高考物理试卷分类汇编物理牛顿运动定律的应用(及答案)含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理试卷分类汇编物理牛顿运动定律的应用(及答案)含解析
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:
(1)开始时B离小车右端的距离;
(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:
【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒
解得:,
A离左端距离,运动到左端历时,在A运动至左端前,木板静止
,,
解得
B离右端距离
(2)从开始到达共速历时,,,
解得
小车在前静止,在至之间以a向右加速:
小车向右走位移
接下来三个物体组成的系统以v共同匀速运动了
小车在6s内向右走的总距离:
【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.
2.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M=6.0kg的物块A。

装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。

传送带的皮带轮逆时针匀速转动,使传
送带上表面以u =2.0m/s 匀速运动。

传送带的右边是一半径R =1.25m 位于竖直平面内的光滑
14圆弧轨道。

质量m =2.0kg 的物块B 从1
4
圆弧的最高处由静止释放。

已知物块B 与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l =4.5m 。

设第一次碰撞前,物块A 静止,物块B 与A 发生碰撞后被弹回,物块A 、B 的速度大小均等于B 的碰撞前的速度的一半。

取g =10m/s 2。

求:
(1)物块B 滑到
1
4
圆弧的最低点C 时对轨道的压力; (2)物块B 与物块A 第一次碰撞后弹簧的最大弹性势能;
(3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B 经第一次与物块A 碰撞后在传送带上运动的总时间。

【答案】(1)60N ,竖直向下(2)12J (3)8s 【解析】 【详解】
(1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律得:
2
012
mgR mv =
代入数据解得:
v 0=5m/s
在圆弧最低点C ,由牛顿第二定律得:
20
v F mg m R
-=
代入数据解得:
F =60N
由牛顿第三定律可知,物块B 对轨道的压力大小:F′=F =60N ,方向:竖直向下; (2) 在传送带上,对物块B ,由牛顿第二定律得:
μmg =ma
设物块B 通过传送带后运动速度大小为v ,有
22
02v v al -=
代入数据解得:
v=4m/s
由于v >u =2m/s ,所以v =4m/s 即为物块B 与物块A 第一次碰撞前的速度大小,设物块A 、B 第一次碰撞后的速度分别为v 2、v 1,两物块碰撞过程系统动量守恒,以向左为正方向,由动量守恒定律得:
mv =mv 1+Mv 2
由机械能守恒定律得:
222
12
111222
mv mv Mv =+ 解得:
12m m 2,2s s 2
v
v v =
=-=
物块A 的速度为零时弹簧压缩量最大,弹簧弹性势能最大,由能量守恒定律得:
2
p 2112J 2
E mv =
= (3) 碰撞后物块B 沿水平台面向右匀速运动,设物块B 在传送带上向右运动的最大位移为l′,由动能定理得
211
02
mgl mv μ--'=
解得:
l′=2m <4.5m
所以物块B 不能通过传送带运动到右边的曲面上,当物块B 在传送带上向右运动的速度为零后,将会沿传送带向左加速运动,可以判断,物块B 运动到左边台面时的速度大小为v 1′=2m/s ,继而与物块A 发生第二次碰撞。

设第1次碰撞到第2次碰撞之间,物块B 在传送带运动的时间为t 1。

由动量定理得:
'112mgt mv μ=
解得:
'1124s v t g
μ==
设物块A 、B 第一次碰撞后的速度分别为v 4、v 3,取向左为正方向,由动量守恒定律和能量守恒定律得:
'134mv mv Mv =+
'222134111222
mv mv Mv =+ 代入数据解得:
3m 1s
v =-
当物块B 在传送带上向右运动的速度为零后,将会沿传送带向左加速运动,可以判断,物块B 运动到左边台面时的速度大小为v 3′=1m/s ,继而与物块A 发生第2次碰撞,则第2次碰撞到第3次碰撞之间,物块B 在传送带运动的时间为t 2.由动量定理得:
232mgt mv μ=
解得:
'3
222s v
t g
μ==
同上计算可知:物块B 与物块A 第三次碰撞、第四次碰撞…,第n 次碰撞后物块B 在传送带运动的时间为
1
1
4s 2n n t -=
⨯ 构成无穷等比数列,公比1
2
q =
,由无穷等比数列求和公式 111n
q t t q
-=-总
当n →∞时,有物块B 经第一次与物块A 碰撞后在传送带运动的总时间为
14s=8s
112
t =
⨯-总
3.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:
(1)物块与小车共同速度; (2)物块在车面上滑行的时间t ; (3)小车运动的位移x ;
(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少? 【答案】(1)0.8 m/s (2)0.24 s (3)0.096 m (4)5 m/s 【解析】 【详解】
(1、2)根据牛顿第二定律得,物块的加速度大小为:a 2=μg =0.5×10m/s 2=5m/s 2, 小车的加速度大小为:22211
0.5210
m/s m/s 0.33
m g
a m μ⨯==
= 根据v =v 0-a 2t =a 1t
得则速度相等需经历的时间为:0
12
0.24v t s a a =+=; v =0.8m/s (3)小车运动的位移2211110
0.24m 0.096m 223
x a t =
=⨯⨯= (4)物块不从小车右端滑出的临界条件为物块滑到小车右端时恰好两者达到共同速度,设此速度为v ,由水平方向动量守恒得:m 2 v 0′=(m 1+m 2)v 根据能量守恒得:μm 2gL =
12m 2v 0′2−1
2
(m 1+m 2)v 2
代入数据,联立解得v 0′=5m/s 。

4.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:
(1)物体从A 点到达B 点所需的时间;
(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.
【答案】(1)2s (2)5m 【解析】 【分析】
(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;
(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】
(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s
此过程中物体的位移01192
v v
x t m +=
= 传送带的位移:214x vt m ==
当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2
物体向上减速运动s 1=L-x 1=3m
根据位移公式:s 1=vt 2-1
2
a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)
则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s (2)物体减速上滑时,传送带的位移:224s vt m ==
则物体相对传送带向下的位移211s s s m ∆=-=
因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】
此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.
5.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

小物块通过圆弧轨道后以6m/s 的速度滑上与C 点等高、静止在粗糙水平面的长木板M 上.已知长木板的质量M =2kg ,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.1,OB 与竖直方向OC 间的夹角θ=37°,取g =10m/s 2,sin37°=0.6,cos37°=0.8,则:
(1)求小物块运动至B 点时的速度;
(2)若小物块恰好不滑出长木板,求此情景中自小物块滑上长木板起、到它们最终都停下来的全过程中,它们之间的摩擦力做功的代数和? 【答案】(1) 0
5m/s cos B v v θ
=
= 过B 点时的速度方向与水平方向成37度 (2) 12=15J W W W +=-总
【解析】 【详解】
(1)分解v B ,得:0
cos x y y
v v v v θ== 变形得:0
5m/s cos B v v θ
=
= 过B 点时的速度方向与水平方向成37°
(2)因()125N>3N mg M m g μμ=+=,故木板将在地面上滑行,则
对小物块有:11mg ma μ=,得 2
15m/s a = 对长木板有:()22M m g Ma μ+=,得 2
21m/s a =
设它们经过时间t ,共速v 共,则有:
12=C v v a t a t 共-=,
解得:1t s =,=1m/s v 共
则对小物块在相对滑动有:1 3.5m 2
C v v x t +=⋅=共

故11117.5J W mgx μ=-=- 则对长木板在相对滑动有:200.5m 2
v x t +=⋅=共
, 故212 2.5J W mgx μ==
共速后,假设它们一起减速运动,对系统有:()()2M m g M m a μ+=+共,
21m/s a 共=,则它们间的摩擦力1f ma mg μ=<共,所以假设成立,之后它们相对静止一
起滑行至停下,此过程中它们间的静摩擦力对堆放做功一定大小相等、一正一负,代数和为零.
综上所述,自小物块滑上长木板起,到它们最终停下来的全过程中,它们之间的摩擦力做功的代数和12=15J W W W +=-总
6.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.
(1)若木板固定,求小滑块在木板上滑过的距离.
(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止. (3)若木板不固定,求木板相对地面运动位移的最大值.
【答案】(1)20
3.6m 2v x a
==(2)t=1s (3)121x x m +=
【解析】 【分析】 【详解】
试题分析:(1)2
25m /s a g μ==
20 3.6m 2v x a
==
(2)对m :2
125/a g m s μ==,
对M :221()Ma mg m M g μμ=-+,
221m /s a =
012v a t a t -=
t=1s
(3)木板共速前先做匀加速运动2
110.52
x at m == 速度121m /s v a t ==
以后木板与物块共同加速度a 3匀减速运动
231/a g m s μ==,
2231
0.52
x vt a t m =+=
X=121x x m +=
考点:牛顿定律的综合应用
7.如图所示,在竖直平面内有一倾角θ=37°的传送带BC .已知传送带沿顺时针方向运行的速度v =4 m/s ,B 、C 两点的距离L =6 m 。

一质量m =0.2kg 的滑块(可视为质点)从传送带上端B 点的右上方比B 点高h =0. 45 m 处的A 点水平抛出,恰好从B 点沿BC 方向滑人传送带,滑块与传送带间的动摩擦因数μ=0.5,取重力加速度g =10m/s 2 ,sin37°= 0.6,cos 37°=0.8。

求:
(1)滑块水平抛出时的速度v 0;
(2)在滑块通过传送带的过程中,传送带和滑块克服摩擦力做的总功W . 【答案】(1)v 0=4m/s (2)W =8J 【解析】 【详解】
(1)滑块做平抛运动在B 点时竖直方向的分速度为:
平抛后恰好沿BC 方向滑人传送带,可知B 点的平抛速度方向与传送带平行, 由几何关系及速度分解有:
解得:
(2)滑块在B 点时的速度大小为
滑块从B 点运动到C 点过程中,由牛顿第二定律有:
可得加速度
设滑块到达C 点时的速度大小为v C ,有:
解得:
此过程所经历的时间为:
故滑块通过传送带的过程中,以地面为参考系,滑块的位移x 1=L =6m , 传送带的位移x 2=vt =4m ;
传送带和滑块克服摩擦力所做的总功为:
代入数据解得:
【点睛】
此题需注意两点,(1)要利用滑块沿BC 射入来求解滑块到B 点的速度;(2)计算摩擦力对物体做的功时要以地面为参考系来计算位移。

8.风洞实验室中可产生水平方向的,大小可调节的风力.现将一套有球的细直杆放入风洞实验室.小球孔径略大于细杆直径.如图所示.
(1)当杆水平固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.
(2)保持小球所受风力不变,使杆与水平方向夹角为37°并固定,则小球从静止出发在细杆上滑下距离s=3.75m 所需时间为多少?(sin37°=0.6,cos37°=0.8) 【答案】(1)0.5(2)1s 【解析】 【分析】 【详解】
(1)小球做匀速直线运动,由平衡条件得:0.5mg=μmg ,则动摩擦因数μ=0.5; (2)以小球为研究对象,在垂直于杆方向上,由平衡条件得:
000.5sin 37cos37N F mg mg +=
在平行于杆方向上,由牛顿第二定律得:00
0.5cos37sin 37N mg mg F ma μ+-=
代入数据解得:a=7.5m/s 2
小球做初速度为零的匀加速直线运动,由位于公式得:s=12
at 2 运动时间为22 3.7517.5
s t s s a ⨯=
==;
【点睛】
此题是牛顿第二定律的应用问题,对小球进行受力分析是正确解题的前提与关键,应用平衡条件用正交分解法列出方程、结合运动学公式即可正确解题.
9.如图所示,在倾角θ=30°的固定斜面上,跨过定滑轮的轻绳一端系在小车的前端,另一端被坐在小车上的人拉住,已知人的质量m=60kg,小车的质量M=10kg,绳及滑轮的质量,滑轮与绳间的摩擦均不计,斜面对小车的摩擦阻力为小车总重的0.1倍,斜面足够长,当人以280N的力拉绳时,求:
(1)人与车一起运动的加速度的大小;
(2)人所受的摩擦力的大小和方向;
(3)某时刻人和车沿斜面向上的速度大小为3m/s,此时人松手,则人和车一起滑到最高点时所用的时间.
【答案】(1)2m/s2(2)140N(3)0.5s
【解析】
【详解】
(1)将人和车看做整体,受拉力为280×2=560N,总重为(60+10)×10=700N,受阻力为700×0.1=70N,重力平行于斜面的分力为 700×sin30°=350N,则合外力为F=560-70-350=140N
则根据牛顿第二定律,加速度为a==2m/s2
即人与车一起运动的加速度的大小为2m/s2。

(2)人与车有着共同的加速度,所以人的加速度也为2m/s2,对人受力分析,受重力、支持力、拉力和摩擦力,假设静摩擦力沿斜面向上,根据牛顿第二定律,有
ma=T+f-mgsin30°
代入数据解得:f=140N
即人受到沿斜面向上的140N的摩擦力。

(3)失去拉力后,对人和车整体受力分析,受到重力、支持力和沿斜面向下的摩擦力,根据牛顿第二定律,沿斜面的加速度为
a′==−6m/s2
根据速度时间公式,有
即人和车一起滑到最高点时所用的时间为0.5s。

【点睛】
本题关键是对小车和人整体受力分析,然后根据牛顿第二定律求解出加速度,再对人受力
分析,根据牛顿第二定律列式求解出车对人的摩擦力。

10.如图所示,滑块与足够长的木板叠放在光滑水平面上,开始时均处于静止状态.作用于滑块的水平力F 随时间t 变化图象如图所示,t=2.0s 时撤去力F ,最终滑块与木板间无相对运动.已知滑块质量m=2kg ,木板质量M = 1kg ,滑块与木板间的动摩擦因数μ=0.2,取g=10m/s 2.求:
(1)t=0.5s 时滑块的速度大小;
(2)0~2.0s 内木板的位移大小;
(3)整个过程中因摩擦而产生的热量.
【答案】(1)1m/s (2)6.25m (3)12J
【解析】
【分析】先判断出在0-0.5s 内滑块与木板是相对静止的,方法是:设滑块恰好相对于木板要滑动时两者间的静摩擦力达到最大,以M 为研究对象,求出临界加速度,再以整体为研究对象,求出此时的拉力F ,结合图象的信息分析.再由运动学公式求解速度;0.5-2.0s 内滑块相对于木板滑动,分别由牛顿第二定律求出两者的加速度,再由位移公式求出各自的位移,再结合0-0.5s 内的位移,即可得解;求出相对位移,再得到摩擦生热;
解:(1)设滑块恰好相对于木板要滑动时两者间的静摩擦力达到最大,
以M 为研究对象,根据牛顿第二定律得
0mg Ma μ=,得200.22104m/s 1
mg
a M μ⨯⨯===; 对整体,有()0012N F M m a =+=
由图知,在00.5s -内,06N F F =<,则滑块与木板相对静止,两者共同的加速度等于22m/s F a M m
==+,则0.5s t =时滑块的速度大小111m/s v at == (2)00.5s -内,整体的位移为22111120.50.25m 22x at =
=⨯⨯= 在0.5s 2.0s -内,016N F F =>,所以两者相对滑动.根据牛顿第二定律得
对m 有:m F mg ma μ-=,得26m/s m a =;
对M 有:M mg Ma μ=,得24m/s M a =;
0.5~2.0s 内木板的位移大小为2212212M x v t a t =+=211 1.54 1.56m 2
⨯+⨯⨯= 故0~2.0s 内木板的位移大小12 6.25m x x x =+=
(3)0.5~2.0s 内滑块的位移大小为2312212M x v t a t =+=211 1.56 1.58.25m 2⨯+⨯⨯= 故0.5~2.0s 内滑块与木板的相对位移132 2.25m x x x ∆=-= 2.0s t =时,滑块的速度为1216 1.510m/s m m v v a t =+=+⨯= 木板的速度为1214 1.57m/s M M v v a t =+=+⨯=
撤去F 后,m 的加速度大小为22m/s m mg
a g m μμ'===;
设从2s t =时起经过时间t ,两者速度相等,共同速度为v ,则有 m m M M v v a t v a t '=-=+,计算得出0.5s t =,9m/s v =, 从2s t =到两者相对静止的过程中,滑块的位移为41090.5m 4.75m 22m v v x t ++==⨯= 木板的位移为5790.5m 4m 22
M v v x t ++==⨯= 此过程两者的相对位移2450.75m x x x ∆=-=
故整个过程中因摩擦而产生的热量为()1212J Q mg x x μ=∆+∆=。

相关文档
最新文档