三门峡市第三高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三门峡市第三高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题
1.若
1
sin()
34
π
α
-=,则cos(2)
3
π
α
+=
A、
7
8
-B、
1
4
-C、
1
4
D、
7
8
2.二项式(x2﹣)6的展开式中不含x3项的系数之和为()
A.20 B.24 C.30 D.36
3.在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,
,则等于()
A.B.C.D.2
4.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()
A.k>7 B.k>6 C.k>5 D.k>4
5.已知f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),当0<x<2时,f(x)=1﹣log2(x+1),则当0<x<4时,不等式(x﹣2)f(x)>0的解集是()
A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)
6. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6
B .9
C .36
D .72
7. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.
8. 已知集合2
{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的
个数为
A 、
B 、2
C 、3
D 、4
9. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪N
B .(∁U M )∩N
C .M ∩(∁U N )
D .(∁U M )∩(∁U N )
10.二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .41
11.复数z=(其中i 是虚数单位),则z 的共轭复数=( )
A .﹣i
B .﹣﹣i
C . +i
D .﹣ +i
12.已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
二、填空题
13.已知函数2
1()sin cos sin 2f x a x x x =-+
的一条对称轴方程为6
x π
=,则函数()f x 的最大值为( )
A .1
B .±1
C
D .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
14.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .
15.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且
仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)
【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.
16.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE
所成角的余弦值为
,且四边形ABB 1A 1为正方形,则球O 的直径为 .
17.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .
18.在复平面内,记复数+i 对应的向量为
,若向量
饶坐标原点逆时针旋转60°得到向量
所对应
的复数为 .
三、解答题
19.已知矩阵M 所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的
坐标.
20.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).
(1)若函数在区间上是单调减函数,求实数的取值范围;
(2)求函数的极值;
(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.
21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;
(2)设(){}
1n
n n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .
【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.
22.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连
接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),
(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;
(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。

23.(本小题满分12分)
已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;
(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足20152
2>++n
n T n 的 最小正整数n .
【命题意图】本题是综合考察等比数列及其前n项和性质的问题,其中对逻辑推理的要求很高. 24.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0
(1)若a=1,且q∧p为真,求实数x的取值范围;
(2)若p是q必要不充分条件,求实数a的取值范围.
三门峡市第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】A
【解析】 选A ,解析:2
227
cos[(2)]cos(2)[12sin ()]33
38
π
ππαπαα--=--=---=-
2. 【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r •x 12﹣3r ,令12﹣3r=3,求得r=3,
故展开式中含x 3
项的系数为
•(﹣1)3=﹣20,而所有系数和为0,
不含x 3
项的系数之和为20,
故选:A .
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
3. 【答案】C
【解析】 因为角


依次成等差数列,所以
由余弦定理知,即
,解得
所以
, 故选C
答案:C
4. 【答案】 C
【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环 循环前 1 0
第一圈 2 2 是 第二圈 3 7 是 第三圈 4 18 是 第四圈 5 41 是 第五圈 6 88 否 故退出循环的条件应为k >5?
故答案选C.
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
5.【答案】D
【解析】解:∵f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),
∴f(0)=0,且f(2+x)=﹣f(2﹣x),
∴f(x)的图象关于点(2,0)中心对称,
又0<x<2时,f(x)=1﹣log2(x+1),
故可作出fx(x)在0<x<4时的图象,
由图象可知当x∈(1,2)时,x﹣2<0,f(x)<0,
∴(x﹣2)f(x)>0;
当x∈(2,3)时,x﹣2>0,f(x)>0,
∴(x﹣2)f(x)>0;
∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)
故选:D
【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.
6.【答案】D
【解析】解:设等比数列{a n}的公比为q,
∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.
则a2a6=9×q6=72.
故选:D.
7. 【答案】A.
【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 8. 【答案】D
【解析】{|(1)(2)0,}{1,2}A x x x x =--=∈=R , {}{}|05,1,2,3,4=<<∈=N B x x x . ∵⊆⊆A C B ,∴C 可以为{}1,2,{}1,2,3,{}1,2,4,{}1,2,3,4. 9. 【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4}, ∴∁U M={0,1}, ∴N ∩(∁U M )={0,1}, 故选:B .
【点评】本题主要考查集合的子交并补运算,属于基础题.
10.【答案】B 【解析】
试题分析:()21212121101010
242=⨯+⨯+⨯=,故选B. 考点:进位制 11.【答案】C
【解析】解:∵z==,
∴=.
故选:C .
【点评】本题考查了复数代数形式的乘除运算,是基础题.
12.【答案】A
【解析】解:p :对于任意n ∈N *
,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,
则¬p :∃n ∈N *
,a n+2﹣a n+1≠d ;¬q :数列 {a n }不是公差为d 的等差数列,
由¬p ⇒¬q ,即a n+2﹣a n+1不是常数,则数列 {a n }就不是等差数列,
若数列 {a n }不是公差为d 的等差数列,则不存在n ∈N *
,使得a n+2﹣a n+1≠d ,
即前者可以推出后者,前者是后者的充分条件, 即后者可以推不出前者, 故选:A .
【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.
二、填空题
13.【答案】A
【解析】
14.【答案】(1,2).
【解析】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,
即y=2x2.
由ρcosθ=1,得x=1.
联立,解得:.
∴曲线C1与C2交点的直角坐标为(1,2).
故答案为:(1,2).
【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.
15.【答案】48
【解析】
16.【答案】4或.
【解析】解:设AB=2x,则AE=x,BC=,
∴AC=,
由余弦定理可得x2=9+3x2+9﹣2×3××,
∴x=1或,
∴AB=2,BC=2,球O的直径为=4,
或AB=2,BC=,球O的直径为=.
故答案为:4或.
17.【答案】{1,﹣1}.
【解析】解:合M={x||x|≤2,x∈R}={x|﹣2≤x≤2},
N={x∈R|(x﹣3)lnx2=0}={3,﹣1,1},
则M∩N={1,﹣1},
故答案为:{1,﹣1},
【点评】本题主要考查集合的基本运算,比较基础.
18.【答案】2i.
【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为
(+i)(cos60°+isin60°)=(+i)()=2i
,故答案为2i.
【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i)
(cos60°+isin60°),是解题的关键.
三、解答题
19.【答案】
【解析】解:依题意,由M=得|M|=1,故M ﹣1
=
从而由
=


=
故A (2,﹣3)为所求.
【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础.
20.【答案】(1)
(2)见解析(3)
【解析】试题分析:(1)由题意转化为
在区间
上恒成立,化简可得一次函数恒成立,根据一次函
数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a 的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x 轴上的截距,最后根据a 的正负以及基本不等式求截距的取值范围. 试题解析:(1)函数的导函数,
则在区间上恒成立,且等号不恒成立,

,所以
在区间
上恒成立,
记,只需, 即,解得.
(2)由,得

①当时,有


所以函数在单调递增,
单调递减,
所以函数在取得极大值
,没有极小值.
②当时,有


所以函数在单调递减,单调递增,
所以函数

取得极小值
,没有极大值.
综上可知: 当时,函数在取得极大值,没有极小值;
当时,函数在取得极小值,没有极大值.
(3)设切点为,
则曲线在点处的切线方程为,
当时,切线的方程为,其在轴上的截距不存在.
当时,令,得切线在轴上的截距为

当时,

当且仅当,即或时取等号;
当时,

当且仅当,即或时取等号.
所以切线在轴上的截距范围是.
点睛:函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结
论.
(3)已知极值求参数.若函数在点
处取得极值,则
,且在该点左、右两侧的导数值符号相
反.
21.【答案】
【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 则由990S =,15240S =,得1193690
15105240
a d a d +=⎧⎨
+=⎩,解得12a d ==,……………3分
所以2(n 1)22n a n =+-⨯=,即2n a n =,
(1)
22(1)2
n n n S n n n -=+
⨯=+,即1n S n n =+().……………5分
22.【答案】(1)1 (2)60°
【解析】(1)设BD=x ,则CD=3﹣x ∵∠ACB=45°,AD ⊥BC ,∴AD=CD=3﹣x
∵折起前AD ⊥BC ,∴折起后AD ⊥BD ,AD ⊥CD ,BD ∩DC=D
∴AD ⊥平面BCD
∴V A ﹣BCD =×AD ×S △BCD =×(3﹣x )××x (3﹣x )=(x 3﹣6x 2+9x ) 设f (x )=(x 3﹣6x 2+9x ) x ∈(0,3),
∵f ′(x )=(x ﹣1)(x ﹣3),∴f (x )在(0,1)上为增函数,在(1,3)上为减函数 ∴当x=1时,函数f (x )取最大值
∴当BD=1时,三棱锥A ﹣BCD 的体积最大; (2)以D 为原点,建立如图直角坐标系D ﹣xyz ,
23.【答案】
【解析】(1)当111,12n a a =+=时,解得11a =. (1分)
当2n ≥时,2n n S n a +=,
① 11(1)2n n S n a --+-=,

①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.
即12n n a +=故21n n a =-(*
n N ∈).
(5分)
24.【答案】
【解析】解:(1)p:实数x满足x2﹣4ax+3a2<0,其中a>0
⇔(x﹣3a)(x﹣a)<0,∵a>0为,所以a<x<3a;
当a=1时,p:1<x<3;
命题q:实数x满足x2﹣5x+6≤0⇔2≤x≤3;若p∧q为真,则p真且q真,∴2≤x<3;
故x的取值范围是[2,3)
(2)p是q的必要不充分条件,即由p得不到q,而由q能得到p;
∴(a,3a)⊃[2,3]⇔,1<a<2
∴实数a的取值范围是(1,2).
【点评】考查解一元二次不等式,p∧q的真假和p,q真假的关系,以及充分条件、必要条件、必要不充分条件的概念.属于基础题.。

相关文档
最新文档