深圳民治街道六一学校数学代数式章末练习卷(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)
1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.
我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.
(1)求a,c的值;
(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.
【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30
(2)-70或
(3)解:①如下图所示:
当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,
点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果
AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,
点A,C之间
每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,
点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.
【解析】【解答】解:(2)分三种情况讨论,
•当点D在点A的左侧,
∵CD=2AD,
∴AD=AC=50,
点C点表示的数为-20-50=-70,
‚当点D在点A,C之间时,
∵CD=2AD,
∴AD= AC= ,
点C点表示的数为-20+ =- ,
ƒ当点D在点C的右侧时,
AD>CD与条件CD=2AD相矛盾,不符合题意,
综上所述,D点表示的数为-70或 ;
【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。
(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时,根据CD=2AD,及点A、C表示的数,就可求出点D表示的数。
(3)① 根据题意画出图形,当t=0时,AB=21,BC=29 ,分情况讨论:a.点A,C在相遇前时; b.点A,C在相遇时,AB=BC ,分别求出符合题意的t的值即可;②当时间为t 时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,建立方程求出m的值即可。
2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.
方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.
(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).
【答案】(1)解:方案一:∵石子路宽为4,
∴S石子路面积=4a+4b-16,
方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2
(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;
方案二:S石子路面积=129m2,则S植物=600-129=471m2.
故答案为:择方案二,植物面积最大为471m2。
【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;
方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;
(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.
3.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类
①若a≠0,b=c=0,则称该整式为P类整式;
②若a≠0,b≠0,c=0,则称该整式为PQ类整式;
③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;
(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;
(2)说明整式x2﹣5x+5为“PQ类整式;
(3)x2+x+1是哪一类整式?说明理由.
【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.
若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
故答案是:a=b=0,c≠0;a=0,b≠0,c≠0
(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)
=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.
即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”
(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),
∴该整式为PQR类整式.
【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.
(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.
4.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.
当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1
(1)若y2= + ,求y2的值
(2)若y3= + + ,则y3的值为________;
(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.
【答案】(1)解:∵ =±1, =±1,
∴y2= + =±2或0
(2)±1或±3
(3)2017;4032
【解析】【解答】解:(2)∵ =±1, =±1, =±1,
∴y3= + + =±1或±3.
故答案为±1或±3,
( 3 )由(1)(2)可知,
y1有两个值,y2有三个值,y3有四个值,…,
由此规律可知,y2016有2017个值,
最大值为2016,最小值为﹣2016,
最大值与最小值的差为4032.
故答案分别为2017,4032.
【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。
(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。
5.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:
① 买一件夹克送一件T恤;
② 夹克和T恤都按定价的80%付款.
现某客户要到该服装厂购买夹克30件,T恤x件(x >30).
(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);
若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);
(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?
(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.
【答案】(1)3000;;2400;
(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算
(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱
【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;
方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;
【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。
(2)根据x=40时,分别求出两种优惠方案所付费用,再比较大小,即可作出判断。
(3)抓住已知:两种优惠方案可同时使用,可以先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,计算出所需费用,再比较大小,可得出结论。
6.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.
(1)则a=________,b=________,c=________.
(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?
(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点
P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.
【答案】(1)﹣24;﹣10;10
(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.
②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,
③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t= ,不符合题意,排除,
∴t=2s或5s时,P到A、B、C的距离和为40个单位.
(3)解:当点P追上T的时间t1= .
当Q追上T的时间t2= .
当Q追上P的时间t3= =20,
∴当<t<时,位置如图,
∴2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|
=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t
=74-28
=46.
【解析】【解答】解:(1)∵M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,∴a+24=0,b=﹣10,c=10,∴a=﹣24,
故答案为﹣24,﹣10,10.
【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建
方程即可解决问题;(3)当点P追上T的时间t1= .当Q追上T的时间t2= .当Q追上P的时间t3= =20,推出当<t<时,位置如图,利用绝
对值的性质即可解决问题.
7.观察下表:
我们把表格中字母的和所得的多项式称为"'特征多项式",例如:第1格的“特征多项式”为4x+y,第 2 格的“特征多项式”为 8x+4y, 回答下列问题:
(1)第 3 格的“特征多项式”为________第 4 格的“待征多项式”为________, 第 n 格的“特征多项式”为________.
(2)若第 m 格的“特征多项式”与多项式-24x+2y-5 的和不含有 x 项,求此“特征多项式”. 【答案】(1)12x+9y;16x+16y;4nx+n2y
(2)解:由(1)可得,第m格的“特征多项式”是4mx+m2y,
∴(4mx+m2y)+(−24x+2y−5)=4mx+m2y−24x+2y−5=(4m−24)x+(m2+2)y−5,
∵第m格的“特征多项式”与多项式−24x+2y−5的和不含有x项,
∴4m−24=0,解得m=6,
∴此“特征多项式”是24x+36y.
【解析】【解答】解:(1)由表格可得:第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,第n格的“特征多项式”为4nx+n2y,
故答案为:12x+9y, 16x+16y, 4nx+n2y;
【分析】(1)根据表格中的数据找出规律即可解答本题;(2)根据(1)中的结果可以写出第m格的“特征多项式”,然后根据“和不含有x项”可以求得m的值,从而可以写出此“特征多项式”.
8.如图是用长度相等的小棒按一定规律摆成的一组图案.
(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;
(2)第n个图案中有多少根小棒?
(3)第25个图案中有多少根小棒?
(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.
【答案】(1)11;16
(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒
(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成
【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;
【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.
9.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.
尝试应用:
(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是________.
(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;
拓广探索:
(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2
(2)解:∵x2﹣2y=4,
∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;
(3)解:∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,
∴a﹣c=﹣2,2b﹣d=5,
∴原式=﹣2+5﹣(﹣5)=8.
【解析】【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;
故答案为:﹣(a﹣b)2;
【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.
10.如图,将连续的奇数1,3,5,7……排成如下的数表,用十字形框框出5个数.
(1)探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为________,这说明被十字框框中的五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是________;
(2)探究规律二:落在十字框中间且位于第二列的一组奇数是21,39,57,75,…,则这一组数可以用整式表示为18m+3(m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为________;(用含m的式子表示)
(3)运用规律一:已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是________,这个奇数落在从左往右第________列;
(4)运用规律二:被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:;若不能,请说明理由.
【答案】(1)5x;5
(2)(18m+5)
(3)405;五
(4)这五个数为404、402、406、396、422.
【解析】【解答】解:(1)根据题意,得,
设十字框中间的奇数为x,则框中其它五个奇数为:
x﹣2,x+2,x﹣18,x+18.
∴x+x﹣2+x+2+x﹣18+x+18=5x,
五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是5.
故答案为:5x、5.
2)因为第二列的一组奇数是21,39,57,75,…
21=1×18+3
39=2×18+3
57=3×18+3
75=4×18+3
∴这一组数可以用整式表示为18m+3(m为序数).
∴落在十字框中间且位于第三列的一组奇数可以表示为(18m+5).
故答案为:(18m+5).
3)根据题意,得
5x=2025
解得:x=405
∴十字框中间的奇数是405.
∵18m+9=405,解得:m=22,
∴405这个奇数落在从左往右第五列.
故答案为:405、五;
4)十字框框中的五个奇数的和可以是2020.理由如下:
5x=2020
解得:x=404,
∴x﹣2=402,x+2=406,x﹣18=396,x+18=422.
答:这五个数为:404、402、406、396、422.
【分析】(1)根据表中数据规律即可列出代数式进而求解;(2)根据第二列的一组奇数的规律即可写出第三列的一组奇数的规律;(3)根据探究规律一和探究规律二所得代数式即可求解;(4)根据探究规律一所得代数式列方程即可求解.
11.观察下列等式:
(1) ________,
(2)猜想规律 ________,
(3)有以上情形,你能求出下面式子的结果吗?
________,
(4)已知,求的值.
【答案】(1)
(2)
(3)
(4)解:∵
∴
∴
∴x=1
∴
【解析】【解答】解:(1)
,
故答案为:
( 2 )猜想
故答案为:
( 3 )由以上情形,求出下面式子的结果:
故答案为:
【分析】(1)利用多项式乘以多项式的法则:用一个多项式的每一项分别去乘以另一个多
项式的每一项,再把所得的积相加,最后合并同类项化为最简形式即可;
(2)通过观察(1)中两个等式的左右两边的特点即可得出通用公式:
;
(3)此题直接逆用(2)发现的通过公式即可直接得出答案;
(4)由等式的性质,在两边同时乘以(x-1),然后根据(2)发现的通用公式即可得出,解方程即可求出x的值,再代入代数式,按有理数的乘方运算即可算出答案。
12.如图
设a1=22-02, a2=32-12,…,a n=(n+1)2-(n-1)2(n为大于1的整数)
(1)计算a15的值;
(2)通过拼图你发现前三个图形的面积之和与第四个正方形的面积之间有什么关系:
________(用含a、b的式子表示);
(3)根据(2)中结论,探究a n=(n+1)2-(n-1)2是否为4的倍数.
【答案】(1)解:a15=162-142=256-196=60
(2)(a+b)2=a2+2ab+b2
(3)解:a n=(n+1)2-(n-1)2 =(n2+2n+1)-(n2-2n+1) =n2+2n+1-n2+2n-1=4n 是4的倍数.
【解析】【分析】(1)把n=15代入计算;
(2)通过观察可以得到前三个图形的面积与第四个图形面积之间的关系,从而可以用式子进行表示;
(3)利用(2)的关系式展开,合并同类项后可判断.。