离参数m,利用函数的单调性可求实数m的取值范围.【解答】解:(1)令t=2x>0,则﹣t=,解得t=﹣4(舍)或t=,…3分,即2x=,所以x=﹣2…6分(2)因为f(﹣x)=﹣2﹣x=2x﹣=﹣f(x),所以f(x)是定义在R上的奇函数,…7故f(0)=0,由f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)=0得:f(2m﹣mcosθ)<f(1+cosθ) (8)分,又f(x)=()x﹣2x在R上单调递减,…9分,所以2m﹣mcosθ>1+cosθ对所有θ∈[0,]都成立,…10分,所以m>,θ∈[0,],…12分,令μ=cosθ,θ∈[0,],则μ∈[0,1],y==﹣1+,μ∈[0,1]的最大值为2,所以m的取值范围是m>2 (16)分19.已知t为实数,函数f(x)=2log a(2x+t﹣2),g(x)=log a x,其中0<a<1.(1)若函数y=g(a x+1)﹣kx是偶函数,求实数k的值;(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值.【考点】函数单调性的判断与证明;对数函数的图象与性质.【分析】(1)根据偶函数的定义可得k的值;(2)构造函数h(x)=f(x)﹣g(x),根据对数函数的图象和性质可得,只需要t>﹣2x++2恒成立,根据二次函数的性质求出t的取值范围即可;(3)先判断函数y=|f(x)|的单调性,令|2log a(2x+2)|=2,得到x=或,即可得到n﹣m的最小值为(﹣)﹣=,求出a即可.【解答】解:(1)∵函数y=g(a x+1)﹣kx是偶函数,∴log a(a﹣x+1)+kx=log a(a x+1)﹣kx,对任意x∈R恒成立,∴2kx=log a(a x+1)﹣log a(a﹣x+1)=log a()=x∴k=,(2)由题意设h(x)=f(x)﹣g(x)=2log a(2x+t﹣2)﹣log a x<0在x∈[1,4]恒成立,∴2log a(2x+t﹣2)<log a x,∵0<a<1,x∈[1,4],∴只需要2x+t﹣2>恒成立,即t>﹣2x++2恒成立,∴t>(﹣2x++2)max,令y=﹣2x++2=﹣2()2++2=﹣2(﹣)2+,x∈[1,4],∴(﹣2x++2)max=1,∴t的取值范围是t>1,(3)∵t=4,0<a<1,∴函数y=|f(x)|=|2log a(2x+2)|在(﹣1,﹣)上单调递减,在(﹣,+∞)上单调递增,∵当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],且f(﹣)=0,∴﹣1<m≤≤n(等号不同时取到),令|2log a(2x+2)|=2,得x=或,又[﹣(﹣)]﹣[(﹣)﹣]=>0,∴﹣(﹣)>(﹣)﹣,∴n﹣m的最小值为(﹣)﹣=,∴a=.20.已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R.(1)当m=0时,求f()的值;(2)若f(x)的最小值为﹣1,求实数m的值;(3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.【考点】函数零点的判定定理;三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用向量数量积的公式化简函数f(x)即可.(2)求出函数f(x)的表达式,利用换元法结合一元二次函数的最值性质进行讨论求解即可.(3)由g(x)=0得到方程的根,利用三角函数的性质进行求解即可.【解答】解:(1)•=(cos,sin)•(cos,﹣sin)=cos cos﹣sin sin=cos (+)=cos2x,当m=0时,f(x)=•+1=cos2x+1,则f()=cos(2×)+1=cos+1=;(2)∵x∈[﹣,],∴|+|===2cosx,则f(x)=•﹣m|+|+1=cos2x﹣2mcosx+1=2cos2x﹣2mcosx,令t=cosx,则≤t≤1,则y=2t2﹣2mt,对称轴t=,①当<,即m<1时,当t=时,函数取得最小值此时最小值y=﹣m=﹣1,得m=(舍),②当≤≤1,即m<1时,当t=时,函数取得最小值此时最小值y=﹣=﹣1,得m=,③当>1,即m>2时,当t=1时,函数取得最小值此时最小值y=2﹣2m=﹣1,得m=(舍),综上若f(x)的最小值为﹣1,则实数m=.(3)令g(x)=2cos2x﹣2mcosx+m2=0,得cosx=或,∴方程cosx=或在x∈[﹣,]上有四个不同的实根,则,得,则≤m<,即实数m的取值范围是≤m<.。
2016-2017学年江苏省无锡市高一(上)期末数学试卷
![2016-2017学年江苏省无锡市高一(上)期末数学试卷](https://img.taocdn.com/s3/m/67f9fdf26f1aff00bfd51e11.png)
2016-2017学年江苏省无锡市高一(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分).1.(5分)设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B=.2.(5分)函数的最小正周期为.3.(5分)若函数f(x)=,则f(f(﹣2))=.4.(5分)在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为.5.(5分)已知幂函数y=f(x)的图象过点(,),则f()=.6.(5分)已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为.7.(5分)已知sin(α+π)=﹣,则sin(2α+)=.8.(5分)函数y=log2(3cosx+1),x∈[﹣,]的值域为.9.(5分)在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=.10.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=.11.(5分)若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是.12.(5分)若=1,tan(α﹣β)=,则tanβ=.13.(5分)已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是.14.(5分)若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是.二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.(15分)已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R).(1)若与向量2﹣垂直,求实数k的值;(2)若向量=(1,﹣1),且与向量k+平行,求实数k的值.16.(15分)设α∈(0,),满足sinα+cosα=.(1)求cos(α+)的值;(2)求cos(2α+π)的值.17.(15分)某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•b x.(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.18.(15分)已知函数f(x)=()x﹣2x.(1)若f(x)=,求x的值;(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣co sθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围.19.(15分)已知t为实数,函数f(x)=2log a(2x+t﹣2),g(x)=log a x,其中0<a<1.(1)若函数y=g(a x+1)﹣kx是偶函数,求实数k的值;(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值.20.(15分)已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R.(1)当m=0时,求f()的值;(2)若f(x)的最小值为﹣1,求实数m的值;(3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.2016-2017学年江苏省无锡市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分).1.(5分)设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁U A)∪B={0,2,3} .【解答】解:全集U={0,1,2,3},集合A={1,2},B={2,3},则∁U A={0,3},所以(∁U A)∪B={0,2,3}.故答案为:{0,2,3}.2.(5分)函数的最小正周期为π.【解答】解:函数,∵ω=2,∴T==π.故答案为:π3.(5分)若函数f(x)=,则f(f(﹣2))=5.【解答】解:∵函数f(x)=,∴f(﹣2)=(﹣2)2﹣1=3,f(f(﹣2))=f(3)=3+2=5.故答案为:5.4.(5分)在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为﹣.【解答】解:在平面直角坐标系xOy中,∵300°角终边上一点P的坐标为(1,m),∴tan300°=tan(360°﹣60°)=﹣tan60°=﹣=,∴m=﹣,故答案为:﹣.5.(5分)已知幂函数y=f(x)的图象过点(,),则f()=4.【解答】解:∵幂函数y=f(x)=xα的图象过点(,),∴=,解得:α=﹣2,故f(x)=x﹣2,f()==4,故答案为:4.6.(5分)已知向量与满足||=2,||=3,且•=﹣3,则与的夹角为.【解答】解:∵向量与满足||=2,||=3,且•=﹣3,设与的夹角为θ,则cosθ===﹣,∴θ=,故答案为:.7.(5分)已知sin(α+π)=﹣,则sin(2α+)=.【解答】解:∵sin(α+π)=﹣,∴sinα=,∴sin(2α+)=cos2α=1﹣2sin2α=1﹣=,故答案为:.8.(5分)函数y=log2(3cosx+1),x∈[﹣,]的值域为[0,2] .【解答】解:∵x∈[﹣,],∴0≤cosx≤1,∴1≤3cosx+1≤4,∴0≤log2(3cosx+1)≤2,故答案为[0,2].9.(5分)在△ABC中,E是边AC的中点,=4,若=x+y,则x+y=﹣.【解答】解:∵E是边AC的中点,=4,∴=,所以x=﹣,y=,x+y=﹣.故答案为:﹣.10.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=sin (4x+).【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).11.(5分)若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是(0,2).【解答】解:∵函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,∴,求得0<a<2,故答案为:(0,2).12.(5分)若=1,tan(α﹣β)=,则tanβ=.【解答】解:∵═==,∴tanα=,又tan(α﹣β)=,则tanβ=tan[α﹣(α﹣β)]===,故答案为:.13.(5分)已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2,若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是[﹣2﹣2,﹣2] .【解答】解:如x<0,则﹣x>0,∵当x>0时,f(x)=4x﹣x2,∴当﹣x>0时,f(﹣x)=﹣4x+x2,∵函数f(x)是奇函数,∴f(0)=0,且f(﹣x)=﹣4x+x2=﹣f(x),则f(x)=4x+x2,x<0,则函数f(x)=,则当x>0,f(x)=4x﹣x2=﹣(x﹣2)2+4≤4,当x<0,f(x)=4x+x2=(x+2)2﹣4≥﹣4,当x<0时,由4x+x2=4,即x2+4x﹣4=0得x==﹣2﹣2,(正值舍掉),若函数f(x)在区间[t,4]上的值域为[﹣4,4],则﹣2﹣2≤t≤﹣2,即实数t的取值范围是[﹣2﹣2,﹣2],故答案为:[﹣2﹣2,﹣2]14.(5分)若函数f(x)=|sin(ωx+)|(ω>1)在区间[π,π]上单调递减,则实数ω的取值范围是[,] .【解答】解:∵函数f(x)=|sin(ωx+)|(ω>0)在[π,π]上单调递减,∴T=≥,即ω≤2.∵ω>0,根据函数y=|sinx|的周期为π,减区间为[kπ+,kπ+π],k∈z,由题意可得区间[π,]内的x值满足kπ+≤ωx+≤kπ+π,k∈z,即ω•π+≥kπ+,且ω•+≤kπ+π,k∈z.解得k+≤ω≤(k+),k∈z.求得:当k=0时,≤ω≤,不符合题意;当k=1时,≤ω≤;当k=2时,≤ω≤,不符合题意.综上可得,≤ω≤,故答案为:[,].二、解答题:本大题共6小题,共90分.解答写出文字说明、证明过程或演算过程.15.(15分)已知向量=(﹣3,1),=(1,﹣2),=+k(k∈R).(1)若与向量2﹣垂直,求实数k的值;(2)若向量=(1,﹣1),且与向量k+平行,求实数k的值.【解答】解:(1)=+k=(﹣3+k,1﹣2k),2﹣=(﹣7,4).∵与向量2﹣垂直,∴•(2﹣)=﹣7(﹣3+k)+4(1﹣2k)=0,解得k=.(2)k+=(k+1,﹣2k﹣1),∵与向量k+平行,∴(﹣2k﹣1)(﹣3+k)﹣(1﹣2k)(k+1)=0,解得k=.16.(15分)设α∈(0,),满足sinα+cosα=.(1)求cos(α+)的值;(2)求cos(2α+π)的值.【解答】解:(1)∵α∈(0,),满足sinα+cosα==2sin(α+),∴sin(α+)=.∴cos(α+)==.(2)∵cos(2α+)=2﹣1=,sin(2α+)=2sin(α+)cos (α+)=2••=,∴cos(2α+π)=cos[(2α+)+]=cos(2α+)cos﹣sin(2α+)sin=﹣=.17.(15分)某机构通过对某企业2016年的生产经营情况的调查,得到每月利润y(单位:万元)与相应月份数x的部分数据如表:(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述y与x的变化关系,并说明理由,y=ax3+b,y=﹣x2+ax+b,y=a•b x.(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.【解答】解:(1)由题目中的数据知,描述每月利润y(单位:万元)与相应月份数x的变化关系函数不可能是常数函数,也不是单调函数;所以,应选取二次函数y=﹣x2+ax+b进行描述;(2)将(1,229),(4,244)代入y=﹣x2+ax+b,解得a=10,b=220,∴y=﹣x2+10x+220,1≤x≤12,x∈N,+y=﹣(x﹣5)2+245,∴x=5,y max=245万元.18.(15分)已知函数f(x)=()x﹣2x.(1)若f(x)=,求x的值;(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0,]都成立,求实数m的取值范围.【解答】解:(1)令t=2x>0,则﹣t=,解得t=﹣4(舍)或t=,…3分,即2x=,所以x=﹣2…6分(2)因为f(﹣x)=﹣2﹣x=2x﹣=﹣f(x),所以f(x)是定义在R上的奇函数,…7故f(0)=0,由f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)=0得:f(2m﹣mcosθ)<f(1+cosθ) (8)分,又f(x)=()x﹣2x在R上单调递减,…9分,所以2m﹣mcosθ>1+cosθ对所有θ∈[0,]都成立,…10分,所以m>,θ∈[0,],…12分,令μ=cosθ,θ∈[0,],则μ∈[0,1],y==﹣1+,μ∈[0,1]的最大值为2,所以m的取值范围是m>2 (16)分19.(15分)已知t为实数,函数f(x)=2log a(2x+t﹣2),g(x)=log a x,其中0<a<1.(1)若函数y=g(a x+1)﹣kx是偶函数,求实数k的值;(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为,求实数a的值.【解答】解:(1)∵函数y=g(a x+1)﹣kx是偶函数,∴log a(a﹣x+1)+kx=log a(a x+1)﹣kx,对任意x∈R恒成立,∴2kx=log a(a x+1)﹣log a(a﹣x+1)=log a()=x∴k=,(2)由题意设h(x)=f(x)﹣g(x)=2log a(2x+t﹣2)﹣log a x<0在x∈[1,4]恒成立,∴2log a(2x+t﹣2)<log a x,∵0<a<1,x∈[1,4],∴只需要2x+t﹣2>恒成立,即t>﹣2x++2恒成立,∴t>(﹣2x++2)max,令y=﹣2x++2=﹣2()2++2=﹣2(﹣)2+,x∈[1,4],∴(﹣2x++2)max=1,∴t的取值范围是t>1,(3)∵t=4,0<a<1,∴函数y=|f(x)|=|2log a(2x+2)|在(﹣1,﹣)上单调递减,在(﹣,+∞)上单调递增,∵当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],且f(﹣)=0,∴﹣1<m≤≤n(等号不同时取到),令|2log a(2x+2)|=2,得x=或,又[﹣(﹣)]﹣[(﹣)﹣]=>0,∴﹣(﹣)>(﹣)﹣,∴n﹣m的最小值为(﹣)﹣=,∴a=.20.(15分)已知向量=(cos,sin),=(cos,﹣sin),函数f(x)=•﹣m|+|+1,x∈[﹣,],m∈R.(1)当m=0时,求f()的值;(2)若f(x)的最小值为﹣1,求实数m的值;(3)是否存在实数m,使函数g(x)=f(x)+m2,x∈[﹣,]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.【解答】解:(1)•=(cos,sin)•(cos,﹣sin)=cos cos﹣sin sin=cos(+)=cos2x,当m=0时,f(x)=•+1=cos2x+1,则f()=cos(2×)+1=cos+1=;(2)∵x∈[﹣,],∴|+|===2cosx,则f(x)=•﹣m|+|+1=cos2x﹣2mcosx+1=2cos2x﹣2mcosx,令t=cosx,则≤t≤1,则y=2t2﹣2mt,对称轴t=,①当<,即m<1时,当t=时,函数取得最小值此时最小值y=﹣m=﹣1,得m=(舍),②当≤≤1,即m<1时,当t=时,函数取得最小值此时最小值y=﹣=﹣1,得m=,③当>1,即m>2时,当t=1时,函数取得最小值此时最小值y=2﹣2m=﹣1,得m=(舍),综上若f(x)的最小值为﹣1,则实数m=.(3)令g(x)=2cos2x﹣2mcosx+m2=0,得cosx=或,∴方程cosx=或在x∈[﹣,]上有四个不同的实根,则,得,则≤m<,即实数m的取值范围是≤m<.。
[精品]无锡市高一上册期末数学试卷含解析强化班
![[精品]无锡市高一上册期末数学试卷含解析强化班](https://img.taocdn.com/s3/m/43485030336c1eb91a375da8.png)
2016-2017学年江苏省无锡市中学高一(上)期末数学试卷(强化班)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.M)∩N= .1.(5分)已知M={x|﹣2≤x≤2},N={x|x<1},则(∁R2.(5分)设x,y∈R,向量,,且,,则x+y= .3.(5分)已知向量夹角为45°,且,则= .4.(5分)已知cosα=,且α∈(﹣,0),则sin(π﹣α)= .5.(5分)设2a=5b=m,且+=2,m= .6.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原的倍(纵坐标不变),那么所得图象的解析式为y= .7.(5分)若函数的图象与x轴有公共点,则m的取值范围是.8.(5分)设向量,满足,=(2,1),且与的方向相反,则的坐标为.9.(5分)若θ是△ABC的一个内角,且,则sinθ﹣cosθ的值为.10.(5分)已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则= .11.(5分)已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是.12.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.13.(5分)对于实数a和b,定义运算“*”:,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则实数m的取值范围是;x1+x2+x3的取值范围是.14.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)单调,则ω的最大值为.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.(14分)设函数,其中0<ω<2;(Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;(Ⅱ)若函数f(x)的图象的一条对称轴为,求ω的值.16.(14分)已知△ABC中.(1)设•=•,求证:△ABC是等腰三角形;(2)设向量=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,若sinA=,求sin(﹣B)的值.17.(14分)如图,半径为1,圆心角为的圆弧上有一点C.(1)若C为圆弧AB的中点,点D在线段OA上运动,求|+|的最小值;(2)若D,E分别为线段OA,OB的中点,当C在圆弧上运动时,求•的取值范围.18.(16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.19.(16分)如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.(1)求PQ的最小值;(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.20.(16分)已知函数f(x)=x|x﹣a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.高一(上)期末数学试卷(强化班)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.M)∩N= {x|x<﹣2} .1.(5分)已知M={x|﹣2≤x≤2},N={x|x<1},则(∁R【解答】解:∵M={x|﹣2≤x≤2},N={x|x<1},M={x|x<﹣2或x>2},∴∁RM)∩N={x|x<﹣2}.则(∁R故答案为:{x|x<﹣2}2.(5分)设x,y∈R,向量,,且,,则x+y= 0 .【解答】解:∵,,∴=2x﹣4=0,2y+4=0,则x=2,y=﹣2.∴x+y=0.故答案为:0.3.(5分)已知向量夹角为45°,且,则= 3.【解答】解:∵,=1∴=∴|2|====解得故答案为:34.(5分)已知cosα=,且α∈(﹣,0),则sin(π﹣α)= ﹣.【解答】解:∵cosα=,且α∈(﹣,0),∴sinα=﹣=﹣,则sin(π﹣α)=sinα=﹣.故答案为:﹣5.(5分)设2a=5b=m,且+=2,m= .【解答】解:∵2a=5b=m,∴a=log2m,b=log5m,由换底公式得,∴m2=10,∵m>0,∴故应填6.(5分)将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原的倍(纵坐标不变),那么所得图象的解析式为y= sin(4x+).【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).7.(5分)若函数的图象与x轴有公共点,则m的取值范围是[﹣1,0).【解答】解:作出函数的图象如图,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得﹣1≤m<0.故答案为:[﹣1,0).8.(5分)设向量,满足,=(2,1),且与的方向相反,则的坐标为(﹣4,﹣2).【解答】解:设=(x,y),∵与的方向相反,∴=(2λ,λ),(λ<0).又∵,∴=2,解得λ=﹣2,∴=(﹣4,﹣2).故答案为:(﹣4,﹣2).9.(5分)若θ是△ABC的一个内角,且,则sinθ﹣cosθ的值为.【解答】解:∵θ是△ABC的一个内角,且,∴sinθ>0,cosθ<0,∴sinθ﹣cosθ====,故答案为.10.(5分)已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则= ﹣.【解答】解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于,∴函数f(x)的周期T=,∵ω>0∴ω=3∵角φ的终边经过点P(1,﹣2),∴sinφ=,cosφ=∴=sin(3•+φ)=sin(+φ)=(sinφ+cosφ)=•()=﹣故答案为:﹣11.(5分)已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是.【解答】解:∵f(x)=是(﹣∞,+∞)上的增函数,∴,解得:,故答案为:12.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:13.(5分)对于实数a和b,定义运算“*”:,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则实数m 的取值范围是 ;x 1+x 2+x 3的取值范围是 .【解答】解:∵,∴f (x )=(2x ﹣1)*(x ﹣1)=,则当x=0时,函数取得极小值0,当x=时,函数取得极大值故关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3时, 实数m 的取值范围是令f (x )=,则x=,或x=不妨令x 1<x 2<x 3时 则<x 1<0,x 2+x 3=1∴x 1+x 2+x 3的取值范围是故答案为:,14.(5分)已知函数f (x )=sin (ωx +φ)(ω>0,|φ|≤),x=﹣为f (x )的零点,x=为y=f (x )图象的对称轴,且f (x )在(,)单调,则ω的最大值为 9 .【解答】解:∵函数f (x )=sin (ωx +φ)(ω>0,|φ|≤),x=﹣为f (x )的零点,x=为y=f (x )图象的对称轴,∴ω(﹣)+φ=nπ,n ∈,且ω•+φ=n′π+,n′∈,∴相减可得ω•=(n′﹣n )π+=kπ+,k ∈,即ω=2k +1,即ω为奇数.∵f (x )在(,)单调,(1)若f(x)在(,)单调递增,则ω•+φ≥2kπ﹣,且ω•+φ≤2kπ+,k∈,即﹣ω•﹣φ≤﹣2kπ+①,且ω•+φ≤2kπ+,k∈②,把①②可得ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.当ω=11时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=﹣.此时f(x)=sin(11x﹣)在(,)上不单调,不满足题意.当ω=9时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=,此时f(x)=sin(9x+)在(,)上单调递减,不满足题意;故此时ω无解.(2)若f(x)在(,)单调递减,则ω•+φ≥2kπ+,且ω•+φ≤2kπ+,k∈,即﹣ω•﹣φ≤﹣2kπ﹣③,且ω•+φ≤2kπ+,k∈④,把③④可得ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.当ω=11时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=﹣.此时f(x)=sin(11x﹣)在(,)上不单调,不满足题意.当ω=9时,﹣+φ=kπ,k∈,∵|φ|≤,∴φ=,此时f(x)=sin(9x+)在(,)上单调递减,满足题意;故ω的最大值为9.故答案为:9.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.(14分)设函数,其中0<ω<2;(Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;(Ⅱ)若函数f(x)的图象的一条对称轴为,求ω的值.【解答】解:(Ⅰ)∵f(x)=sin2ωx+…(2分)=sin(2ωx+)+.…(3分)∵T=π,ω>0,∴,∴ω=1.…(4分)令,…(5分)得,…(6分)所以f(x)的单调增区间为:.…(7分)(Ⅱ)∵的一条对称轴方程为,∴.…(9分)∴.…(11分)又0<ω<2,∴.∴k=0,∴.…(13分)16.(14分)已知△ABC中.(1)设•=•,求证:△ABC是等腰三角形;(2)设向量=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,若sinA=,求sin(﹣B)的值.【解答】(1)证明:∵•=•,∴,∴,即.∴△ABC是等腰三角形;(2)解:=(2sinC,﹣),=(sin2C,2cos2﹣1),且∥,则∴,则,得,∴sin2C=0,∵C∈(0,π),∴.∵,,∴,.∴.17.(14分)如图,半径为1,圆心角为的圆弧上有一点C.(1)若C为圆弧AB的中点,点D在线段OA上运动,求|+|的最小值;(2)若D,E分别为线段OA,OB的中点,当C在圆弧上运动时,求•的取值范围.(1)以O为原点,OA为x轴建立直角坐标系,则【解答】解:设D(t,0)(0≤t≤1),则,所以,当时,.(2)由题意,设C(co sθ,sinθ),所以=.因为,则,所以.18.(16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.【解答】解:(1)由题意,当MN和AB之间的距离为1米时,MN应位于DC上方,且此时△EMN中MN边上的高为0.5米,又因为EM=EN=1米,所以MN=米,所以,即三角通风窗EMN的通风面积为(2)当MN在矩形区域内滑动,即时,△EMN的面积;当MN在半圆形区域内滑动,即时,△EMN的面积综上可得;(3)当MN在矩形区域内滑动时,f(x)在区间上单调递减,则f(x)<f(0)=;当MN在半圆形区域内滑动,等号成立时,因此当(米)时,每个三角形得到最大通风面积为平方米.19.(16分)如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.(1)求PQ的最小值;(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.【解答】解:设∠CPQ=θ,则CP=PQcosθ,CQ=PQsinθ(1)()∴∴(2)分别以AB,AD所在直线为x轴、y轴建立平面直角坐标系,设Q(x,1),P(1,y),设∠DAQ=α,∠PAB=β∴,即xy+(x+y)=1又tanα=x,tanβ=y∴,∴∴20.(16分)已知函数f(x)=x|x﹣a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.【解答】解:(1)由f(x)在R上是增函数,则即﹣2≤a≤2,则a范围为﹣2≤a≤2;(4分)(2)由题意得对任意的实数x∈[1,2],f(x)<g(x)恒成立,即x|x﹣a|<1,当x∈[1,2]恒成立,即,,,故只要且在x∈[1,2]上恒成立即可,在x∈[1,2]时,只要的最大值小于a且的最小值大于a即可,(6分)而当x∈[1,2]时,,为增函数,;当x∈[1,2]时,,为增函数,,所以;(10分)(3)当﹣2≤a≤2时,f(x)在R上是增函数,则关于x的方程f(x)=tf(a)不可能有三个不等的实数根;(11分)则当a∈(2,4]时,由得x≥a时,f(x)=x2+(2﹣a)x对称轴,则f(x)在x∈[a,+∞)为增函数,此时f(x)的值域为[f(a),+∞)=[2a,+∞),x<a 时,f(x)=﹣x2+(2+a)x对称轴,则f(x)在为增函数,此时f(x)的值域为,f(x)在为减函数,此时f(x)的值域为;由存在a∈(2,4],方程f(x)=tf(a)=2ta有三个不相等的实根,则,即存在a∈(2,4],使得即可,令,即可,而g(a)在a∈(2,4]上是增函数,,只要使t<(g(a))max故实数t的取值范围为;(15分)同理可求当a∈[﹣4,﹣2)时,t的取值范围为;综上所述,实数t的取值范围为.(16分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省无锡市天一中学高一(上)期末数学试卷一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.已知全集U={1,2,3,4},集合A={2,3},B={3,4},则(∁U A)∩(∁U B)=.2.已知向量,若,则实数m=.3.已知,3sin2α=2cosα,则cos(α﹣π)=.4.函数f(x)=(sinx﹣cosx)2的最小正周期为.5.设α∈,则使幂函数y=xα的定义域为R且为奇函数的所有α的值为.6.若向量,满足||=,||=1,•(+)=1,则向量,的夹角的大小为.7.已知﹣<θ<,且sinθ+cosθ=,则tanθ的值为.8.设且,则f(f(2))=.9.设函数f(x)=3|x|,则f(x)在区间(m﹣1,2m)上不是单调函数,则实数m的取值范围是.10.已知,,则tan(β﹣2α)等于.11.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为.12.已知函数f(x)=log a(0<a<1)为奇函数,当x∈(﹣1,a]时,函数f(x)的值域是(﹣∞,1],则实数a+b的值为.13.已知函数(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列三个命题:①函数f(x)的图象关于x轴上某点成中心对称;②存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;③关于x的方程g(x)=0的解集可能为{﹣4,﹣2,0,3}.则是真命题的有.(不选、漏选、选错均不给分)14.在斜三角形△ABC中,A=45°,H是△ABC的垂心,λ=+,则λ=.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.设集合A={2,3,a2+2a﹣3},B={x||x﹣a|<2}(1)当a=2时,求A∩B;(2)若0∈A∩B,求实数a的值.16.已知向量=(4,5cosα),=(3,﹣4tanα)(1)若∥,试求sinα;(2)若⊥,且α∈(0,),求cos(2α﹣)的值.17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象上两个相邻的最值点为(,2)和(,﹣2)(1)求函数f(x)的解析式;(2)求函数f(x)在区间(0,)上的对称中心、对称轴;(3)将函数f(x)图象上每一个点向右平移个单位得到函数y=g(x),令h(x)=f(x)•g(x),求函数h(x)在区间(﹣,0)上的最大值,并指出此时x的值.18.已知A、B两地相距2R,以AB为直径作一个半圆,在半圆上取一点C,连接AC、BC,在三角形ABC内种草坪(如图),M、N分别为弧、弧的中点,在三角形AMC、三角形BNC上种花,其余是空地.设花坛的面积为S1,草坪的面积为S2,取∠ABC=θ.(1)用θ及R表示S1和S2;(2)求的最小值.19.已知函数f(x)=1+log2x,g(x)=2x.(1)若F(x)=f(g(x))•g(f(x)),求函数F(x)在x∈[1,4]的值域;(2)令G(x)=f(8x2)f()﹣kf(x),已知函数G(x)在区间[1,4]有零点,求实数k的取值范围;(3)若H(x)=,求H()+H()+H()+…+H()的值.20.对于定义在R上的函数f(x),定义同时满足下列三个条件的函数为“Z函数”:①对任意x∈(﹣∞,a],都有f(x)=C1;②对任意x∈[b,+∞),都有f(x)=C2;③对任意x∈(a,b),都有(f(x)﹣C1)(f(x)﹣C2)<0.(其中a<b,C1,C2为常数)(1)判断函数f1(x)=|x﹣1|﹣|x﹣3|+1和f2(x)=x﹣|x﹣2|是否为R上的“Z函数”?(2)已知函数g(x)=|x﹣2|﹣,是否存在实数m,使得g(x)为R上的“Z函数”?若存在,求实数m的值;否则,请说明理由;(3)设f(x)是(1)中的“Z函数”,令h(x)=|f(x)|,若h(2a2+a)=h(4a),求实数a的取值范围.2015-2016学年江苏省无锡市天一中学高一(上)期末数学试卷参考答案与试题解析一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.已知全集U={1,2,3,4},集合A={2,3},B={3,4},则(∁U A)∩(∁U B)={1} .【分析】根据交集与补集的定义,进行化简与运算即可.【解答】解:全集U={1,2,3,4},集合A={2,3},∴∁U A={1,4},B={3,4},∴∁U B={1,2},∴(∁U A)∩(∁U B)={1}.故答案为:{1}.2.已知向量,若,则实数m=﹣1.【分析】先将向量,表示出来,再由二者共线即可得到答案.【解答】解:由题意知,=(1,3)﹣(0,1)=(1,2)=(m,m)﹣(0,1)=(m,m﹣1)∵∴存在实数λ使得即(1,2)=λ(m,m﹣1)解得,λ=﹣1,m=﹣1故答案为:﹣13.已知,3sin2α=2cosα,则cos(α﹣π)=.【分析】由条件利用二倍角公式求得sinα=,再利用同角三角函数的基本关系求出cosα的值,再利用诱导公式求出cos(α﹣π)的值.【解答】解:∵,3sin2α=2cosα,∴6sinα•cosα=2cosα,解得sinα=,∴cosα=﹣.故cos(α﹣π)=cos(π﹣α)=﹣cosα=,故答案为.4.函数f(x)=(sinx﹣cosx)2的最小正周期为π.【分析】化简函数的表达式为一个角的一个三角函数的形式,然后利用周期公式求出函数的周期.【解答】解:函数f(x)=(sinx﹣cosx)2=1﹣2sinxcosx=1﹣six2x;所以函数的最小正周期为:T=,故答案为:π.5.设α∈,则使幂函数y=xα的定义域为R且为奇函数的所有α的值为{1} .【分析】分别验证α取不同的值时,函数y是否满足题意即可.【解答】解:当α=﹣1时,函数y=x﹣1的定义域为{x|x≠0},不满足题意;当α=1时,函数y=x的定义域为R,且为奇函数,满足题意;当α=时,函数y=的定义域为{x|x≥0},不满足题意;当α=时,函数y=x﹣1的定义域为R,且为偶函数,不满足题意;综上,满足题意的所有α值为{1}.故答案为:{1}.6.若向量,满足||=,||=1,•(+)=1,则向量,的夹角的大小为.【分析】先由已知条件求出•=﹣1,代入两个向量的夹角公式求出cosθ的值,结合θ的范围求出θ值.【解答】解:设,的夹角为θ.∵•(+)=1,∴+•=1,又∵||=,∴•=﹣1.∴cosθ===﹣.又∵0≤θ≤π,∴θ=.故答案为.7.已知﹣<θ<,且sinθ+cosθ=,则tanθ的值为﹣.【分析】由条件判断tanθ>﹣1,再根据sinθcosθ==﹣,求得tanθ的值.【解答】解:∵﹣<θ<,且sinθ+cosθ=,∴1+2sinθcosθ=,即sinθcosθ=﹣<0,∴θ∈(﹣,0),则tanθ>﹣1.再根据sinθcosθ===﹣,求得tanθ=﹣(舍去),或tanθ=﹣,故答案为:﹣.8.设且,则f(f(2))=6.【分析】通过,求出a的值,然后求出f(2),即可求解所求表达式的值.【解答】解:因为设且,所以,所以a=7,f(2)==log73,f(f(2))=f(log73)=2=6.故答案为:6.9.设函数f(x)=3|x|,则f(x)在区间(m﹣1,2m)上不是单调函数,则实数m的取值范围是(0,1).【分析】由题意,函数f(x)=3|x|,关于y轴对称,在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使f(x)在区间(m﹣1,2m)上不是单调函数,则m﹣1<0<2m,解出即可.【解答】解:由题意,函数f(x)=3|x|,关于y轴对称,在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,∵f(x)在区间(m﹣1,2m)上不是单调函数,∴m﹣1<0<2m,∴0<m<1.故答案为:(0,1).10.已知,,则tan(β﹣2α)等于﹣1.【分析】把已知条件利用二倍角的余弦函数公式及同角三角函数间的基本关系化简后,即可求出tanα的值,然后把所求式子中的角β﹣2α变为(β﹣α)﹣α,利用两角差的正切函数公式化简后,将各自的值代入即可求出值.【解答】解:由==2tanα=1,得到tanα=,又,则tan(β﹣2α)=tan[(β﹣α)﹣α]===﹣1.故答案为:﹣111.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为8.【分析】设t=1﹣x,则x=1﹣t,原函数可化为g(t)=2sinπt﹣,由于g(x)是奇函数,观察函数y=2sinπt与y=的图象可知,在[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,从而x1+x2+…+x7+x8的值.【解答】解:设t=1﹣x,则x=1﹣t,原函数可化为:g(t)=2sin(π﹣πt)﹣=2sinπt﹣,其中,t∈[﹣3,3],因g(﹣t)=﹣g(t),故g(t)是奇函数,观察函数y=2sinπt(红色部分)与曲线y=(蓝色部分)的图象可知,在t∈[﹣3,3]上,两个函数的图象有8个不同的交点,其横坐标之和为0,即t1+t2+…+t7+t8=0,从而x1+x2+…+x7+x8=8,故答案为:8.12.已知函数f(x)=log a(0<a<1)为奇函数,当x∈(﹣1,a]时,函数f(x)的值域是(﹣∞,1],则实数a+b的值为.【分析】根据函数f(x)为奇函数,建立方程关系即可求出b,然后根据分式函数和对数函数的单调性建立条件关系即可求出a.【解答】解:∵函数f(x)=log a(0<a<1)为奇函数,∴f(﹣x)=﹣f(x),即f(﹣x)+f(x)=0,∴log a+log a=log a•=0,即•=1,∴1﹣x2=b2﹣x2,即b2=1,解得b=±1.当b=﹣1时,函数f(x)=log a=f(x)=log a=log a(﹣1)无意义,舍去.当b=1时,函数f(x)=log a=log a为奇函数,满足条件.∵=﹣1+,在(﹣1,+∞)上单调递减.又0<a<1,∴函数f(x)=log a在x∈(﹣1,a)上单调递增,∵当x∈(﹣1,a)时,函数f(x)的值域是(﹣∞,1),∴f(a)=1,即f(a)=log a=1,∴=a,即1﹣a=a+a2,∴a2+2a﹣1=0,解得a=﹣1±,∵0<a<1,∴a=﹣1+,∴a+b=﹣1++1=,故答案为:.13.已知函数(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列三个命题:①函数f(x)的图象关于x轴上某点成中心对称;②存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;③关于x的方程g(x)=0的解集可能为{﹣4,﹣2,0,3}.则是真命题的有①②.(不选、漏选、选错均不给分)【分析】①由f(x+b)+f(b﹣x)=0即可判断①的正误;②将(a≠0,b∈R,c>0),转化为y(x﹣b)2﹣a(x﹣b)+cy=0有实数解,由△≥0即可判断②的正误;③由f(x)=(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n=0(mn>0),可判断③的正误.【解答】解:对于①,∵f(x+b)+f(b﹣x)=+=0,∴函数f(x)的图象关于x轴上的点(b,0)成中心对称;故①正确;对于②,∵f(x)=(a≠0,b∈R,c>0),∴y(x﹣b)2﹣a(x﹣b)+cy=0有实数解,∴△=a2﹣4cy2≥0,又a≠0,c>0∴y2≤,∴﹣≤y≤.即存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;∴②正确;③∵f(x)=(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n=0(mn>0),∴=(mn>0),假设g(x)=0有四个根,令t=(x﹣b)2(t≥0),则x=b±,∴x1+x2=2b,同理x3+x4=2b,∴其解集{﹣4,﹣2,0,3}中﹣4+3≠﹣2+0,即x1+x2≠x3+x4=2b,∴③错误.故正确答案为:①②.14.在斜三角形△ABC中,A=45°,H是△ABC的垂心,λ=+,则λ=1.【分析】H是△ABC的垂心,可得tanA+tanB+tanC=.再利用向量的三角形法则、正切和差公式即可得出.【解答】解:∵H是△ABC的垂心,则tanA+tanB+tanC=.∴=+,∴=+=λ,则λ====tanA=1,故答案为:1.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.设集合A={2,3,a2+2a﹣3},B={x||x﹣a|<2}(1)当a=2时,求A∩B;(2)若0∈A∩B,求实数a的值.【分析】(1)当a=2时,分别求出集合A和B,由此能求出A∩B.(2)由已知得a2+2a﹣3=0,解得a=1或a=﹣3,再分别把a=1和a=﹣3代入集合B验证,由此能求出a.【解答】解:(1)当a=2时,集合A={2,3,a2+2a﹣3}={2,3,5},B={x||x﹣a|<2}={x||x﹣2|<2}={x|0<x<4},∴A∩B={2,3}.(2)∵A={2,3,a2+2a﹣3},B={x||x﹣a|<2},0∈A∩B,∴a2+2a﹣3=0,解得a=1或a=﹣3,当a=1时,B={x||x﹣1|<2}={x|﹣1<x<3},成立,当a=﹣3时,B={x||x+3|<2}={x|﹣5<x<﹣1},不成立.∴a=1.16.已知向量=(4,5cosα),=(3,﹣4tanα)(1)若∥,试求sinα;(2)若⊥,且α∈(0,),求cos(2α﹣)的值.【分析】(1)通过向量的平行,利用坐标运算,同角三角函数的基本关系式求出sinα即可.(2)通过向量的垂直,列出关系式,求出sinα,利用两角和的余弦函数,以及同角三角函数的基本关系式,求解所求表达式的值即可.【解答】解:(1)因为向量由得,所以15cosα+16tanα=0,即15﹣15sin2α+16sinα=0,解得:(舍)或.(2)由得,12﹣20cosα•tanα=0,∴,又,∴,,.17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象上两个相邻的最值点为(,2)和(,﹣2)(1)求函数f(x)的解析式;(2)求函数f(x)在区间(0,)上的对称中心、对称轴;(3)将函数f(x)图象上每一个点向右平移个单位得到函数y=g(x),令h(x)=f(x)•g(x),求函数h(x)在区间(﹣,0)上的最大值,并指出此时x的值.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式.(2)利用正弦函数的图象的对称性,求得函数f(x)在区间(0,)上的对称中心和对称轴.(3)根据函数y=Asin(ωx+φ)的图象变换规律,利用三角恒等变换化简h(x)的解析式,再利用正弦函数的定义域和值域,求得函数h(x)在区间(﹣,0)上的最大值以及此时x的值.【解答】解:(1)∵函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象上两个相邻的最值点为(,2)和(,﹣2),∴A=2,==﹣=,∴ω=2,再根据五点法作图,可得2•+φ=,求得φ=,∴f(x)=2sin(2x+).(2)令2x+=kπ,求得x=﹣,k∈Z,可得函数的图象的对称中心为(﹣,0),k∈Z,故函数f(x)在区间(0,)上的对称中心为(,0).令2x+=kπ+,可得x=+,k∈Z,故函数的图象的对称轴为x=+,k∈Z,故函数f(x)在区间(0,)上的对称轴为x=.(3)将函数f(x)图象上每一个点向右平移个单位得到函数y=g(x)=2sin[2(x﹣)+]=2sin(2x﹣)=﹣2cos2x的图象,令h(x)=f(x)•g(x)=﹣4sin(2x+)•cos2x=﹣4[sin2x+cos2x]•cos2x=﹣2sin2xcos2x ﹣2cos22x=﹣sin4x﹣2•=﹣2sin(4x+)﹣1.在区间(﹣,0)上,4x+∈(﹣,),sin(4x+)∈[﹣1,),h(x)∈(﹣1,2],当4x+=﹣时,h(x)取得最大值为2,此时,x=﹣.18.已知A、B两地相距2R,以AB为直径作一个半圆,在半圆上取一点C,连接AC、BC,在三角形ABC内种草坪(如图),M、N分别为弧、弧的中点,在三角形AMC、三角形BNC上种花,其余是空地.设花坛的面积为S1,草坪的面积为S2,取∠ABC=θ.(1)用θ及R表示S1和S2;(2)求的最小值.【分析】(1)先利用θ及R表示出AC、BC的长,进而求出S2;再设AB的中点为O,连MO、NO,则MO⊥AC,NO⊥BC,即可求出三角形AMC、三角形BNC的面积,进而求得S1;(2)先利用(1)的结论求出关于θ的表达式;再结合三角函数以及函数单调性的知识即可求出的最小值.【解答】解:(1)因为∠ABC=θ,则AC=2Rsinθ,BC=2Rcosθ,则.设AB的中点为O,连MO、NO,则MO⊥AC,NO⊥BC.设MO交AC与点E.则ME=MO﹣OE=R﹣=R﹣Rcosθ=R(1﹣cosθ).所以:S△AMC=|AC|•|ME|=R2sinθ(1﹣cosθ);同理可得三角形BNC的面积为R2cosθ(1﹣sinθ),∴S1=R2sinθ(1﹣cosθ)+R2cosθ(1﹣sinθ)=R2(sinθ+cosθ﹣2sinθcosθ).(2)∵,令,则2sinθcosθ=t2﹣1.∴.∴的最小值为.19.已知函数f(x)=1+log2x,g(x)=2x.(1)若F(x)=f(g(x))•g(f(x)),求函数F(x)在x∈[1,4]的值域;(2)令G(x)=f(8x2)f()﹣kf(x),已知函数G(x)在区间[1,4]有零点,求实数k的取值范围;(3)若H(x)=,求H()+H()+H()+…+H()的值.【分析】(1)若F(x)=f(g(x))•g(f(x)),先求出F(x)的表达式,结合一元二次函数的性质求函数F(x)在x∈[1,4]的值域;(2)先求出G(x)=f(8x2)f()﹣kf(x)的表达式,利用换元法将函数G(x)进行转化求解;(3)若H(x)=,证明H(x)+H(1﹣x)=1,利用倒序相加法,即可求H()+H()+H()+…+H()的值.【解答】解:(1)若F(x)=f(g(x))•g(f(x))=(1+log22x)•=(1+x)•2×=2x(1+x)=2x2+2x=2(x+)2﹣当x∈[1,4]上函数F(x)为增函数,则函数的最大值为F(4)=40,函数的最小值为F(1)=4,则函数的值域为[4,40].(2)令G(x)=f(8x2)f()﹣kf(x)=(1+log28x2)(1+log2)﹣k(1+log2x)=(1+og28+log2x2))(1+log2x)﹣k(1+log2x)=(4+2log2x))(1+log2x)﹣k(1+log2x)=(log2x)2+4log2x+4﹣k﹣klog2x=(log2x)2+(4﹣k)log2x+4﹣k,设t=log2x,当x∈[1,4],则t∈[0,2],则函数等价为y=h(t)=t2+(4﹣k)t+4﹣k若函数G(x)在区间[1,4]有零点,则等价为y=h(t)=t2+(4﹣k)t+4﹣k在t∈[0,2]上有零点,即h(t)=t2+(4﹣k)t+4﹣k=0在t∈[0,2]上有解,即t2+4t+4﹣k(1+t)=0在t∈[0,2]上有解,即k===t+1++2,设m=t+1,则m∈[1,3],则k=m++2≥2+2=2+2,当且仅当m=,即m=取等号,当m=1时,k=1+2+2=5,当m=3时,k=2+3+=>5,∴2+2≤m++2≤,即2+2≤k≤,即实数k的取值范围是2+2≤k≤;(3)若H(x)=,则H(x)==,则H(x)+H(1﹣x)=+=+=+=1,设H()+H()+H()+…+H()=S,H()+H()+…H()+H()=S,两式相加得2015[H()+H()]=2S,即2S=2015,则S=.20.对于定义在R上的函数f(x),定义同时满足下列三个条件的函数为“Z函数”:①对任意x∈(﹣∞,a],都有f(x)=C1;②对任意x∈[b,+∞),都有f(x)=C2;③对任意x∈(a,b),都有(f(x)﹣C1)(f(x)﹣C2)<0.(其中a<b,C1,C2为常数)(1)判断函数f1(x)=|x﹣1|﹣|x﹣3|+1和f2(x)=x﹣|x﹣2|是否为R上的“Z函数”?(2)已知函数g(x)=|x﹣2|﹣,是否存在实数m,使得g(x)为R上的“Z函数”?若存在,求实数m的值;否则,请说明理由;(3)设f(x)是(1)中的“Z函数”,令h(x)=|f(x)|,若h(2a2+a)=h(4a),求实数a的取值范围.【分析】(1)根据“Z函数”的定义,结合分段函数的性质作出图象进行判断即可.(2)结合“Z函数”的定义以及根式的性质利用配方法进行判断求解.(3)求出h(x)的解析式以及作出函数h(x)的图象,讨论变量的取值范围解方程即可.【解答】解:(1)f1(x)=|x﹣1|﹣|x﹣3|+1=,作出函数f1(x)的图象如图:当x≤1时,f(x)=﹣1,当x≥3时,f(x)=3,当1<x<3时,﹣1<f(x)<3恒成立,故f1(x)=|x﹣1|﹣|x﹣3|+1是R上的“Z函数”,f2(x)=x﹣|x﹣2|=,则当x≤2时,函数f(x)不是常数,不满足条件.②,故f2(x)=x﹣|x﹣2|不是否为R 上的“Z函数”.(2)若g(x)=|x﹣2|﹣是R上的“Z函数”,则满足g(x)=|x﹣2|﹣|x+a|的形式,若=|x+a|,则平方得mx+4=2ax+a2,即或,当时,g(x)=|x﹣2|﹣|x﹣2|=0,不满足条件③,故此时g(x)不是“Z函数”,当时,g(x)=|x﹣2|﹣|x+2|=,满足条件①②③,故此时g(x)是“Z函数”,故当m=4时,g(x)为R上的“Z函数”.(3)设f(x)是(1)中的“Z函数”,则f(x)=|x﹣1|﹣|x﹣3|+1=,则h(x)=|f(x)|=,对应的图象如图:若h(2a2+a)=h(4a),则①,即,即﹣1≤a≤时,h(2a2+a)=h(4a)=1,②得即a≥1时,h(2a2+a)=h(4a)=3,③或,此时h(2a2+a)=h(4a)=1,即或,即a=或a=.④2a2+a=4a,即2a2=3a,得a=0或a=,当a=时,⑤2a2+a=﹣4a,即2a2=﹣5a,得a=0或a=﹣,综上﹣1≤a≤或a≥1或=或a=.2016年8月18日。