专题11 三角形综合问题(精讲)-2019年中考数学高频考点突破全攻略(原卷版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课标解读】
三角形综合问题是指针对三角形的知识点之间的综合性的考查,特别是等腰三角形、等边三角形、直角三角形等特殊三角形的性质应用,及其与三角形相关的知识点之间的综合考查。

【解题策略】
从具体问题入手→探索三角形知识点→综合各点联系→综合把握各个知识点之间的内在关系→综合应用并解决问题
【考点深剖】
★考点一关于图形全等的综合问题
本类题大都含有基本图形“燕子图”,在条件给足的背景下,两个三角形是全等的,从图形变换条件,两个三角形关于过公共顶点的一条竖直直线对称.
归纳几何基本图形,然后对基本图形进行变式与拓展,是学习几何图形相关知识的重要手段.如:
①旋转模型
②三垂直模型,,③一线三等角模型,,易错提示)已知两边及一边对角对应相等的两个三角形,不全等,即“SSA”得不到两个三角形全等.
【典例1】如图1所示,A、E、F、C在同一直线上,AF=CE,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD.(1)试说明ME=MF;
(2)若将E、F两点移至如图2中的位置,其余条件不变,上述结论是否仍然成立?请说明理由.
★考点二关于图形变换的综合问题
【典例2】(2018·湖北江汉·10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC ;
探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
★考点三关于条件探究的综合问题
【典例3】如图22-2,下列条件中,不能证明△ABD≌△ACD的是 ( )
A.BD=DC,AB=AC
B.∠ADB=∠ADC,BD=CD
C.∠B=∠C,∠BAD=∠CAD
D.∠B=∠C,BD=DC
★考点四关于结论探究的综合条件
思维定式是条件改变,结论必须改变,但有些条件改变了,但全等的关系仍然存在,导致结论不变.1.全等三角形是证明两条线段相等或垂直常用的方法.2.变化题目中某些条件,结论是否成立,关键是得到结论的核心是否仍然存在,比如:两个三角形是否仍然全等或相似.
【典例4】(1)如图1,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;
(2)如图2,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.
★考点五关于图形相似的综合问题
【典例5】(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).
(1)如图1,若AB=AC,求证:CD=2BE;
(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);
(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).
【讲透练活】
变式1:(2018·河北T23·9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接AP,并使MP的延长线交射线BD于点N,设∠BPN=α.
(1)求证:△APM≌△BPN;
(2)当MN=2BN时,求α的度数;
(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.
变式2:已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E.
(1)如图1,①线段CD和BE的数量关系是CD=BE;
②请写出线段AD,BE,DE之间的数量关系并证明;
(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.
变式3:(2018•莱芜•9分)已知△ABC中,AB=AC,∠BAC=90°,D.E分别是AB.AC的中点,将△ADE绕点A
按顺时针方向旋转一个角度α(0°<α<90°)得到△AD'E′,连接BD′、CE′,如图1.
(1)求证:BD′=CE';
(2)如图2,当α=60°时,设AB与D′E′交于点F,求的值.
变式4:(2017•乐山)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.
(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.
(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.
变式5:(2018•广东)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.
(1)填空:∠OBC= °;
(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;
(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?
变式6:(2017浙江义乌)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.
(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.
(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.。

相关文档
最新文档