高二期中考试练习题

合集下载

高二语文期中考试题及答案

高二语文期中考试题及答案

高二语文期中考试题及答案一、选择题(每题2分,共20分)1. 下列词语中,加点字的读音全部正确的一项是:A. 箴言(zhēn)恣意(zì)踌躇(chóu)B. 蹉跎(cuō)缄默(jiān)旖旎(yǐ)C. 蹉跎(cuō)缄默(jiān)旖旎(nǐ)D. 箴言(zhēn)恣意(zì)踌躇(chú)2. 下列句子中,没有语病的一项是:A. 他不仅学习好,而且品德高尚。

B. 由于他刻苦学习,因此成绩优异。

C. 这篇文章的中心思想是歌颂劳动人民的勤劳和智慧。

D. 我们要注意防止不再发生类似的错误。

3. 下列句子中,使用了比喻修辞手法的一项是:A. 他像一只猛虎下山,勇往直前。

B. 他的心情像天气一样变化无常。

C. 她的声音如同泉水般清澈。

D. 他的行为让人难以捉摸。

4. 下列句子中,使用了拟人修辞手法的一项是:A. 春风又绿江南岸。

B. 太阳从东方升起。

C. 月亮悄悄地爬上了树梢。

D. 星星在夜空中闪烁。

5. 下列句子中,使用了排比修辞手法的一项是:A. 他勤奋学习,刻苦钻研,成绩优异。

B. 春天来了,万物复苏,大地回春。

C. 他热爱生活,热爱工作,热爱学习。

D. 他喜欢音乐,喜欢运动,喜欢阅读。

6. 下列句子中,使用了设问修辞手法的一项是:A. 我们为什么要学习?B. 学习是为了什么?C. 学习是为了提高自己。

D. 我们应该热爱学习。

7. 下列句子中,使用了反问修辞手法的一项是:A. 难道我们不应该热爱学习吗?B. 学习难道不是为了提高自己吗?C. 我们应该热爱学习。

D. 学习是为了提高自己。

8. 下列句子中,使用了夸张修辞手法的一项是:A. 他跑得比兔子还快。

B. 他学习非常认真。

C. 他的成绩很好。

D. 他非常热爱学习。

9. 下列句子中,使用了反复修辞手法的一项是:A. 他热爱学习,热爱学习,热爱学习。

B. 学习,学习,再学习。

C. 他热爱学习,热爱工作,热爱生活。

高二上学期期中考试试卷

高二上学期期中考试试卷

第一学期期中练习高二化学考 生 须 知 1.本卷共8页,包括 19小题,满分为100分。

练习时间90分钟。

2.考生务必将答案答在答题纸上,在试卷上作答无效。

3.本试卷中可能用到的相对原子质量有H 1 C 12 N 14 O 16 Na 23 Fe 56 Cu 64 Zn 65 Ni 59第I 卷 选择题(共42分。

每道试题仅有1个正确答案)1.下列过程或装置能实现电能转化为化学能的是A .电动汽车充电B .火力发电C .燃料燃烧D .火星车太阳能帆板2.一定温度和压强下,2 mol H 2和1 mol O 2分别以点燃和形成氢氧燃料电池这两种方式发生化学反应,生成2 mol 液态水。

下列说法正确的是A .放出的热量相等B . 体系内能变化相等C .反应速率相等D . 反应的活化能相等3.下列实验装置或操作,能达到实验目的的是选项A B C D 装置或操作目的 电解法制金属钠 测定中和反应的反应热 防止铁片被腐蚀 测定锌与稀硫酸反应速率4.下列事实不能..用平衡移动原理解释的是 A .铁质器件附有铜质配件,久置,在接触处铁易生锈B .在NO 2和N 2O 4组成的体系中,恒温缩小容积,气体颜色先变深后变浅C .向FeCl 3溶液中滴加几滴KSCN 溶液,溶液呈红色,再加入少量铁粉,溶液红色变浅D.工业上用熔融的KCl和金属钠发生置换反应,可以分离出钾蒸气5.已知下列热化学方程式,所得结论正确的是A.N2(g)+3H2(g)2NH3(g) ∆H=-92.4kJ∙mol-1则一定条件下将2 mol N2和6mol H2置于一密闭容器中充分反应,放出的热量为184.8 kJ B.C(石墨,s)C(金刚石,s) ∆H>0 则金刚石比石墨稳定C.H+(aq)+OH-(aq)H2O(l) ∆H=-57.3 kJ∙mol-1则将含1mol CH3COOH的溶液与含1mol NH3·H2O的溶液混合,放出的热量为57.3 kJ D.S(s)+O2(g)SO2(g) ∆H1;S(g)+O2(g)SO2(g) ∆H2;则∆H2 <∆H16.下图为电镀实验装置,下列有关叙述不正确...的是A.电镀时,待镀铁制品应与直流电源负极相连B.通电后,溶液中的SO42-移向阳极C.镀铜时,理论上阳极和阴极质量变化在数值上相等D.待镀铁制品增重2.56 g,电路中通过的电子为0.04 mol7.碱性锌锰电池是普通锌锰电池的升级换代产品,图1、图2分别为碱性锌锰电池和普通锌锰电池的构造图。

2024高二数学期中考试题及答案

2024高二数学期中考试题及答案

2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。

A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。

2. 设函数f(x)=3x+2,则f(-1)的值是_________。

3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。

4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。

5. 若正方形的边长为x+2,其面积是_________。

6. 已知平行四边形的底边长为5,高为3,其面积是_________。

7. 若正方形的对角线长为10,边长是_________。

8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。

9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。

10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。

三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。

2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。

天津市部分区2023-2024学年高二下学期期中练习数学试题(含答案)

天津市部分区2023-2024学年高二下学期期中练习数学试题(含答案)

天津市部分区2023~2024学年度第二学期期中练习高二数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试用时100分钟.祝各位考生考试顺利!第Ⅰ卷一、选择题:本大题公共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线1y x x=-在2x =处的切线斜率为( )A . 3-B .34C .54D . 52.用0~6这7个自然数,可以组成没有重复数字的三位数的个数为( )A .60B .90C .180D .2103.函数ln xy x=的单调递增区间为( )A . (),e -∞B . ()0,e C . ()1,+∞D . ()e,+∞4. ()()52x y x y +-的展开式中33x y 项的系数为( )A . 30-B . 10-C . 10D .305.已知函数()y f x =,其导函数()y f x '=的图象如图所示,则对于()y f x =的描述正确的是()A .在区间(),0-∞上单调递减B .当0x =时取得最大值C .在区间()3,+∞上单调递减D .当1x =时取得最小值6.甲乙两位同学从5种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种7.已知函数()32113f x x x ax =+-+在R 上单调递增,则实数a 的取值范围为( )A . (],1-∞-B . (),1-∞-C . ()1,-+∞D . [)1,-+∞8.函数()()sin 1cos f x x x x =-+在区间[]0,2π上的最大值为( )A . 1-B .1C .1π+D .2π+9.若对任意的()12,,x x m ∈+∞,不等式122112ln ln 2x x x x x x ->-恒成立,则实数m 的取值范围是( )A . 31,e e ⎛⎫ ⎪⎝⎭B . 31,e e ⎡⎤⎢⎥⎣⎦C . ()3e ,+∞D . )3e ,⎡+∞⎣第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.10.设函数()21ex f x -=,()f x '为其导函数,则()1f '=______.11.765765A 6A 6A --=______.12.在1,2,3,…,500中,被5除余3的数共有______个.13.在6⎛ ⎝的展开式中,2x 的系数是______.(用数字作答)14.如图,现要用4种不同的颜色对4个区域进行着色,要求有公共边的两个区域不能用同一种颜色,共有______种不同的着色方法.(用数字作答)15.已知函数()()()()22f x x a x a =--∈R ,当2x =时,()f x 有极大值,则a 的取值范围为______.三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()312f x x x =-.(1)求()f x 的单调区间;(2)求()f x 的极值.17.(本小题满分12分)班上每个小组有12名同学,现要从每个小组选4名同学代表本组与其他小组进行辩论赛.(1)每个小组有多少种选法?(2)如果还要从选出的同学中指定1名作替补,那么每个小组有多少种选法?(3)如果还要将选出的同学分别指定为第一、二、三、四辩手,那么每个小组有多少种选法?18.(本小题满分12分)已知函数()()()256ln f x a x x a =-+∈R ,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)求a 的值;(2)求()f x 在区间[]1,3上的最小值.19.(本小题满分12分)已知函数()ln af x x x=+,a ∈R .(1)若()f x 在点()()1,1f 处取得极值.①求a 的值;②证明:()1f x ≥;(2)求()f x 的单调区间.20.(本小题满分12分)已知函数()e xf x x x a =--,()22g x x x =-,a ∈R .(1)求函数()y f x =-的导数;(2)若对任意的[]11,e x ∈,[]21,2x ∈,使得()()12f x g x ≥成立,求a 的取值范围;(3)设函数()()ln h x f x x =-,若()h x 在区间()0,e 上存在零点,求a 的最小值.天津市部分区2023~2024学年度第二学期期中练习高二数学参考答案一、选择题:本大题共9小题,每小题4分,共36分.题号123456789答案CCBBCBACD二、填空题:本大题共6小题,每小题4分,共24分.10.2e 11.012.10013.192-14.4815.2a >三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)解:(1)函数()f x 的定义域为R ,导函数()2312f x x '=-,令()0f x '=,解得2x =±,则()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2()2,+∞()f x '+0-0+()f x 单调递增取极大值单调递减取极小值单调递增故函数()f x 的单调增区间为(),2-∞-和()2,+∞,单调减区间为()2,2-;(2)由小问1知,当2x =-时,函数()f x 取得极大值16;当2x =时,函数()f x 取得极小值16-.17.(本小题满分12分)解:(1)每个小组从12名同学中选4名同学,选法种数为412C 495=;(2)每个小组从12名同学中选4名同学,选法种数为412C ,再从选出的同学中选定1名作为替补选法种数为14C ,因此还要从选出的同学中指定1名作替补,那么每个小组的选法种数为41124C C 1980=.(3)每个小组从12名同学中选4名同学并分别被指定为第一、二、三、四辩手,选法种数为412A 11880=.18.(本小题满分12分)解:(1)因为()()256ln f x a x x =-+,所以()()625f x a x x'=-+,令1x =,则()116f a =,()168f a '=-.所以曲线()yf x =在点()()1,1f 处的切线方程为()()16681y a a x -=--.由点()0,6在切线上,可得61686a a -=-,解得12a =.(2)由(1)得()()()2156ln 02f x x x x =-+>所以()()()2365x x f x x x x--'=-+=令()0f x '=,解得12x =,23x =.当x 变化时,()f x ',()f x 的变化情况如表所示.x()1,22()2,3()f x '+0-()f x 单调递增单调递减又由于()18f =,()326ln 38f =+>.所以,当1x =时,()f x 取得最小值8.19.(本小题满分12分)解:(1)①()221a x af x x x x-'=-+=,因为()f x 在点()()1,1f 处取得极值,所以()11101af a -'==-=;所以1a =.②中①得,()1ln f x x x =+,()21x f x x-'=令()0f x '=,解得1x =,当x 变化时,()f x ',()f x 的变化情况如表所示.x()0,11()1,+∞()f x '-0+()f x 单调递减1单调递增所以,当1x =时,()f x 取得最小值.所以()()11f x f ≥=,即()1f x ≥.(2)函数()f x 的定义域为()0,+∞,()221a x a f x x x x-'=-+=,当0a ≤时,()0f x '>恒成立,所以()f x 的单调递增区将为()0,+∞,无单调递减区间;当0a >时,令()0f x '=解得x a =,()0f x '>的解集为{}x x a >,()0f x '<的解集为{}0x x a <<,所以()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a 综上所述:当0a ≤时,()f x 的单调递增区间为()0,+∞,无单调递减区间;当0a >时,()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a .20.(本小题满分12分)解:(1) ()e x y f x x x a -=-=-+-,所以e e 1x x y x --'=-++(2)因为()()1e 1x f x x '=+-,[]11,e x ∈,所以()0f x '≥,故()f x 在[]1,e 上单调递增,所以()e 1e 1,ee f x a a +⎡⎤∈----⎣⎦,又()()22211g x x x x =-=--,所以()g x 在[]1,2上也是单调递增,所以()[]1,0g x ∈-,因为对任意的[]11,e x ∈,[]21,2x ∈,使()()12f x g x ≥成立,等价于()()12min max f x g x ⎡⎤⎡⎤≥⎣⎦⎣⎦,即e 10a --≥,所以e 1a ≤-.故实数a 的范围是(],e 1-∞-.(3)由()e ln 0x h x x x x a =---=,即e ln x x x x a --=,令()e ln x p x x x x =--,()0,e x ∈,而()()()()1e 111e e 11e xx x xx x x p x x x x x x+-+'=+--=+-=,令()e 1x q x x =-,()0,e x ∈,则()ee 0xx q x x '=+>,即函数()q x 在()0,e 上单调递增,因为()010q =-<,()1e 10q =->,即()()010q q ⋅<,所以存在唯一的()00,1x ∈,使得()00q x =,即00e 10xx -=,即01ex x =,00ln x x =-,所以当00x x <<时,()0q x <,()0p x '<,函数()p x 单调递减;当0e x x <<时,()0q x >,()0p x '>,函数()p x 单调递增,所以()()0000000min e ln 11x p x p x x x x x x ==--=-+=,又0x +→时,()p x →+∞,所以要使()h x 在()0,e 存在零点,则1a ≥,所以a 的最小值为1.。

江西省高二上学期期中考试数学试题(解析版)

江西省高二上学期期中考试数学试题(解析版)

一、单选题1.已知直线的图像如图所示,则角是( )sin cos :y x l θθ=+θA .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D【分析】本题可根据直线的斜率和截距得出、,即可得出结果. sin 0θ<cos 0θ>【详解】结合图像易知,,, sin 0θ<cos 0θ>则角是第四象限角, θ故选:D.2.的展开式中的系数为( ) ()()8x y x y -+36x y A . B .C .D .2828-5656-【答案】B【分析】由二项式定理将展开,然后得出,即可求出的系数. 8()x y +8()()x y x y -+36x y 【详解】由二项式定理:8()()x y x y -+080171808888()(C C C )x y x y x y x y =-+++080171808080171808888888(C C C )(C C C )x x y x y x y y x y x y x y =+++-+++090181818081172809888888(C C C )(C C C )x y x y x y x y x y x y =+++-+++ 观察可知的系数为. 36x y 6523888887876C C C C 2821321⨯⨯⨯-=-=-=-⨯⨯⨯故选:B.3.已知条件:,条件:表示一个椭圆,则是的( ) p 0mn >q 221x y m n+=p q A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;0mn >0m n =>221x y m n +=而表示一个椭圆,则成立,必要性成立. 221x y m n+=0mn >所以是的必要不充分条件. p q 故选:B4.两平行平面分别经过坐标原点O 和点,且两平面的一个法向量,则两,αβ()1,2,3A ()1,0,1n =-平面间的距离是( )A B C D .【答案】A【分析】由空间向量求解【详解】∵两平行平面分别经过坐标原点O 和点,,αβ(1,2,3),(1,2,3)A OA =且两平面的一个法向量,(1,0,1)n =-∴两平面间的距离 ||||n OA d n ⋅=== 故选:A5.2022年遂宁主城区突发“920疫情”,23日凌晨2时,射洪组织五支“最美逆行医疗队”去支援遂宁主城区,将分派到遂宁船山区、遂宁经开区、遂宁高新区进行核酸采样服务,每支医疗队只能去一个区,每区至少有一支医疗队,若恰有两支医疗队者被分派到高新区,则不同的安排方法共有( ) A .30种 B .40种 C .50种 D .60种【答案】D【分析】先从5支医疗队中选取2支医疗队去高新区,再将剩下的3支医疗队分配到船山区与经开区,最后根据分步乘法原理求解即可.【详解】解:先从5支医疗队中选取2支医疗队去高新区,有种不同的选派方案,25C 10=再将剩下的3对医疗队分配到船山区与经开区,有种不同的选派方案,2232C A 6=所以,根据分步乘法原理,不同的安排方案有种.222532C C A 60=故选:D6.已知圆:,直线:,为上的动点,过点作圆的两条切线C 2220x y x +-=l 10x y ++=P l P C 、,切点分别、,当最小时,直线PC 的方程为( )PA PB A B ·PC ABA .B .C .D .+=0x y 10x y --=2210x y -+=2210x y ++=【答案】B【分析】根据圆的切线的有关知识,判断出最小时,直线与直线垂直,进而可得直·PC AB l PC 线的方程.PC 【详解】圆的标准方程为,圆心为,半径为.C ()2211x y -+=()1,0C =1r 依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC , 所以,而14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△当直线时,最小,此时最小, PC l ⊥PA PC AB ⋅所以此时,即. :=1PC y x -10x y --=故选:B.7.某奥运村有,,三个运动员生活区,其中区住有人,区住有人,区住有人A B C A 30B 15C 10已知三个区在一条直线上,位置如图所示奥运村公交车拟在此间设一个停靠点,为使所有运动员..步行到停靠点路程总和最小,那么停靠点位置应在( )A .区B .区C .区D .,两区之间A B C A B 【答案】A【分析】分类讨论,分别研究停靠点为区、区、区和,两区之间时的总路程,即可得出A B C A B 答案.【详解】若停靠点为区时,所有运动员步行到停靠点的路程和为:米; A 15100103004500⨯+⨯=若停靠点为区时,所有运动员步行到停靠点的路程和为:米; B 30100102005000⨯+⨯=若停靠点为区时,所有运动员步行到停靠点的路程和为:米; C 303001520012000⨯+⨯=若停靠点为区和区之间时,设距离区为米,所有运动员步行到停靠点的路程和为:A B A x , 30151001010020054500x x x x +⨯-+⨯+-=+()()当取最小值,故停靠点为区. 0x =A 故选:A8.已知是双曲线上的三个点,经过原点,经过右焦点,若,,A B C 22221(0,0)x y a b a b -=>>AB O AC F 且,则该双曲线的离心率是( )BF AC ⊥2AF CF =A .B C D .5394【答案】B【分析】根据题意,连接,构造矩形;根据双曲线定义表示出各个边长,由直角','AF CF 'FAF B 三角形勾股定理求得 的关系,进而求出离心率.a c 、【详解】设左焦点为, ,连接F'AF m =','AF CF 则 , , , 2FC m ='2AF a m =+'22CF a m =+'2FF c =因为,且经过原点 BF AC ⊥AB O 所以四边形 为矩形'FAF B 在Rt △中, ,代入'AF C 222'+'AF AC F C =()()()2222+3=22a m m a m ++化简得 23a m =所以在Rt △中,,代入 'AF F 222'+'AF AF F F =()222222233a a a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭化简得 ,即 22179c a =e =所以选B【点睛】本题考查了双曲线的综合应用,根据条件理清各边的相互关系,属于中档题.二、多选题9.下列结论正确的是( )A .“”是“直线与直线互相垂直”的充要条件1a =-210a x y -+=20x ay --=B .已知,O 为坐标原点,点是圆外一点,直线的方程是,0ab ≠(,)P a b 222x y r +=m 2ax by r +=则与圆相交m C .已知直线和以,为端点的线段相交,则实数的取值范围为10kx y k ---=(3,1)M -(3,2)N k 1322k -≤≤D .直线的倾斜角的取值范围是sin 20x y α++=θπ3π0,,π44⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ 【答案】BD【分析】由题意利用直线的倾斜角和斜率、直线的方程,直线与圆的位置关系,逐一判断各个选项是否正确,从而得出结论.【详解】解:对于A ,由直线与直线互相垂直,210a x y -+=20x ay --=,化为,解得或,21(1)()0a a ∴⨯+-⨯-=20a a +==0a 1- “”是“直线与直线互相垂直”的充分但不必要条件,故A 错误;∴1a =-210a x y -+=20x ay --=对于B ,因为点是圆外一点,所以,所以圆心到直线的距离(,)P a b 222x y r +=222a b r +>m,可得与圆相交,故B 正确;||d r =m 对于C ,已知直线和以,为端点的线段相交,则、两个点在直10kx y k ---=(3,1)M -(3,2)N M N 线的两侧或直线上,10kx y k ---=则有,解可得或,故C 错误; (311)(321)0k k k k -------≤12k ≤-32k ≥对于D ,设直线的倾斜角,则,, sin 20x y α++=θtan sin [1θα=-∈-1]故的取值范围是,故D 正确. θ3[0,[,)44πππ 故选:BD .10.已知的展开式中第3项与第5项的系数之比为,则下列结论成立的是( ) 2(n x 314A .B .展开式中的常数项为45 10n =C .含的项的系数为210D .展开式中的有理项有5项5x【答案】ABC【分析】根据二项式的展开式的通项公式,结合第3项与第5项的系数之比为()52211C r n rr r n T x-+=-,可得.再根据公式逐个选项判断即可. 31410n =【详解】二项式的展开式的通项为,由于第3项与第5项的()()5222221C 11C rr n r rrn r r r n nT xx x---+=-=-系数之比为,则,故,得. 31424C 3C 14n n=()()()()1312123141234n n n n n n -⨯=---⨯⨯⨯25500n n --=∴(n +5)(n -10)=0,解得n =10,故A 正确;则,令,解得, ()52021101C rr r r T x-+=-52002r-=8r =则展开式中的常数项为,故B 正确; 810C 45=令,解得,则含的项的系数为,故C 正确; 52052r -=6r =5x ()66101C 210-=令,则r 为偶数,此时,故6项有理项. 520Z 2r-∈0,2,4,6,8,10r =故选:ABC11.2022年2月5日晩,在北京冬奥会短道速滑混合团体接力决赛中,中国队率先冲过终点,为中国体育代表团拿到本届奥运会首枚金牌.赛后,武大靖,任子威,曲春雨,范可欣,张雨婷5名运动员从左往右排成一排合影留念,下列结论正确的是( ) A .武大靖与张雨婷相邻,共有48种排法 B .范可欣与曲春雨不相邻,共有72种排法 C .任子威在范可欣的右边,共有120种排法D .任子威不在最左边,武大靖不在最右边,共有78种排法 【答案】ABD【分析】利用分步乘法计数原理结合排列与排列数,逐项分析判断即可.【详解】解:A 项中,武大靖与张雨婷相邻,将武大靖与张雨婷排在一起有种排法, 22A 再将二人看成一个整体与其余三人全排列,有种排法,44A 由分步乘法计数原理得,共有(种)排法,故选项A 正确;2424A A 48=B 项中,范可欣与曲春雨不相邻,先将其余三人全排列,有种排法, 33A 再将范可欣与曲春雨插入其余三人形成的4个空位中,有种排法,24A由分步乘法计数原理得,共有(种)排法,故选项B 正确;3234A A =72C 项中,任子威在范可欣的右边,先从五个位置中选出三个位置排其余三人,有种排法, 35A 剩下两个位置排任子威、范可欣,只有1种排法,所以任子威在范可欣的右边,共有(种)排法,故选项C 错误;35A =60D 项中,武大靖,任子威,曲春雨,范可欣,张雨婷5人全排列,有种排法, 55A 任子威在最左边,有种排法,武大靖在最右边,有种排法, 44A 44A 任子威在最左边,且武大靖在最右边,有种排法,33A 所以任子威不在最左边,武大靖不在最右边,共有(种)排法,故选项D 正确. 543543A -2A +A =78故选:ABD.12.为庆祝党的二十大胜利召开,由南京市委党史办主办,各区委党史办等协办组织的以“喜迎二十大 永远跟党走 奋进新征程”为主题的庆祝中共南京地方组织成立周年知识问答活动正在进100行,某党支部为本次活动设置了一个冠军奖杯,奖杯由一个铜球和一个托盘组成,如图①,已知球的体积为,托盘由边长为的正三角形铜片沿各边中点的连线垂直向上折叠而成,如图②.则32π38下列结论正确的是( )A .经过三个顶点的球的截面圆的面积为 ,,ABC 43πB .异面直线与所成的角的余弦值为AD BE 916C .连接,构成一个八面体,则该八面体的体积为 ,,AB BC CA ABCDEF ABCDEF 18D .点 D 2【答案】ACD【分析】对A :经过三个顶点的球的截面圆即为的外接圆,运算求解;对B :建系,,,A B C MNG △利用空间向量处理异面直线夹角问题;对C :八面体由三个全等的四棱锥ABCDEF和直棱柱组合而成,结合相关体积公式运算求解;,,D ACGM E ABNM F BCGN ---ABC MNG -对D :点到球面上的点的最小距离为,结合球的性质运算求解.D OD R -【详解】如图1,取的中点分别为,连接 ,,DE EF DF ,,M NG ,,,,,AM BN CG MN NG GM 根据题意可得:均垂直于平面,可知 ,,AM BN CG DEF ABC MNG ≅△△∵的边长为2,设的外接圆半径为r ,则MNG △MNG △sin MN 2r MGN ==∠∴的外接圆面积为r =MNG △4ππ32r =∴经过三个顶点的球的截面圆的面积为,A 正确; ,,A B C 43π八面体由三个全等的四棱锥和直棱柱组合ABCDEF ,,D ACGM E ABNM F BCGN ---ABC MNG -而成直棱柱的底面边长为2,高ABC MNG -AM =12262ABC MNG V -=⨯⨯=设,则为的中点 EN MN H = H MN ∵平面,平面 AM ⊥DEF EH ⊂DEF ∴AM EH ⊥又∵为等边三角形且为的中点,则EMN A H MN MN EH ⊥,平面 AM MN M = ,AM MN ⊂ABNM ∴平面EH ⊥ABNM即四棱锥的高为E ABNM -EH =1243E ABNM V -=⨯=∴八面体的体积为,C 正确;ABCDEF 318E ABNM ABC MNG V V V --=+=设的中心分别为,球的球心为,由题意可得其半径 ,ABC MNG △△12,O O O =2R 则可知三点共线,连接 12,,O O O 1,O B OD则可得:212112O D O O O O O O O O OD ===+==点,D 正确;D 2-如图2,以G 为坐标原点建立空间直角坐标系则有:((()(),,2,0,0,0,A B D E -∴((,DA BE =-=- 又∵ 5cos ,8DA BE DA BE DA BE⋅==-∴异面直线与所成的角的余弦值为,B 错误;AD BE 58故选:ACD.【点睛】1.对于多面体体积问题,要理解几何体的结构特征,并灵活运用割补方法; 2.对于球相关问题,主要根据两个基本性质:①球的任何截面都是圆面;②球心和截面圆心的连线与截面垂直.三、填空题13.若,则______.2213C P x xx -+=x =【答案】5【分析】将排列数、组合数按照公式展开,即可解出x 的值.【详解】因为,, ()22313C 3C 2x x x x x --==21P (1)x x x +=+所以,由可得,3(x -1)=2(x +1)2213C P x x x -+=解得,x =5.故答案为:5.14.各数位数字之和等于8(数字可以重复) 的四位数个数为_____. 【答案】120【分析】四个数位数字分别为,则,应用插空法求四位数个数. 1234,,,a a a a 12348a a a a +++=【详解】设对应个位到千位上的数字,则,且, 1234,,,a a a a *4N a ∈N(1,2,3)i a i ∈=1234a a a a +++8=相当于将3个表示0的球与8个表示1的球排成一排,即10个空用3个隔板将其分开,故共种.310C 120=故答案为:12015.已知分别为双曲线的左、右顶点,点为双曲线上任意一点,12,A A 2222:1(0)x y C a b a b -=>>P C 记直线,直线的斜率分别为,若,则双曲线的离心率为__________. 1PA 2PA 12,k k 122k k ⋅=C【分析】设,应用斜率两点式得到,根据为双曲线上一点即可得双曲线参()00,P x y 22202y x a=-P C 数关系,进而求其离心率【详解】依题意,设,则,,又()()12,0,,0A a A a -()00,P x y 0012002y y k k x a x a ⋅=⋅=+-22202y x a∴=-,,故,即()2222220220000222211b x a x y x y b a b a a -⎛⎫-=⇒=-= ⎪⎝⎭222b a ∴=22213b e a =+=e =16.在棱长为1的正方体中,M 是棱的中点,点P 在侧面内,若1111ABCD A B C D -1AA 11ABB A ,则的面积的最小值是________.1D P CM ⊥PBC △【分析】建立空间直角坐标系,利用空间向量、三角形的面积公式、二次函数进行求解.【详解】如图,以点D 为空间直角坐标系的原点,分别以DA ,DC ,所在直线为x ,y ,z 轴, 1DD 建立空间直角坐标系,则点,所以, ()1,,,[01]P y z y z ∈、,()10,0,1D ()11,,1D P y z =-因为,所以,()10,1,0,1,0,2C M ⎛⎫ ⎪⎝⎭11,1,2CM =-⎛⎫ ⎪⎝⎭ 因为,所以,所以,1D P CM ⊥ ()11102y z -+-=21z y =-因为,所以, ()1,1,0B ()0,1,21BP y y =--,=因为,所以当时, 01y ≤≤35y =min BP =因为正方体中,平面平面,故, BC ⊥11,ABB A BP ⊂11ABB A BC BP ⊥所以()min 1=12PBC S ⨯A四、解答题17.已知的顶点. ABC A ()()()2,64,2,2,0A B C -,(1)求边的中垂线所在直线的方程; BC (2)求的面积. ABC A 【答案】(1); 340x y +-=(2)14.【分析】(1)求出直线的斜率,再由垂直关系得出直线边的中垂线的斜率,最后由点斜式BC BC 写出所求方程;(2)求出直线的方程,再求出点到直线的距离以及,最后由三角形面积公式计算即AB C AB AB 可.【详解】(1)直线的斜率为,直线边的中垂线的斜率为,BC 2014(2)3-=--BC 3-又的中点为,BC ()1,1边的中垂线所在直线的方程为:,即; BC ()131y x -=--340x y +-=(2)直线的方程为:,即, AB 626(2)24y x --=--2100x y +-=点到直线的距离 C AB d=故的面积为. ABC A 1142S AB d =⋅=18.已知展开式的二项式系数和为512,且()(2)n f x x =-.2012(2)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋅⋅⋅+-(1)求的值; 123n a a a a +++⋅⋅⋅⋅⋅⋅+(2)求被除的余数. ()20f 17【答案】(1) 1(2) 1【分析】(1)根据题意,得到,求得,结合展开式,分别令和,求得2512n =9n =1x =2x =和,即可求解;01a =-012390a a a a a ++++⋅⋅⋅⋅⋅+=⋅(2)由,结合二项式的展开式,即可求解.999(20)(2021817)(1)f ==+=-【详解】(1)解:由展开式的二项式系数和为,可得,解得,(2)n x -5122512n =9n =则,9290129(2)(1)(1)(1)x a a x a x a x -=+-+-+⋅⋅⋅+-令,可得,1x =90(12)1a =-=-令,可得,2x =012399(22)0a a a a a ++++⋅⋅⋅⋅=-⋅+=⋅所以, 12390(1)1a a a a +++⋅⋅⋅⋅⋅=--+=⋅即.1231n a a a a +++⋅⋅⋅⋅⋅+=⋅(2)解:由题意,可得,999(20)(2021817)(1)f ==+=-又由,90918890081789999999(171)1717171717(1717)1C C C C C C C +=⋅+⋅++⋅+⋅=⋅⋅+⋅+++ 所以被除的余数为.()20f 17119.如图,在四棱锥中,已知四边形是梯形,P ABCD -ABCD ,是正三角形.,,22⊥===∥AB CD AD AB AB BC CD PBC △(1)求证:;BC PA ⊥(2)当四棱锥体积最大时,二面角的大小为,求的值. P ABCD -B PA C --θcos θ【答案】(1)证明见解析; (2). 15【分析】(1)取BC 的中点O ,连接AO ,可证明,由线面垂直的判定定理可证AO BC ⊥PO BC ⊥明平面PAO ,即得证;BC ⊥(2)分析可知当平面平面ABCD 时,四棱锥体积最大,建立空间直角坐标系,PBC ⊥P ABCD -由二面角的向量公式,计算即可.【详解】(1)证明:如图,取AB 的中点E ,连接CE ,A C .∵,, 2AB CD =AB CD ∥∴CD 与AE 平行且相等, ∴四边形AECD 是平行四边形,又,∴四边形AECD 是矩形,∴. AD AB ⊥CE AB ⊥∴,∴是等边三角形. =AC BC AB =ABC A 取BC 的中点O ,连接AO ,则. AO BC ⊥连接PO ,∵,∴, PB PC =PO BC ⊥∵,平面PAO ,=PO AO O ⋂PO AO ⊂,∴平面PAO ,∵PA 平面PAO ,∴; BC ⊥⊂BC PA ⊥(2)由(1)知,是等边三角形,∴, ABC A CE =∴梯形ABCD 的面积为定值, S =故当平面平面ABCD 时,四棱锥体积最大. PBC ⊥P ABCD -∵,平面平面ABCD ,平面 PO BC ⊥PBC ⋂BC =PO ⊂PBC ∴平面ABCD ,平面ABCD ,∴.PO ⊥,OA OB ⊂,PO OA PO OB ⊥⊥∵OP ,OA ,OB 两两互相垂直,∴以O 为坐标原点,OA ,OB ,OP 分别为x 轴、y 轴和z 轴的正方向,建立如图所示的空间直角坐标系,则. (0,1,0),(0,1,0),A B C P -∴,,=(0,1,PA PB -- =(0,1,CP --设平面PAB 的法向量为,则,取,则. ()111,,n x y z =1111=0==0PA n PB n y ⋅-⋅-⎧⎪⎨⎪⎩ 111x z ==n = 同理设平面PAC 的法向量为,则,取,则. (,,)m x y z ===0=0CP m y PA m ⋅--⋅-⎧⎪⎨⎪⎩ 1x z ===(1,m - 设平面PAB 与平面PAD 的夹角为,则,θ1cos =|cos<,>|=||=||||5m n m n m n ⋅θ即为所求二面角的余弦值.B PAC --20.如图,某海面上有、、三个小岛(面积大小忽略不计),岛在岛的北偏东方向O A B A O 45︒处,岛在岛的正东方向处.B O 20km(1)以为坐标原点,的正东方向为轴正方向,为单位长度,建立平面直角坐标系,写出O O x 1km A 、的坐标,并求、两岛之间的距离;B A B (2)已知在经过、、三个点的圆形区域内有未知暗礁,现有一船在岛的南偏西方向距O A B O 30°O 岛处,正沿着北偏东行驶,若不改变方向,试问该船有没有触礁的危险? 20km 60︒【答案】(1),, ()40,40A ()20,0B (2)该船有触礁的危险【分析】(1)结合图像,易得的坐标,再利用两点距离公式即可得解;,A B (2)先由待定系数法求得过、、三点的圆的方程,再求得该船航线所在直线的方程,利用O A B 点线距离公式可知该船航线与圆的位置关系,据此可解.【详解】(1)∵在的东北方向处,在的正东方向处, AO B O 20km ∴,, ()40,40A ()20,0B 由两点间的距离公式得;=(2)设过、、三点的圆的方程为,O A B 220x y Dx Ey F ++++=将、、代入上式得,解得,()0,0O ()40,40A ()20,0B 222=040+40+40+40+=020+20+=0F D E F D F ⎧⎪⎨⎪⎩=20=60=0D E F --⎧⎪⎨⎪⎩所以圆的方程为,即,故圆心为,半径2220600x y x y +--=()()2210301000x y -+-=()10,30r =设船起初所在的位置为点,则,且该船航线所在直线的斜率为C (10,C --, ()tan 6030tan 30︒-︒=︒=由点斜式得该船航线所在直线的方程:,l 200x -=所以圆心到:的距离为l 200x -=d+由于, 2(5700+=+21000700=>+即, 5d =+<所以该船有触礁的危险.21.已知椭圆的右焦点,离心率为,且点在椭圆上.2222:1(0)x y C a b a b +=>>F 1231,2M ⎛⎫ ⎪⎝⎭C (1)求椭圆的标准方程;C (2)过的直线不与轴重合与椭圆相交于、两点,不在直线上且F (x )C A B P AB ,是坐标原点,求面积的最大值.()2OP OA OB λλ=+-O PAB △【答案】(1)22143x y +=(2) 32【分析】(1)依题意得到方程组,解得,,即可求出椭圆方程;2a 2b (2)设直线的方程为,,,,联立直线与椭圆方程,消AB 1x my =+()11,A x y ()22,B x y ()00,P x y 元、列出韦达定理,即可表示出,再表示出点到直线的距离,根据面积公式及基本不等AB P AB 式计算可得.【详解】(1)解:由题意,又,解得,, 221=2914+=1c a a b⎧⎪⎪⎨⎪⎪⎩222c a b =-24a =23b =的方程为;C ∴22143x y +=(2)解:设直线的方程为,,,,AB 1x my =+()11,A x y ()22,B x y ()00,P x y 则,消元整理得, 22=+1+=143x my x y ⎧⎪⎨⎪⎩()2234690m y my ++-=所以,,122634my y m +=-+122934y y m =-+,()2212+13+4m m -由, ()2OP OA OB λλ=+-得,()()()()001212,2,2x y x x y y λλλλ=+-+-()()()()()0121212212122x x x my my my my λλλλλλ∴=+-=++-+=+-+, ()0122yy y λλ=+-到直线的距离P ∴ABh22112(+1)=×23+4PAB m S m ∴A 设,而在时递增,t =13y t t=+1t ≥当,即时,的最大值为.∴=1t 1=0m =PAB S A 3222.如图,已知抛物线的焦点F ,且经过点,.()2:20C y px p =>()()2,0A p m m >5AF =(1)求p 和m 的值;(2)点M ,N 在C 上,且.过点A 作,D 为垂足,证明:存在定点Q ,使得AM AN ⊥AD MN ⊥DQ 为定值.【答案】(1),; 2p =4m =(2)证明见解析.【分析】(1)由抛物线定义有求,由在抛物线上求m 即可. ||252pAF p =+=p A (2)令,,,联立抛物线得到一元二次方程,应用韦达定理,根据:MN x ky n =+11(,)M x y 22(,)N x y 及向量垂直的坐标表示列方程,求k 、n 数量关系,确定所过定点,再由AM AN ⊥MN B 易知在以为直径的圆上,即可证结论. AD MN ⊥D AB 【详解】(1)由抛物线定义知:,则, ||252pAF p =+=2p =又在抛物线上,则,可得. ()()4,0A m m >244m =⨯4m =(2)设,,由(1)知:,11(,)M x y 22(,)N x y (4,4)A 所以,,又,11(4,4)AM x y =-- 22(4,4)AN x y =--AM AN ⊥所以,121212121212(4)(4)(4)(4)4()4()320x x y y x x x x y y y y --+--=-++-++=令直线,联立,整理得,且,:MN x ky n =+2:4C y x =2440y ky n --=216160k n ∆=+>所以,,则,124y y k +=124y y n =-21212()242x x k y y n k n +=++=+,222121212()x x k y y kn y y n n =+++=综上,, 2216121632(48)(44)0n k n k n k n k ---+=--+-=当时,过定点;84n k =+:(4)8MN x k y =++()8,4B -当时,过定点,即共线,不合题意; 44n k =-:(4)4MN x k y =-+(4,4),,A M N 所以直线过定点,又,故在以为直径的圆上, MN ()8,4B -AD MN ⊥D AB而中点为,即为定值,得证.AB ()6,0Q 2AB DQ ==。

山东省高二上学期期中考试物理试卷(附答案和解析)

山东省高二上学期期中考试物理试卷(附答案和解析)

山东省高二上学期期中考试物理试卷(附答案和解析) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间相同C.每个水球对子弹的冲量相同D.每个水球对子弹的做功相同2.关于电源电动势的概念,以下说法中正确的是()A.电动势、电压和电势差虽名称不同,但物理意义相同,所以单位也相同B.在闭合电路中,电源电动势在数值上总是等于电源两极间的电压C.在闭合电路中,电源电动势在数值上等于内、外电压之和D.电源把其他形式的能转化为电能越多,电源电动势越大3.一弹簧振子的位移y随时间t变化的关系式为y=0.1sin(2.5πt),位移y的单位为m,时间t的单位为s。

则()4.如图所示,一个孩子将下方挂有五个相同小钩码的五个相同的氢气球栓结在一起,以3m/s的初速度从地面竖直向上托起,离开手后刚好匀速向上运动,当上升至高度h=的位置时,一个小钩码脱落。

已知每个小钩码的质量为m,重力加速度取2m2g,不计空气阻力、风力、绳子和氢气球的质量,则下列说法正确的是()=10m/sA.脱落的小钩码落地前,五个小钩码和五个氢气球组成的系统机械能守恒B.脱落的小钩码落地前,其动能逐渐增大C.小钩码从脱落到落地,在空中运动的时间为1sD.脱落的小钩码落地时,氢气球从钩码脱落处又上升了3m5.关于单摆,下列说法正确的是()A.摆球受到的回复力方向总是指向平衡位置,当摆球运动到平衡位置时,合力为零B.如果有两个大小相同的带孔塑料球和带孔铁球,任选一个即可C.将单摆的摆角从4°改为2°,单摆的周期变小D.在用单摆测重力加速度实验中,若摆长值忘记加摆球半径,则测量值偏小6.如图所示的电路中,电阻R=2Ω,断开S后,电压表的读数为5V;闭合S后,电压表的读数为2V,电压表为理想电表,则电源的内阻r为()A.1ΩB.2ΩC.3ΩD.4Ω7.如图所示,电路中电表均为理想电表。

北京市2023-2024学年高二下学期期中考试语文试卷含答案

北京市2023-2024学年高二下学期期中考试语文试卷含答案
二、本大题共 5 小题,共 18 分。
阅读下面材料,完成小题。 材料一: 《离骚》是屈原最重要的作品,也是《楚辞》中最具代表性的作品,是中国文学史上最长的抒情诗, 是理解屈原人生境界和价值观最重要的资料。 屈原在《离骚》开篇提到,他的父亲以“正则”为他命名,说明父亲希望他把“公正无私”作为自己 的处世原则,《史记·屈原贾生列传》也说屈原“正道直行”。正道直行首先是正直,正直就是处事公正, 不苟且,不徇私,不自私自利和投机取巧。《离骚》也恰恰展示了一个正直的君子在蒙受不白之冤后勇敢的 抗争过程,“正”“直”二字多次出现其中,如“屈心而抑志兮,忍尤而攘诟。伏清白以死直兮,固前圣 之所厚”。
2023—2024 学年度第二学期高二年级期中练习
语文(答案在最后)
2024.04
制卷人: 说明:本试卷共六道大题,24 道小题,共 8 页,满分 150 分,考试时长 150 分钟.考生 务必将答案答在答题卡上,在试卷上作答无效. 一、本大题共 9 小题,共 36 分。
根据课内知识,完成各小题。
1. 下列各项中加点字读音全都正确的一项是(
子规啼夜月, ______________”;押韵也富于变化,有“扪参历井仰胁息, ______________”这样 的隔句押韵,也有“蜀道之难,难于上青天, ____________”这样的句句押韵。丰富的语言变化,与 李白自由奔放的个性相得益彰。 (3)杜甫《蜀相》中“____________, ___________”两句,高度概括了诸葛亮一生的功绩和才德。 (4)杜甫《客至》尾联“____________, ___________”从邀邻助兴的内容暗示出宾主脱略行迹、兴 致盎然的场面。 (5)黄庭坚《登快阁》中化用杜甫“无边落木萧萧下”和谢眺“澄江静如练”的一联诗是 “____________, ____________”。 (6)柳永《望海潮》中“___________, ____________, ___________”三句,写湖面上昼夜都荡漾 着优美的笛曲和采菱的歌声,描绘了百姓安居乐业的景象。描写孙何与民同乐的句子是“千骑拥高牙, ____________,吟赏烟霞”。 (7)《扬州慢》中,词人用“过”这一领字带出“____________”,虚写扬州十里长街的繁华,而眼 前的实景是“___________”,写尽了扬州的凄凉。 【答案】 ①. 长太息以掩涕兮 ②. 余虽好修姱以 羁兮 ③. 固时俗之工巧兮 ④. 宁溘死以 流亡兮 ⑤. 下有冲波逆折之回川 ⑥. 愁空山 ⑦. 以手抚膺坐长叹 ⑧. 使人听此凋朱颜 ⑨. 三顾频烦天下计 ⑩. 两朝开济老臣心 ⑪. 肯与邻翁相对饮 ⑫. 隔篱呼取尽余杯 ⑬. 落 木千山天远大 ⑭. 澄江一道月分明 ⑮. 羌管弄晴 ⑯. 菱歌泛夜 ⑰. 嬉嬉钓叟莲娃 ⑱. 乘醉听箫鼓 ⑲. 过春风十里 ⑳. 尽荠麦青青 【解析】 【详解】本题考查学生默写常见名篇名句的能力。 易错字词有:“ 羁”“溘”“抚”“膺”“凋”“频烦”“篱”“菱”“嬉”“叟”“箫鼓”等。

四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题

四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题

四川省成都市第十二中学(四川大学附属中学) 2024-2025学年高二上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
四、解答题
15.某校高二年级举行了“学宪法、讲宪法”知识竞赛,为了了解本次竞赛的学生答题情况,从中抽取了200名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,
按照[)
50,60,[)
70,80,[)
60,70,[)
90,100的分组作出频率分布直方图如图所示.
80,90,[]
(1)求频率分布直方图中x的值,并估计该200名学生成绩的中位数和平均数;
(2)若在[)
70,80的样本成绩对应的学生中按分层抽样的方法抽取7人进行访谈,60,70和[)
再从这七人中随机抽取两人进行学习跟踪,求抽取的两人都来自[)
70,80组的概率.
16.如图,四边形
A ABB是圆柱的轴截面,C是下底面圆周上一点,点D是线段BC中点
11
则圆C有且仅有3个点,,
M N P
故选:BCD.
11.ABD
【分析】将二十四等边体补形为正方体,且二十四等边体根据题意易知正方体棱长为2,
uuu r uuu
根据向量的坐标,可得2
CE=。

安徽省六安市裕安区六安新世纪学校2024-2025学年高二上学期11月期中地理试题

安徽省六安市裕安区六安新世纪学校2024-2025学年高二上学期11月期中地理试题

六安市新世纪学校高二地理期中考试试卷一、单选题(16*3=48分)芒种是二十四节气的第九个节气,也是夏季的第三个节气,意为“有芒之谷类作物可种,过此即失效”。

2024年6月5日12时09分我国迎来了芒种节气。

下图为二十四节气与地球在公转轨道上的位置关系示意图。

据此完成下面小题。

1.与该日具有相同日出方位角的是()A.大雪B.立秋C.小寒D.小暑2.芒种节气来临时,太阳直射点()A.位于北半球,向南运动B.位于南半球,向南运动C.位于北半球,向北运动D.位于南半球,向北运动3.芒种节气至大暑节气期间()A.地球公转速度持续变快B.天安门广场升旗时间不断提前C.上海大暑时昼长达最长D.北京昼长先逐渐变长,后变短风化作用简单来说,就是岩石(或矿物)在原地破碎、崩解、分解。

风化作用与温度、水、生物等存在较强关联性。

花岗岩出露地表后受到风化作用,棱角剥落后形成的“石蛋”地貌是一种典型的风化地貌。

下图为“石蛋”地貌景观图。

完成下面小题。

4.地壳表层被风化的部分,被称为风化壳。

下列各地中风化壳最厚的地区可能是()A.亚马孙平原B.撒哈拉沙漠C.塔里木盆地D.西西伯利亚5.试推测“石蛋”地貌的形成过程()A.岩浆喷出→地壳下沉→剥蚀出露→水平挤压B.岩浆喷出→地壳抬升→球状风化→剥蚀出露C.岩浆侵入→地壳抬升→剥蚀出露→球状风化D.岩浆侵入→地壳下沉→剥蚀出露→水平拉张读某区域沿回归线的地质剖面图,完成下面小题。

6.图中B处山地形成的主要原因是()A.沿顶部裂隙侵蚀而成的背斜山B.因槽部坚实抗侵蚀而成的向斜山C.因顶部坚实抗侵蚀而成的背斜山D.沿槽部裂隙侵蚀而成的向斜山7.关于图示地区地质地貌的说法,正确的是()A.图中海沟位于板块的消亡边界B.与甲处相比,乙处地质构造更适合建设隧道C.A处容易找到地下水D.图中地质构造只有1处断层雅典娜神庙(Temple of Athena Nike)又名雅典娜胜利神庙,也称为无翼胜利女神庙,位于卫城山上。

福建省福州高二下学期期中考试语文试题

福建省福州高二下学期期中考试语文试题

第二学期期中考试高二语文试卷(满分:150 分;考试时间:150 分钟)班级姓名座号一、现代文阅读(本题共37分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1-5小题。

材料一:像牛一样耕耘像牛一样奋发陈凌“在中华文化里,牛是勤劳、奉献、奋进、力量的象征。

人们把为民服务、无私奉献比喻为孺子牛,把创新发展、攻坚克难比喻为拓荒牛,把艰苦奋斗、吃苦耐劳比喻为老黄牛。

”在2021年春节团拜会上,习近平总书记深情礼赞牛所代表的精神品质,并赋予孺子牛、拓荒牛、老黄牛以新的时代内涵。

古往今来,中国人民爱牛、敬牛、颂牛,或咏之、或绘之、或塑之。

在唐朝诗人柳宗元看来,牛是“日耕百亩”的勤劳符号;在宋代名将李纲眼中,牛代表的是“但得众生皆得饱,不辞赢病卧残阳”的牺牲精神;在现代诗人藏克家笔下,牛具有的是“深耕细作走东西”的开拓品格。

体悟牛的品格、弘扬牛的精神、激发牛的干劲,是中华优秀传统文化的重要特色,也是中国人民精气神的具体精现。

“俯首甘为孺子牛”,鲁迅先生曾以这样饱含真情的诗句歌颂牛。

千百年来,牛都是任劳任怨、无私奉献的象征。

这也是人们爱牛、敬牛、颂牛的一个原因。

画家李可染便曾将自己的画室堂号定为“师牛堂”,他这样解释自己为何喜欢画牛:“牛也,力大无穷,俯首孺子而不逞强。

”不辞劳苦、不计得失,脚踏实地、默默奉献,这是牛身上的品格,也是值得每个人学习的精神。

“天开于子,地辟于丑”,古人历来将牛视为开天辟地的力量之一。

人们之所以赞颂牛,也在于牛所拥有的这种勇于开拓的劲头。

而这种劲头,恰恰是我们在攻坚克难中奋进、在披荆斩棘中前行的力量所在。

著名物理学家钱三强教授在年逾花甲时,仍干劲十足,经常工作到深夜。

有人问他多大岁数了,他回答:“属牛的。

”以牛自况,不仅仅在于他生肖属牛,更在于他性格属牛——像其父亲钱玄同所寄望的,始终发扬属牛的那股子“牛劲”。

也正是这么一股子“牛劲”,让他成为中国原子能事业的奠基人,为我国研制原子弹和氢弹作出了突出贡献。

高二期中考试(生物)试题含答案

高二期中考试(生物)试题含答案

高二期中考试(生物)(考试总分:100 分)一、单选题(本题共计25小题,总分50分)1.(2分)1、下列关于生命系统的叙述,错误的是( C )A.一个变形虫在生命系统中既属于细胞层次,又属于个体层次B.并非所有生物都具有生命系统的各个层次C.个体是生命系统中能完整表现生命活动的最小层次D.生命系统的各个层次可以相互联系,如种群、群落2.(2分)2、细胞是生命活动的基本单位。

关于细胞结构的叙述,错误的是( B )A.细菌有核糖体,无叶绿体B.蓝藻无细胞核,也无核糖体C.水绵有细胞核,也有叶绿体D.酵母菌有细胞核,无叶绿体3.(2分)3、下列关于用显微镜观察细胞的实验,叙述正确的是 ( C )A.转换物镜时应该手握物镜小心缓慢转动B.以洋葱鳞片叶内表皮为材料不能观察到质壁分离C.苏丹Ⅲ染色后的花生子叶细胞中可观察到橘黄色颗粒D.在新鲜黑藻小叶装片中可进行叶绿体形态观察和计数4.(2分)4.下列关于糖类化合物的叙述,正确的是( B )A.葡萄糖、果糖、半乳糖都是还原糖,但元素组成不同B.淀粉、糖原、纤维素都是由葡萄糖聚合而成的多糖C.蔗糖、麦芽糖、乳糖都可与斐林试剂反应生成砖红色沉淀D.蔗糖是淀粉的水解产物之一,麦芽糖是纤维素的水解产物5.(2分)5.如图所示为一条肽链的结构简式,R1、R2和R3是3个不同的化学基团。

下列有关分析不正确的是( C )A.该肽链至少含有四个氧原子B.该肽链含有三种氨基酸C.该肽链是由3个氨基酸脱去3分子水缩合形成的D.该化合物叫做三肽6.(2分)6.下列关于脂质的描述,正确的是( C )A.脂肪的氧元素含量较多,氢元素含量较少 B.胆固醇是构成细胞膜的主要脂质C.人体在补钙时最好补充一定量的维生素 D D.脂质在核糖体、内质网上合成7.(2分)7.据报道,英国里兹大学的研究团队目前正在研究“能吃铁”的微生物——磁性细菌,它主要分布于土壤、湖泊和海洋等水底污泥中。

下列有关磁性细菌的叙述正确的是( A )A.该细菌细胞内有核糖体,无线粒体B.该细菌细胞没有生物膜系统,因而无法完成细胞间的信息交流C.与该细菌“能吃铁”性状有关的遗传物质在染色体上D.该细菌细胞壁的成分是纤维素和果胶8.(2分)8.如图是细胞核的结构模式图,下列关于其结构和功能的叙述中错误的是( B )A .①是染色质,能被碱性染料染成深色B .②是核仁,是细胞代谢和遗传的控制中心C .③是核孔,大分子物质进出核孔具有选择性D .与图中核膜相连的是内质网膜,可参与蛋白质的加工9.(2分)9.分别将洋葱表皮细胞和人红细胞浸入清水中,一段时间后,可以发现( D )A.两种细胞都会发生质壁分离 B.前者会发生质壁分离,后者会吸水涨破C.两种细胞都会失水皱缩 D.前者会吸水适度膨胀,后者会吸水涨破10.(2分)10.下列与蛋白质功能无直接关系的是( C )A.细胞内的化学反应离不开酶的催化 B.人体肺泡中的 O2被运输到肝细胞C.制备细胞膜时,红细胞吸水涨破 D.胰岛素能调节机体生命活动11.(2分)11.下列有关细胞结构的描述正确的是( A )A.细胞骨架是由蛋白质纤维组成的网状结构B.在分泌蛋白合成和运输过程中,内质网起着重要的交通枢纽作用C.生物膜是对生物体内所有膜结构的统称 D.在植物细胞中细胞壁就是系统的边界12.(2分)12、下列概念除哪项外,均可用如图来表示( A )A.①表示固醇,②~④分别表示脂质、磷脂、性激素B.①表示核糖核苷酸,②~④分别表示含氮碱基、核糖、磷酸C.①表示糖类,②~④分别表示单糖、二糖、多糖D.①表示双层膜的细胞结构,②~④分别表示线粒体、叶绿体、细胞核13.(2分)13、如图A为两个渗透装置,溶液a、b为不同浓度的同种溶液,且a溶液浓度<b溶液浓度,c为清水,图B为显微镜下观察到的某植物表皮细胞,下列叙述错误的是( B )A.图A中装置2的液面一段时间后会高于装置1的液面B.图B中的⑤、④、⑥相当于图A中的②C.若图B所示为某农作物的根毛细胞,此时应及时灌溉D.图B中的⑦与图A中的②通透性不同14.(2分)14如图表示人的成熟红细胞中葡萄糖和乳酸的跨膜运输情况,下列相关叙述正确的( C ) A.蛋白质①也可以运输半乳糖 B.两者的运输都受氧浓度的影响C.两者的运输速率都受载体蛋白的限制D.血浆蛋白释放方式与乳酸相同15.(2分)15 .下列关于无机盐的叙述中,不正确的是( B )A .血液中C a2+含量过低,会引起肌肉抽搐B .土壤缺氮会直接影响植物体内蛋白质、脱氧核糖、DNA 的合成C .运动员饮料中含钾、钠离子较多,主要与补充因大量出汗带走的钾、钠离子有关D .无机盐在细胞内少部分是以化合物的形式存在,如C aCO3 构成骨骼、牙齿16.(2分)16.下列各物质的合成场所的叙述,不正确的是( C )A.水可以在核糖体上生成 B.淀粉可以在叶绿体中合成C.胰岛素可以在高尔基体中合成 D.脂肪可以在内质网上合成17.(2分)17.下列关于细胞器的叙述中,不正确的是( C )A.核糖体是细菌和酵母菌共有的细胞器B.叶绿体和线粒体在能量转换过程中均起着重要的作用C.细胞器之间都能通过囊泡进行物质运输 D.高尔基体参与植物细胞壁的形成18.(2分)18.在洋葱根类细胞中,组成核酸的碱基、王碳糖、核苷酸各有多少种( A )A.5、2、8B.4、2、2C.5、2、2D.4、4、819.(2分)19.下列模式图表示几种细胞器,有关说法正确的是( A )00A.衣藻细胞同时含有A、B、C、D、E、FB.绿色植物的细胞都含有A、C、D、E、FC.口腔上皮细胞A、D、F比唾液腺细胞多D.F与D均含有磷脂和蛋白质20.(2分)20.过氧化氢酶只能催化过氧化氢分解,不能催化其他化学反应,这一事实说明了( B )A.酶具有高效性B.酶具有专一性C.酶具有多样性D.一种酶可以催化所有生化反应21.(2分)21.根尖分生区细胞中,能够产生ATP的细胞器是( B )①叶绿体②线粒体③细胞质基质A.仅有①B.仅有②C.①和②D.①、②和③22.(2分)22.德国科学家萨克斯的实验,在叶片照光24小时后,经脱色、漂洗并用碘液处理,结果有锡箔覆盖的部分呈棕色,而不被锡箔覆盖的部分呈蓝色。

山东省青岛地区2023-2024学年高二上学期期中考试语文试题(含答案)

山东省青岛地区2023-2024学年高二上学期期中考试语文试题(含答案)

2023-2024学年度第一学期期中学业水平检测高二语文2023.11注意事项:1.答卷前,考生务必将自己的姓名和考号填涂在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:近几年,短视频作为媒体融合的一种表达形式,成为手机网民中绝对的“宠爱”。

从《中国互联网络发展状况统计报告》中用户规模和网民使用率两项指标看,短视频早在2018年就已成为互联网发展的“黑马”,超过了网络购物、网络视频、网络音乐和网络游戏。

这个结果远远超出了专业机构对短视频行业发展前景的预期。

艾媒咨询发布的两份关于中国短视频行业专题调查分析报告中,对2018年中国短视频用户规模的预判分别为3.53亿和5.01亿。

实际上,根据《中国互联网络发展状况统计报告》,当年短视频用户规模已达6.48亿。

短视频为何发展如此迅猛?对此,复旦大学传播与国家治理研究中心主任李良荣在一次主题演讲中表示:短视频是依托移动互联网的发展而产生和壮大的,由于短视频只有几十秒或者三五分钟,非常符合当前碎片化阅读场景;其次,短视频主题鲜明,叙事结构紧凑,在一个视频中就能将一件事情的前因后果交代清楚,十分符合当前受众高效获取信息的习惯;再次,短视频直接而又直观的表达方式能让“90后”“95后”感觉到这就是他们的生活,符合他们在手机、动漫等包围的成长环境中使用媒介的习惯。

“这一轮短视频风口颠覆了我们以往的内容逻辑。

我们可能看到,短视频平台上有不够专业的东西,但是另一方面,这些东西是人民群众想知道的、想看到的。

”中国人民大学新闻学院宋建武教授曾这样表示。

他认为:“短视频的出现,让媒体传播手段、信息交互方式等都发生了本质性变化,主流媒体不把握这个机会就会没有未来。

北京市2024-2025学年高二上学期期中英语试题含答案

北京市2024-2025学年高二上学期期中英语试题含答案

2024~2025学年度第一学期高二年级期中练习英语(答案在最后)2024年11月6日制卷人:说明:本试卷共8页,共100分;考试时间90分钟;请在答题卡上填写个人信息,并将条形码贴在答题卡的相应位置上。

考生务必在答题卡指定区域作答,在试卷上作答无效。

第一部分:知识运用(共两节,30分)第一节(共10小题;每小题1.5分,共15分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

My brother and I were driving home together and we were deep in conversation.Because of his1my brother took a wrong turn,taking us towards a bridge and we had no way to turn back.2,my brother paid the bridge fee and drove on.He was clearly frustrated by the mistake and the3waste of$4.We eventually reached an exit slipway and,as we took it,my brother4a beat-up black car parked by the side of the road.A young guy was standing nearby5someone.I was busy trying to figure out which way we went next but my brother6and asked the guy if he needed any help.And he did.He had a(n)7tire and needed a tool to get it off.My brother gave it to him and then proceeded to help him change the tire.After we finished the job,he thanked us again and again,pulled out$20and tried to give it to us.“No.”my brother said.“We were never8to even get on that bridge.We took a wrong turn.But now we know why we did.It was to help you.Thank you for turning our mistake into a(n)9to serve.”What I loved most was watching my brother throughout this process.He was able to see a chance to help even in an otherwise10situation,which can only come from a calm mind and an open heart.1.A.happiness B.carelessness C.selfishness D.weakness2.A.Nervously B.Immediately C.Unwillingly D.Unfortunately3.A.unusual B.hateful C.hopeless D.needless4.A.repaired B.noticed C.struck D.helped5.A.phoning B.reminding C.greeting D.recalling6.A.pulled together B.pulled away C.pulled over D.pulled through7.A.flat B.empty C.old D.dirty8.A.supposed B.forced C.allowed D.required9.A.wish B.ability C.belief D.opportunity10.A.dangerous B.destructive C.expensive D.negative第二节(共10小题;每小题1.5分,共15分)阅读下列短文,根据短文内容填空。

高级中学高二下学期期中考试语文试题(含答案)

高级中学高二下学期期中考试语文试题(含答案)

高级中学高二下学期期中考试语文试题(含答案)南平市高级中学2023-2024学年度第二学期高二年级语文科期中考试试题卷总分:150分考试时长:150分钟一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。

材料一:台北故宫博物院展出苏轼亲笔手书的《赤壁赋》,网友发现帖中原文写的是“渺浮海之一粟”,并不是此前广为流传的“沧海一粟”,疑似是后人抄写笔误,才造成这样的理解错误。

“沧海一粟"是否要被改为“浮海一粟”,一时间引发热议。

这不由得让人想起,此前教育部纠正过一些异读字的读音,比如粳(jīng)米改为粳(gēng)米、确凿(zuò)改为确凿(záo)、说(shuì)服改为说(shuō)服,都把之前大众容易读错的读音认证为了新的正确读音。

后由于一些异读词的拼音打破了大众原本认知,因此有些修改读音已通过,而还有一部分则一直处于审核阶段,仍以原读音为准。

是以正确读音为重还是以大众读音为重呢?从教育部颁布的异读词修订表的底层逻辑来看,显然还是以后者为重。

毕竟,读音是人们沟通交流的工具,最终还是要为人所用,换言之,文字和词语又何尝不是如此?文字和词语的发展过程会经历很多的变化,非要说存在一个亘古不变或者绝对正确的版本,这本身就是个伪命题。

真相很可能是,某一时期大众普遍认可和接受什么版本,这一版本就将流传到下一时期。

就像一位网友所说“成语本质上是约定俗成的东西,用的人多了也就成了成语,原本的出处是什么已不再重要了"。

原先我们有“沧海一粟”,现在又多了一个“浮海一粟”,在渺小的比喻上加了一层浮萍无根、漂泊不定的寓意,孤独感透纸而出,如果真的适宜人们流传,那么多一个成语又何妨?反之,若人们使用不便,它适用的语境较少,那么成语最终消失在历史长河中也就不足为奇了。

(摘编自小亢《“沧海一粟”还是“浮海一粟"?不必太较真》)材料二:对照手书本《赤壁赋》来看,现行统编版高中语文教材必修上册“寄蜉蝣于天地,渺沧海之一粟”中的“沧海”,手书本作“浮海”,此处异文所传递出的信息或可帮助学生对《赤壁赋》一文产生新的理解。

北京市中国人民大学附属中学2024-2025学年高二上学期期中考练习学试题(含答案)

北京市中国人民大学附属中学2024-2025学年高二上学期期中考练习学试题(含答案)

北京市中国人民大学附属中学2024-2025学年高二上学期期中考练习学试题2024年11月6日说明:本试卷共五道大题,共8页,满分150分,考试时间120分钟;第I 卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.空间直角坐标系中,,则( )A. B. C. D.2.已知直线m ,n ,l ,平面,下列正确的是( )A.若,则与异面B.若,则C.若,则D.若,则3.在四面体中,点是AB 靠近的三等分点,记,则( )A. B.C. D.4.若圆锥的侧面积等于和它等高等底的圆柱的侧面积时,圆锥轴截面顶角的度数为( )A. B. C. D.5.已知直线m ,n ,平面,那么“”是“”的( )A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.在空间直角坐标系中,直线的方向向量,点在直线上,点到直线的距离是( )D.7.一个正棱锥,其侧棱长是底面边长的,这个正棱锥可能是( )(1,2,3),(3,0,1)A B --AB = (2,2,4)--(4,2,2)-(2,2,4)-(4,2,2)--,αβ,l P n αα⋂=⊂l n //,m n n α⊂//m α,,,l m l n m n αα⊥⊥⊂⊂l α⊥,,m n αβαβ⊥⊥⊥m n⊥P ABC -Q B ,,PA a PB b PC c === CQ = 2133c a b -+ 1233c a b -- 2133a b c +- 1233a b c +- π3π2π2π3,//,m n m αα⊂///n α//m αl (1,0,2)m =(0,1,0)A l (1,2,3)B -l 710A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥8.正三棱锥中,为棱PA的中点,点M,N分别在棱PB,PC上,三角形QMN周长的最小值为()9.歇山顶是中国古代建筑传统屋顶之一,它有一条正脊、四条垂脊和四条戗脊,将歇山顶近似看成如图中的多面体,其上部为直三棱柱,,四边形为矩形,平面平面,且平面,平面,则正脊末端与戗脊末端两点间距离为()A.4C.10.如图,正四面体的棱长2,过棱AB上任意一点做与AD,BC都平行的截面,将正四面体分成上下两部分,记,截面上方部分的体积为,则函数的图像大致为()A. B. C. D.二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11.已知,则_______________.P ABC-π,2,6APB PA Q∠==111,4ABC A B C AB AC BC-===118AA=11EFF E 11//EFF E11BCC B1E E⊂11ABB A1F F⊂11,ACC A BE CF== 1111,C F B E=120,6EE EF==A EA BCD-P(02)AP x x=<<()V x()y V x=(0,2,3),(1,4,6),(2,2,5),(0,,),//A B C D m n AB CDm n+=12.已知平面,直线,给出三个语句:①,②,③.从这三个语句中选取两个做条件,剩下一个做结论,构成一个真命题,该命题是:若_____________,则_____________.(只需填写序号)13.如图,在四棱锥中,底面ABCD 为菱形,,平面ABCD ,Q 点在四棱锥表面上,且,则PC 与底面ABCD 的夹角为_____________;点所形成的轨迹长度是_____________.14.如图,在正方体内,正方形EFGH 中心与正方体中心重合,从前面观察如图所示,若棱长,则正棱台的侧棱长为_____________.15.如图,是正方形ABCD 内一动点(不包括边界),平面ABCD 于,,给出下列四个结论:①四棱锥的体积是定值;②设平面PAD 与平面PBC 交于,则;③四棱锥的表面积既有最小值又有最大值;④存在点,使得四棱锥的四个侧面两两垂直.其中所有正确结论的序号是_____________.三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.(本小题10分)已知空间四点.,αβn αβ⊥n α⊥//n βP ABCD -2PA AB ==60,DAB PA ︒∠=⊥P ABCD -DQ AC ⊥Q 1111ABCD A B C D-AB =11EFGH BCC B -O PO ⊥,2O AB =1,PO PA PD ==P ABCD -l //l BC P ABCD -O P ABCD -(0,2,3),(1,4,6),(1,2,5),(0,,),A B C D m n AC BD ⊥(I )求和的值;(II )若点在平面ABC 内,请直接写出的值.17.(本小题12分)如图,在直四棱柱中,底面ABCD 为梯形,,其中是BC 的中点,是的中点.(I )求证:平面;(II )求平面与平面ABCD 所成角的余弦.18.(本小题13分)如图,四棱锥P-ABCD 中,平面.(I )若,求证:平面平面PCD ;(II )若AD =DC ,PB 中点为,试问在棱CD 上是否存在点,使,若存在,指出点位置,若不存在说明理由;(III )若与平面PBC 成角大小,求DC 边长.第II 卷(共10道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)||AB AC - n D m 1111ABCD A B C D -//,AB CD CD AD ⊥12,4, 1.AD CD DD AB E ====F 1AA //AE 1CB F 1CB F PA⊥,,ABCD AB AC PD AB AC ⊥===AD DC =PAD ⊥E Q PQ AE ⊥Q 2,PA PD =30︒19.如图,在直三棱柱中,,则直线与直线所成的角为( )A. B. C. D.20.如图,正方体的棱长为1,其中P ,Q ,R 分别是棱的中点,则到平面PQR 的距离是( )21.如图1,在矩形ABCD中,,点在AB 边上,且.如图2,将沿直线DE 向上折起至位置,连结.记二面角的大小为,当时,下面四个结论中错误的是( )A.存在某个位置,使B.存在某个位置,使平面平面C.存在某个位置,直线BE 与平面所成角为111ABC A B C -1π,2BAC AB AC AA ∠===1A B 1AC π6π4π3π21111ABCD A B C D -111,,C D AA BC B AD =E CE DE ⊥1AE =ADE V 1A 1AC 1A DE A --θ(0,π)θ∈1DA CE⊥1A DE ⊥1A EC1A DE 60︒D.存在某个位置,使平面与平面的交线与平面DEC 平行22.光导纤维作为光的传输工具,在现代通讯中有着及其重要的作用,光纤由内部纤芯和外部包层组成(如图1),在一定的条件下,光在纤芯中传输,传输原理是“光的全反射”,即“入射角等于反射角”(如图2),在图3中近似地展示了一束光线在一段较长的圆柱形光纤中的传输路径,其中圆面是与光纤轴垂直的纤芯截面,若与圆所在平面成角的大小为,则光线路径在垂直于光纤轴的截面上的投影可能( )A. B. C. D.二、填空题(共6小题,每小题5分,共30分,把答案填在答题纸上的相应位置.)23.直二面角,则______________;三棱锥外接球的体积是_____________.24.已知正方体的棱长为为侧面内一动点(包括边界),为棱上一动点(包括端点),则的最小值是_____________.25.如图,某一个自行车停放时,车体由尺寸相同的前后轮和脚撑来支撑,前后轮的轴中心分别为M ,N ,与地面接触点分别为A ,B ,脚撑一端固定在后轮轴中心处,另一端与地面接触于点,若A ,B 两点1A DE 1A BCαβ123,,O O O 12A A 2O 123π3,cos 44A A A ∠=-,2,1P AB Q PA PB AB AQ BQ --=====PQ =P ABQ -1111ABCD A BCD -P 11BB C C Q 11B C 1||AP AD PQ ⋅+ N C间距离为110厘米,车轮外径(直径)为66厘米,脚撑长度等于车轮半径,,则后车轮所在平面与地面的夹角(即二面角)的余弦值为_____________.26.将半径为1的半圆弧等分,从半径的一个端点出发依次连接各个分点至半径的另一个端点,得到折线,将折线绕半径MN 所在直线旋转,得到旋转体时,如图所示),设所得旋转体的表面积为,给出下列四个结论:①;②;③最大值为;④.其中所有正确结论的序号是___________.27.已知正方体的棱长分别为中点,从开始沿射线DF 运动,做平面,垂足为,给出下列四个结论:5π,12ABC ∠=π,12BAC ∠=NB AB ⊥N AB C --()*2,n n n ≥∈N M N 121n MA A A N - (5n =n S 2S =1n n S S +<n S 4ππ4πcos 2n S n=1111ABCD A B C D -,E F 11,D C BC M D 1B N ⊥1A ME N①平面与平面ABCD 夹角先增大后减小;②B 1N 最大值为4,并且先增大后减小;③存在N 使得;④存在唯一的使得.其中所有正确结论的序号是_____________.28.蜜蜂分泌蜂蜡筑巢,蜂巢由许多中空的柱状体连接而成,其中柱状体的一端为正六边形开口,另一端由三个全等的菱形拼成类似锥形的底部(如图1),蜜蜂这样筑巢能够使得蜂巢空间不变的条件下,所用蜂蜡最少,为了揭开蜜蜂筑巢的数学秘密,研学小组利用正六棱柱去研究中空的柱状体.设正六棱柱底面边长为4,底面中心分别为(如图2),现将延长至,平面PFB ,PBD ,PDF 分别与棱交于M ,N ,T ,得到中空的柱状体(如图3).(1)比大小:所得中空的柱状体的体积____________原正六棱柱体积;(填“>”,“<”或“=”)(2)当中空的柱状体表面积最小时,PO 的取值是___________.1A ME AN CN =N BN DN ⊥111111ABCDEF A B C D E F -1,O O 1O O P 111,,AA CC EE人大附中20242025学年度第一学期高二年级数学期中练习数学参考答案I 卷一、选择题(本大题共10小题,每小题4分,共40分.)(1)C (2)D (3)D (4)D (5)C (6)B (7)A (8)A (9)D (10)D二、填空题(本大题共5小题,每小题5分,共25分.)11.-311.②③,①13.(前空3分,后空2分)15.①、②(全选对得5分,对一个得3分,错选得0分)三、解答题(本大题共3小题,共35分.)16.(本题10分)【解】:(1)………………………………………………….……1分且…………………………………………………………………………1分………………………………………………………2分 (2)分………………………………………………..……………1分即………………………………………………………………1分(2)……………………………………………………………………………………2分17.(本题12分)【解】:(1)平面,证明如下:…………………………………………………1分连结,设,由四棱柱,知四边形为平行四边形,所以为中点,又是BC 的中点,π;26+||||,AB AC BC -= (0,2,1)BC =-- ||BC ∴== (1,0,2),(1,4,6)AC BD m n ==--- 0,AC BD AC BD ⊥∴⋅= 1312(6)02n n -+-=∴=9m =//AE 1CB F 1C B 11C B CB O ⋂=11BCC B O 1CB E所以,所以四边形AEOF 为平行四边形,所以…………………………………………………2分又平面平面,所以平面………………………………………2分(2)因为直四棱柱,所以平面ADC ,又,所以两两垂直,如图建立空间直角坐标系…………………………………………………………………………………………………1分因为,所以设平面法向量,则,即………………………2分令则,所以………………………………………………………………1分又平面ACD 法向量………………………………………………………………………………1分设平面与平面ABC 成角为,则分18.(本题13分)【详解】:(1)因为平面平面ABCD ,111//,,//,2OE BB OE BB OE AF OE AF =∴=//AE OF AE ⊂/1,CB F OF ⊂1CB F //AE 1CB F 1DD ⊥CD AD ⊥1,,DA DC DD 12,4,1AD CD DD AB ====1(0,0,2),(2,2,0),(2,4,1)C F B 1(2,2,2),(0,2,1)CF FB =-=1CB F (,,)m x y z = 100m CF m FB ⎧⋅=⎪⎨⋅=⎪⎩ 222020x y z y z +-=⎧⎨+=⎩2z =1,3y x =-=(3,1,2),m =- (0,1,0)n =1CB F θcos |cos ,|||||m n m n m n θ⋅=〈〉=== PA ⊥,,ABCD AD CD ⊂所以,………1分又,所以…………………………………1分平面PAD所以平面PAD ,………………………………………………………………………………1分又平面PCD ,所以平面平面PCD ……………………………………………………1分(2)因为平面,所以AP ,AB ,AC 两两垂直,如图建立空间直角坐标系…1分设,则则设,………………………………………………………………………………………………2分假设存在满足,因为等价于,解得,所以不存在……………………………………………………………………………1分(3)因为,所以,,设,其中,则, (1)分,PA AD PACD ⊥⊥PD =,,PD AD CD PD AC==== 222,,,ACAC CD AD AD CD∴==∴=+∴⊥,,,,AD CD PA CD PA AD APA AD ⊥⊥⋂=⊂ CD ⊥CD ⊂PAD ⊥PA ⊥,ABCD AB AC ⊥1PA =1,AD CD AC AB ====1(0,0,1),,2B C P D E ⎛⎫⎫ ⎪⎪⎝⎭⎭,[0,1]DQ DC λλ=∈11),1PQ PD DC λλλλ⎛⎫⎫⎫∴=+=-+=-+- ⎪⎪⎪⎝⎭⎭⎭12AE ⎫=⎪⎪⎭ P PQ AE ⊥PQ AE ⊥0PQ AE ⋅= 2[0,1]λ=∉2PA =2,AD AC AB ===(0,0,2),P B C 2),2)PB PC =-=- (,,0)D a b 0,0a b <>2224AD a b =∴+= (,,2)PD a b =-设平面PBC 法向量,依题意即令则,所以,…………………………………………………………2分因为PD 与平面PBC 成角大小,所以或…………………………………………………………1分此方程组无解综上……………………………………………………………………………………………………1分第II 卷(共10道题,满分50分)一、选择题(共4小题,每小题5分,共20分)19.C 20.D 21.D 22.D二、填空题(共6小题,每小题5分,共30分.)(前空3分后空2分)24.26.①②④(全选对得5分,对一个得3分,错选得0分)27.①②(全选对得5分,对一个得3分,错选得0分)28.(1)相等(2(前空3分后空2分)(,,)m x y z = 00m PB m PC ⎧⋅=⎪⎨⋅=⎪⎩ 2020z z ⎧-=⎪⎨-=⎪⎩z =1x y ==m =30︒sin 30|cos ,|||||PD m PD m PD m ︒⋅=〈〉= 102a b ∴+=a b +=220||24a b a DC DC a b b ⎧⎧+==⎪⎪∴=∴=⎨⎨+==⎪⎪⎩⎩224a b a b ⎧+=⎪⎨+=⎪⎩2DC =4π312。

长沙市长郡中学2024—2025学年高二上期中考试语文试题

长沙市长郡中学2024—2025学年高二上期中考试语文试题

长沙市长郡中学2024—2025学年高二上期中考试语文试题时量:150分钟满分:150分一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:孔子是个言行一致的人,他不仅注重“言必信,行必果”(《子路》),而且强调“君子欲讷于言而敏于行”(《里仁》)、“君子耻其言而过其行”(《宪问》)。

《论语》虽非孔子亲笔著述,但从弟子记载其话语中,仍能明显感到他是落实自己重视文采主张的力行者。

比喻作为文学的常用修辞法,孔子一出手就技惊四方。

“为政以德,譬如北辰,居其所而众星共之”(《为政》),以“北辰”比“为政以德”的统治者,以“众星”比诸侯国和大夫,譬喻形象而意蕴丰赡。

“逝者如斯夫,不舍昼夜”(《子罕》)、“岁寒,然后知松柏之后凋也”(《子罕》),前者由感慨河水川流不息而提醒珍惜宝贵时光,后者以松柏后凋景象喻人要经得起严酷环境的考验,言简意赅而启人深思。

“知者乐水,仁者乐山;知者动,仁者静;知者乐,仁者寿”(《雍也》),孔子由水的川流灵动,想到智者敏锐聪慧,由山的沉稳安静,想到仁者厚重不迁,设喻奇妙,表意隽永,且气象博大。

孔子擅于比喻,也妙于夸张。

“朝闻道,夕可死矣”(《里仁》),不这样夸饰,怎能凸显他把“闻道”看得比性命还重要!“子在齐闻《韶》,三月不知肉味”(《述而》),这是以婉曲夸张法,将他在齐国痴迷韶乐而难以自拔的情景,传达得惟妙惟肖而意蕴悠长。

“不义而富且贵,于我如浮云”(《述而》),此处的“浮云”,既是比喻又是夸张,把他作为百世圣哲“谋道不谋食”“忧道不忧贫”的高尚情操和洒脱情怀,刻画得栩栩如生又感人至深。

相对于上述显在的文学表现,我更欣赏《论语》处处隐含内蕴的文学意味。

请看似乎平淡无奇的开篇第一章:子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”(《学而》)且不说将此段分行排列,颇有诗的形式和意韵,就看三句话皆以亲切的反问语气出之,即为有意无意地运用文学笔法,活画出孔子作为师长对弟子循循善诱的情状。

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。

北京市丰台区2023-2024学年高二下学期4月期中考试化学试题(A卷)含答案

北京市丰台区2023-2024学年高二下学期4月期中考试化学试题(A卷)含答案

丰台区2023-2024学年度第二学期期中练习高二化学(A 卷)考试时间:90分钟(答案在最后)可能用到的相对原子质量:H 1C 12O 16Mg 24Cu 64Mn 55第I 卷(选择题共42分)本部分共14小题,每小题3分,共42分。

在每小题给出的四个选项中,选出最符合题意的一项。

1.科学家研究发现N 2分子在半导体光催化的作用下可被捕获转化为NH 3(过程如图所示)。

下列说法不正确...的是A .NH 3分子中N 原子杂化方式为sp 3B .NH 3和H 2O 的空间结构相同C .反应的化学方程式:2N 2+6H 2O催化剂光4NH 3+3O 2D .该过程可以实现太阳能向化学能的转化2.下列化学用语或图示表达不正确...的是A .CH 3CH(CH 2CH 3)2分子中不具有旋光性的碳原子B .基态24Cr 原子的价层电子轨道表示式为:C .碳原子的杂化方式只有1种D .SO2-3的VSEPR 模型:3.下列结构或性质的比较中,正确的是A .微粒半径:Cl −<K +B .酸性:HCOOH <CH 3COOHC .碱性:NaOH >CsOHD .HF 分子中σ键的形成示意图为4.砷化镓(GaAs )太阳能电池大量应用于我国超低轨通遥一体卫星星座。

下列说法正确的是A .电负性:As >GaB .电子层数:As >GaC .原子半径:As >GaD .单质还原性:As >Ga5.四种元素的基态原子的核外电子排布式分别是:①1s 22s 22p 4;②1s 22s 22p 63s 23p 4;③1s 22s 22p 63s 23p 5,④1s 22s 22p 3,下列说法不正确...的是A .最高价含氧酸的酸性:②<③B .第一电离能:①>④C .①②③④都是p 区元素D .电负性:①>②6.NaCl 的晶胞结构如图所示。

下列说法不正确...的是A .NaCl 属于离子晶体B .每个晶胞中平均含有4个Na +和4个Cl −C .每个Na +周围有6个紧邻的Cl −和6个紧邻的Na +D .Na +和Cl −间存在较强的离子键,因此NaCl 具有较高的熔点7.下列化学用语或图示表达不正确...的是A .基态29Cu 的简化电子排布式:[Ar]3d 94s 2B .乙炔的分子结构模型:C .Br 的原子结构示意图:D.氮分子的电子式:8.三氟乙酸乙酯是一种重要的含氟有机中间体,其结构如下。

高二数学期中考试试题

高二数学期中考试试题

高二数学期中考试试题一、选择题:(每题5分共60分)1.已知a,b,c是△abc三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角c的大小为()a.60°b.90°c.120°d.150°2.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()a.12b.22c.2d.323.在△abc中,已知sinacosb=sinc,那么△abc一定是()a.直角三角形b.等腰三角形c.等腰直角三角形d.正三角形4.如果,那么下列不等式成立的是()a.b.c.d.5.目标函数,变量满足,则有()a.b.无最小值c.无最大值d.既无最大值,也无最小值6.下列有关命题的说法正确的是a.命题“若,则”的否命题为:“若,则”;b.命题“使得”的否定是:“均有”;c.在中,“”是“”的充要条件;d.“或”是“”的非充分非必要条件.7..设f(n)=2+24+27+210+…+23n+1(n∈n*),则f(n)等于()a.27(8n-1)b.27(8n+1-1)c.27(8n+3-1)d.27(8n+4-1)8.已知等差数列的前项和为,,,取得最小值时的值为()a.b.c.d.10.若点o和点f分别为椭圆x24+y23=1的中心和左焦点,点p 为椭圆上的任意一点,则op→fp→的最大值为()a.2b.3c.6d.8二.填空题(每题5分共20分)13.不等式的解集是,则a+b的值是14.已知数列满足,,则的最小值为____.15.已知椭圆的焦点是,P为椭圆上一点,且是和的等差中项.若点p在第三象限,且∠=120°,则.16.已知椭圆x2a2+y2b2=1(ab0)的左,右焦点分别为f1(-c,0),f2(c,0),若椭圆上存在点p使asin∠pf1f2=csin∠pf2f1成立,则该椭圆的离心率的取值范围为________.三、解答题(每题12分)17.命题p:关于x的不等式对于一切恒成立,命题q:若为真,为假,求实数a的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知函数f(x)在其定义域内是减函数,则方程f(x)=0 ___A___。

A.至多一个实根 B.至少一个实根 C.一个实根 D.无实根
2.已知a<0,-1<b<0,那么a 、ab 、ab 之间的大小关系是
_D____。

A. a>ab> ab
B. ab >ab>a
C. ab>a> ab
D. ab> ab >a
3.已知α∩β=l ,a α,b β,若a 、b 为异面直线,则__B___。

A. a 、b 都与l 相交
B. a 、b 中至少一条与l 相交
C. a 、b 中至多有一条与l 相交
D. a 、b 都与l 相交
4. 如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。

求证:AC 与平面SOB 不
垂直。

5.. 若下列方程:x +4ax -4a +3=0, x +(a -1)x +a =0, x +2ax -2a =0至少有一个方程有实根。

试求实数a 的取值范围。

6.已知:四边形ABCD 中,E 、F 分别是AD 、BC 的中点,
)(2
1CD AB EF +=。

求证:CD AB //。

A
B
C
D E F
G
4.【分析】结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”。

【证明】 假设AC ⊥平面SOB ,
∵ 直线SO 在平面SOB 内, ∴ AC ⊥SO , ∵ SO ⊥底面圆O , ∴ SO ⊥AB ,
∴ SO ⊥平面SAB , ∴平面SAB ∥底面圆O , 这显然出现矛盾,所以假设不成立。

即AC 与平面SOB 不垂直。

【注】否定性的问题常用反证法。

例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾。

5.【解】 设三个方程均无实根,则有:
,解得,即-<a<-1。

所以当a ≥-1或a ≤-时,三个方程至少有一个方程有实根
6.证明:假设AB 不平行于CD 。

如图,连结AC ,取AC 的中点G ,连结EG 、FG 。

∵E 、F 、G 分别是AD 、BC 、AC 的中点, ∴CD GE //,CD GE 2
1=
;AB GF //,AB GF 21=。

∵AB 不平行于CD ,
∴GE 和GF 不共线,GE 、GF 、EF 组成一个三角形。

∴EF GF GE >+ ①
A
B
C
D
E F
G
但EF CD AB GF GE =+=+)(2
1 ②
①与②矛盾。

∴CD AB //。

相关文档
最新文档