始兴县三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

始兴县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是()
A.0 B.0或C.或D.0或
2.已知函数f(x)=2ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(1,+∞)B.(0,1) C.(﹣1,0)D.(﹣∞,﹣1)
3.设集合S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,则实数a的取值范围是()
A.﹣3<a<﹣1 B.﹣3≤a≤﹣1 C.a≤﹣3或a≥﹣1 D.a<﹣3或a>﹣1
4.已知△ABC中,a=1,b=,B=45°,则角A等于()
A.150°B.90°C.60°D.30°
5.下列命题正确的是()
A.很小的实数可以构成集合.
B.集合{}
2
|1
y y x
=-与集合()
{}
2
,|1
x y y x
=-是同一个集合.
C.自然数集N中最小的数是.
D.空集是任何集合的子集.
6.若直线:1
l y kx
=-与曲线C:
1
()1
e x
f x x
=-+没有公共点,则实数k的最大值为()
A.-1B.
1
2
C.1D
【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.
7.设x∈R,则x>2的一个必要不充分条件是()
A.x>1 B.x<1 C.x>3 D.x<3
8.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;
③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是()A.1个B.2个C.3个D.4个
9. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )
A .(0,10)
B .(
,10)
C .(
,+∞)
D .(0,
)∪(10,+∞)
10.设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )
A .7
B .6
C .5
D .4
11.已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )
A .x y z <<
B .z x y <<
C .z y z <<
D .y x z << 12.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1
B .2
C .3
D .4
二、填空题
13.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .
14.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .
15.若等比数列{a n }的前n 项和为S n ,且,则= .
16.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,
则f ()= .
17.设函数f (x )=
,则f (f (﹣2))的值为 .
18.已知关于的不等式2
0x ax b ++<的解集为(1,2),则关于的不等式2
10bx ax ++>的解集 为___________.
三、解答题
19.(本小题满分12分)已知函数2
()(21)ln f x x a x a x =-++(a R ∈).
(I )若1
2
a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.
20.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.
(1)求函数y=f(x)的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面
积.
21.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率
(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)
(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.
22.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象
ππ
(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣

]上的值域;
(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A+)=1,b+c=4,a=
,求△ABC 的面
积.
23.(本小题满分10分)选修4-4:坐标系与参数方程:
在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.
(1)设t 为参数,若22
x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.
24.斜率为2的直线l 经过抛物线的y 2=8x 的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长.
始兴县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】D
【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,
∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),
又f(x+2)=f(x),∴f(x)是周期为2的函数,
又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:
当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;
当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].
由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].
综上所述,a=﹣或0
故选D.
2.【答案】D
【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.
若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),
若f(x)存在唯一的零点x0,且x0>0,
若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,
由f′(x)<0得0<x<,此时函数单调递减,
故函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (),若x 0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.
若a <0,由f ′(x )>0得<x <0,此时函数递增,
由f ′(x )<0得x <或x >0,此时函数单调递减,
即函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (), 若存在唯一的零点x 0,且x 0>0,
则f ()>0,即2a ()3﹣3()2
+1>0,
()2
<1,即﹣1<<0,
解得a <﹣1, 故选:D
【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.
3. 【答案】A
【解析】解:∵S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,

,解得:﹣3<a <﹣1.
故选:A .
【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.
4. 【答案】D
【解析】解:∵
,B=45°
根据正弦定理可知

sinA=
=
∴A=30° 故选D .
【点评】本题主要考查正弦定理的应用.属基础题.
5. 【答案】D 【解析】
试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D 是正确,故选D.
考点:集合的概念;子集的概念. 6. 【答案】C
【解析】令()()()()1
11e
x g x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1
1
11101e k g k -⎛⎫
=-+< ⎪-⎝⎭
.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没
有实数解”矛盾,故1k ≤.又1k =时,()1
0e x
g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .
7. 【答案】A
【解析】解:当x >2时,x >1成立,即x >1是x >2的必要不充分条件是, x <1是x >2的既不充分也不必要条件, x >3是x >2的充分条件,
x <3是x >2的既不充分也不必要条件, 故选:A
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
8. 【答案】B 【解析】
考点:空间直线与平面的位置关系.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.
9.【答案】D
【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),
因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,
由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.
故选:D.
【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.
10.【答案】D
【解析】解:由题意,S k+2﹣S k=,
即3×2k=48,2k=16,
∴k=4.
故选:D.
【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.
11.【答案】A
【解析】
考点:对数函数,指数函数性质.
12.【答案】B
【解析】解:∵M∩{1,2,4}={1,4},
∴1,4是M中的元素,2不是M中的元素.
∵M⊆{1,2,3,4},
∴M={1,4}或M={1,3,4}.
故选:B.
二、填空题
13.【答案】.
【解析】解:∵x2﹣4ax+3a2<0(a<0),
∴(x﹣a)(x﹣3a)<0,
则3a<x<a,(a<0),
由x2﹣x﹣6≤0得﹣2≤x≤3,
∵¬p是¬q的必要非充分条件,
∴q是p的必要非充分条件,
即,即≤a<0,
故答案为:
14.【答案】5﹣4.
【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,
|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,
即:﹣4=5﹣4.
故答案为:5﹣4.
【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.
15.【答案】.
【解析】解:∵等比数列{a n}的前n项和为S n,且,
∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,
∴(S4﹣S2)2=S2(S6﹣S4),
∴(5S2﹣S2)2=S2(S6﹣5S2),
解得S6=21S2,
∴==.
故答案为:.
【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.16.【答案】1.
【解析】解:∵f (x )是定义在R 上的周期为2的函数,

=1.
故答案为:1.
【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.
17.【答案】 ﹣4 .
【解析】解:∵函数f (x )=

∴f (﹣2)=4﹣2
=

f (f (﹣2))=f ()=
=﹣4.
故答案为:﹣4.
18.【答案】),1()2
1,(+∞-∞ 【




点:一元二次不等式的解法.
三、解答题
19.【答案】
【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.
请20.【答案】
【解析】解:(1)f(x)=•=2cos2
x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,
令﹣+2kπ≤2x+≤+2kπ,
解得﹣+kπ≤x≤+kπ,
函数y=f(x)的单调递增区间是[﹣+kπ,+kπ],
(Ⅱ)∵f(A)=2
∴2sin(2A+)+1=2,即sin(2A+)=….
又∵0<A<π,∴A=.…
∵a=,
由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7 ①…
∵sinB=2sinC∴b=2c ②…
由①②得c2=.…
∴S△ABC=.…
21.【答案】
【解析】解:(Ⅰ)由题意可知:X~B(9,p),故EX=9p.
在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.
在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.
在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.
在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.
在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.
通讯器械正常工作的概率P′=;
(Ⅱ)当电路板上有11个元件时,考虑前9个元件,
为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.
①若前9个元素有4个正常工作,则它的概率为:.
此时后两个元件都必须正常工作,它的概率为:p2;
②若前9个元素有5个正常工作,则它的概率为:.
此时后两个元件至少有一个正常工作,它的概率为:;
③若前9个元素至少有6个正常工作,则它的概率为:;
此时通讯器械正常工作,故它的概率为:
P″=p2++,
可得P″﹣P′=p2+﹣

==.
故当p=时,P″=P′,即增加2个元件,不改变通讯器械的有效率;
当0<p时,P″<P′,即增加2个元件,通讯器械的有效率降低;
当p时,P″>P′,即增加2个元件,通讯器械的有效率提高.
【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.
22.【答案】
【解析】解:(Ⅰ)①处应填入.
=.
∵T=,
∴,,
即.
∵,∴,∴,
从而得到f(x)的值域为.
(Ⅱ)∵,
又0<A<π,∴,
得,.
由余弦定理得a2=b2+c2﹣2bccosA==(b+c)2﹣3bc,
即,∴bc=3.
∴△ABC的面积.
【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.
23.【答案】
【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.
24.【答案】
【解析】解:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,
cotθ=tanα=2,
∴sinθ=,
|AB|==40.
线段AB的长为40.
【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用.。

相关文档
最新文档