南丰县一中2018-2019学年下学期高二期中数学模拟题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南丰县一中2018-2019学年下学期高二期中数学模拟题
一、选择题
1. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个
B .1个
C .2个
D .4个
2. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为(

A. B. C. D. 4
π5
π2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.
3. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为(

A .5
B .7
C .9
D .11
4. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
5. “”是“圆关于直线成轴对称图形”的( )
3<-b a 05622
2=++-+a y x y x b x y 2+=A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件
【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.
6. 年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20163名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,,,按分
20350500150层抽样的方法,应从青年职工中抽取的人数为( )A. B. C. D.56710【命题意图】本题主要考查分层抽样的方法的运用,属容易题.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
7. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( )A .①④
B .①⑤
C .②⑤
D .③⑤8. 在空间中,下列命题正确的是(

A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥n
B .如果平面α内的两条直线都平行于平面β,那么平面α∥平面β
C .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥α
D .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β
9. 执行如图所示的程序,若输入的,则输出的所有的值的和为( )
3x x A .243 B .363 C .729 D .1092
【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.10.复数z=
(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于(

A .第一象限
B .第二象限
C .第三象限
D .第四象限
11.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为(

A .
B .4
C .
D .2
12.已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )
A .{x|x ≥0}
B .{x|x ≤1}
C .{﹣1,0,1}
D .R
二、填空题
13.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点
在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .14.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .
15.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆
恒有公共点,则m 的取值范围是 .
16.定义在上的函数满足:,,则不等式(其R )(x f 1)(')(>+x f x f 4)0(=f 3)(+>x
x
e x
f e 中为自然对数的底数)的解集为
.
17.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .
18.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .
三、解答题
19.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am 2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少 am 2;已知旧住房总面积为32am 2,每年拆除的数量相同.
(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m 2?(Ⅱ),求前n (1≤n ≤10且n ∈N )年新建住房总面积S n
20.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*
n N ∈,p ,为常数),且145x x x ,,成等差数列,求:(1)p q ,的值;
(2)数列{}n x 前项和n S 的公式.
21.已知是等差数列,是等比数列,为数列的前项和,,且,
{}n a {}n b n S {}n a 111a b ==3336b S =().
228b S =*n N ∈(1)求和;
n a n b (2)若,求数列的前项和.
1n n a a +<11n n a a +⎧


⎬⎩⎭
n T 22.(本小题满分16分) 给出定义在()+∞,0上的两个函数2
()ln f x x a x =-
,()g x x =- (1)若()f x 在1=x 处取最值.求的值;
(2)若函数2
()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围;
(3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.
23.已知cos (+θ)=﹣,<θ<,求的值.
24.如图,在几何体SABCD中,AD⊥平面SCD,BC⊥平面SCD,AD=DC=2,BC=1,又SD=2,∠SDC=120°.
(1)求SC与平面SAB所成角的正弦值;
(2)求平面SAD与平面SAB所成的锐二面角的余弦值.
南丰县一中2018-2019学年下学期高二期中数学模拟题(参考答案)
一、选择题
1.【答案】C
【解析】解:若不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集为∅”,
则根据题意需分两种情况:
①当a2﹣4=0时,即a=±2,
若a=2时,原不等式为4x﹣1≥0,解得x≥,故舍去,
若a=﹣2时,原不等式为﹣1≥0,无解,符合题意;
②当a2﹣4≠0时,即a≠±2,
∵(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,
∴,解得,
综上得,实数a的取值范围是.
则当﹣1≤a≤1时,命题为真命题,则命题的逆否命题为真命题,
反之不成立,即逆命题为假命题,否命题也为假命题,
故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,
故选:C.
【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想.
2.【答案】B
3.【答案】C
【解析】解:若果树前n年的总产量S与n在图中对应P(S,n)点
则前n年的年平均产量即为直线OP的斜率
由图易得当n=9时,直线OP的斜率最大
即前9年的年平均产量最高,
故选C
4.【答案】C
【解析】解:由a2b>ab2得ab(a﹣b)>0,
若a﹣b>0,即a>b,则ab>0,则<成立,
若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,
若<则,即ab(a﹣b)>0,即a2b>ab2成立,
即“a2b>ab2”是“<”的充要条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
5.【答案】A
【解析】
6.【答案】C
7.【答案】D
【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m∥β,
故选D
【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用. 
8.【答案】C
【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;
对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;
对于C,根据线面垂直的判定定理可得正确;
对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;
故选:C.
【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.
9.【答案】D
【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则
3x =y 2
3x =y 3(*)n
x n N =∈y 由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D .
31000n
x =≥7n ≥x 10.【答案】C
【解析】解:z=
=
=
=
+
i ,
当1+m >0且1﹣m >0时,有解:﹣1<m <1;当1+m >0且1﹣m <0时,有解:m >1;当1+m <0且1﹣m >0时,有解:m <﹣1;当1+m <0且1﹣m <0时,无解;故选:C .
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题. 
11.【答案】C
【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥
由图可知,底面两条对角线的长分别为2,2,底面边长为2
故底面棱形的面积为=2
侧棱为2,则棱锥的高h=
=3
故V=
=2
故选C
12.【答案】A
【解析】解:由A={x|x ≥0},且A ∩B=B ,所以B ⊆A .A 、{x|x ≥0}={x|x ≥0}=A ,故本选项正确;
B 、{x|x ≤1,x ∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;
C 、若B={﹣1,0,1},则A ∩B={0,1}≠B ,故本选项错误;
D 、给出的集合是R ,不合题意,故本选项错误.故选:A .
【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题. 
二、填空题
13.【答案】 [,] .
【解析】解:由m 2﹣7am+12a 2<0(a >0),则3a <m <4a 即命题p :3a <m <4a ,实数m 满足方程
+
=1表示的焦点在y 轴上的椭圆,
则,
,解得1<m<2,
若p是q的充分不必要条件,
则,
解得,
故答案为[,].
【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q 的等价条件是解决本题的关键.
14.【答案】﹣2≤a≤2
【解析】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,
则开口向上的二次函数值要想大于等于0恒成立,
只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.
故答案为:﹣2≤a≤2
【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.
15.【答案】 [1,5)∪(5,+∞) .
【解析】解:整理直线方程得y﹣1=kx,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,
由于该点在y轴上,而该椭圆关于原点对称,
故只需要令x=0有
5y2=5m
得到y2=m
要让点(0.1)在椭圆内或者椭圆上,则y≥1即是
y2≥1
得到m≥1
∵椭圆方程中,m≠5
m的范围是[1,5)∪(5,+∞)
故答案为[1,5)∪(5,+∞)
【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.
,0(
16.【答案】)
【解析】
考点:利用导数研究函数的单调性.
【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即
()()01>-'+x f x f x
e ,因此构造函数,求导利用函数的单调性解不等式.另外本题也可
()()0>-'+x x x e x f e x f e ()()x x e x f e x g -=以构造满足前提的特殊函数,比如令也可以求解.1()4=x f 17.【答案】 6 
【解析】解:根据题意,得;∵f (2x )=2f (x ),∴f (34)=2f (17)=4f ()=8f ()
=16f (
);
又∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|,
∴f (
)=1﹣|
﹣3|=,
∴f (2x )=16×=2;
当2≤x ≤4时,f (x )=1﹣|x ﹣3|≤1,不存在;
当4≤x ≤8时,f (x )=2f ()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.
【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目. 
18.【答案】 .
【解析】解:∵ =2,由正弦定理可得:
,即c=2a .
b=2a ,

==.
∴cosB=.故答案为:.
【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题. 
三、解答题
19.【答案】
【解析】解:(I )10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a .设每年拆除的旧住房为xm 2,则42a+(32a ﹣10x )=2×32a ,解得x=a ,即每年拆除的旧住房面积是am 2
(Ⅱ)设第n 年新建住房面积为a ,则a n =所以当1≤n ≤4时,S n =(2n ﹣1)a ;
当5≤n ≤10时,S n =a+2a+4a+8a+7a+6a+(12﹣n )a=

【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型. 
20.【答案】(1)1,1==q p ;(2)2
)
1(22
1
++
-=-n n S n n .

点:等差,等比数列通项公式,数列求和.
21.【答案】(1),或,;(2).21n a n =-1
2n n b -=1(52)3n a n =
-16n n b -=21
n n +【解析】
试题解析:(1)设的公差为,的公比为,
{}n a d {}n b 由题意得解得或2(33)36,(2)8,q d q d ⎧+=⎨+=⎩2,2,d q =⎧⎨=⎩2,
3
6.d q ⎧
=-⎪⎨⎪=⎩∴,或,.
21n a n =-12n n b -=1(52)3
n a n =-1
6n n b -=(2)若,由(1)知,
+1n n a a <21n a n =-∴
,111111
()(21)(21)22121
n n a a n n n n +==--+-+∴.
111111(1)2335212121
n n
T n n n =-+-++-=-++…考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.22.【答案】(1) 2a = (2) a ≥2(3)两个零点.【解析】
试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′
,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′
≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241
x a x +≥的最大值,根据分式函数求最值方法求得()2
41x F x x =+最大值2(3)先利用导数研究函数
()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,
4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数
试题解析:(1) ()2a
f x x x
=-′
由已知,(1)0f =′
即: 20a -=,解得:2a = 经检验 2a = 满足题意所以 2a =
………………………………………4分
因为(]0,1x ∈,所以[)1
1,x ∈+∞,所以2min
112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭所以()max 2F x =,所以a ≥2 ……………………………………10分
(3)函数()()()6m x f x g x =--有两个零点.因为(
)2
2ln 6
m x x x x =--+-所以(
)
221m x x x =--+=
=′………12分
当()1,0∈x 时,()0<'x m ,当()+∞∈,1x 时,()0
>'x m 所以()()min 140m x m ==-<,
……………………………………14分
32
4
1-e)(1+e+2e )(=0e m e -<() ,8424
812(21))0e e e m
e e -++-=>( 44
42()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:
函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分
考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性
【思路点睛】
对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性
;从图象的走向趋势,分析函数的单调性、周期性等.23.【答案】 【解析】解:∵<θ<
,∴
+θ∈(
,),
∵cos (+θ)=﹣,∴sin (+θ)=﹣
=﹣,
∴sin (
+θ)=sin θcos
+cos θsin
=
(cos θ+sin θ)=﹣,
∴sinθ+cosθ=﹣,①
cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,
∴cosθ﹣sinθ=﹣,②
联立①②,得cosθ=﹣,sinθ=﹣,
∴==
==.
【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.
24.【答案】
【解析】解:如图,过点D作DC的垂线交SC于E,以D为原点,
分别以DC,DE,DA为x,y,z轴建立空间直角坐标系.
∵∠SDC=120°,
∴∠SDE=30°,
又SD=2,则点S到y轴的距离为1,到x轴的距离为.
则有D(0,0,0),,A(0,0,2),C(2,0,0),B(2,0,1).
(1)设平面SAB的法向量为,
∵.
则有,取,
得,又,
设SC与平面SAB所成角为θ,
则,
故SC与平面SAB所成角的正弦值为.
(2)设平面SAD的法向量为,
∵,
则有,取,得.
∴,
故平面SAD与平面SAB所成的锐二面角的余弦值是.
【点评】本题是中档题,考查直线与平面所成角正弦值、余弦值的求法,考查空间想象能力,计算能力,熟练掌握基本定理、基本方法是解决本题的关键.。

相关文档
最新文档