(河南专版)201x年中考数学一轮复习 第四章 图形的认识 4.1 角、相交线与平行线(试卷部分)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. 易错警示 本题求的是∠2补角的度数,而不是∠2的度数.
2.(2018河北,11,2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继 续航行,此时的航行方向为 ( )
A.北偏东30° C.北偏西30°
B.北偏东80° D.北偏西50°
答案 A 如图,过B作BC∥AP,∴∠2=∠1=50°. ∴∠3=80°-∠2=30°,此时的航行方向为北偏东30°,故选A.
.Байду номын сангаас
6.(2015广西南宁,5,3分)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC ∥DE,则∠CAE等于 ( )
A.30° B.45° C.60° D.90° 答案 A ∵DE∥BC,∴∠CAE=∠C=30°.故选A.
A.∠2 B.∠3 C.∠4 D.∠5 答案 D ∠1在直线a的下方,且在直线c的左边,∠5在直线b的下方,也在直线c的左边,所以它 们是同位角,选D.
.
3.(2014山东济南,2,3分)如图,点O在直线AB上,若∠1=40°,则∠2的度数是 ( ) A.50° B.60° C.140° D.150° 答案 C ∠2=180°-∠1=180°-40°=140°,故选C.
答案 C 用量角器测量一个角的度数时,应将量角器的圆心对准所量角的顶点,量角器的零 刻度线与角的一边重合,那么角的另一边所对应的.刻度就是角的度数,故选C.
2.(2016湖南长沙,9,3分)下列各图中,∠1与∠2互为余角的是 ( )
答案 B A项,∠1与∠2不互余,故本选项错误; B项,∠1+∠2=90°,即∠1与∠2互余,故本选项正确; C项,∠1与∠2是对顶角,故本选项错误; D项,∠1与∠2是邻补角,故本选项错误.故选B.
A.120° B.130° C.140° D.150° 答案 C 延长AC交直线EF于点G,
∵AB∥EF,∴∠BAC=∠CGD=50°, ∵∠ACD是△CDG的外角, ∴∠ACD=∠CGD+∠CDG=50°+90°=140°,故选C.
.
7.(2016吉林,11,3分)如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角
.
2.(2018新疆乌鲁木齐,4,4分)如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则 ∠2= ( )
A.20° B.30° C.40° D.50° .
答案 C 如图,易知∠1=∠3,∠2=∠4, 又∠3+∠4=90°,∴∠2=90°-50°=40°.
.
3.(2017陕西,4,3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上.若∠1=25°,则∠2的大 小为 ( ) A.55° B.75° C.65° D.85°
.
4.(2017安徽,6,4分)直角三角板和直尺如图放置.若∠1=20°,则∠2的度数为 ( )
A.60° B.50° C.40° D.30° 答案 C 如图所示,∠4=∠1+30°=50°,由平行线的性质可得∠5=∠4=50°,所以∠3=90°-∠5= 40°,所以∠2=∠3=40°.
.
5.(2016陕西,4,3分)如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED= ( )
5.(2016新疆乌鲁木齐,4,4分)如图,已知直线a∥b,AC⊥AB,AC与直线a,b分别交于A,C两点,若 ∠1=60°,则∠2的度数为( )
A.30° B.35° C.45° D.50° 答案 A ∵AC⊥AB,∴∠1+∠B=90°,∵∠1 =60°,∴∠B=30°,∵a∥b,∴∠2=∠B=30°,故选A.
A.65° B.115° C.125° D.130°
答案 B ∵AB∥CD,∴∠C+∠CAB=180°, ∴∠CAB=180°-∠C=130°. ∵AE平分∠CAB,
∴∠CAE= 1 ∠CAB=65°. 2
∵∠AED是△ACE的外角,
∴∠AED=∠C+∠CAE=115°,
故选B.
.
6.(2015河北,8,3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD= ( )
.
2.(2018河南,12,3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数

.
答案 140° 解析 ∵EO⊥AB,∴∠EOB=90°,∴∠BOD=90°-∠EOD=40°, ∴∠BOC=180°-∠BOD=180°-40°=140°.
.
B组 2014-2018年全国中考题组
.
解析 如图,过点A作AB的垂线交DC的延长线于点E,过点E作l1的垂线与l1、l2分别交于点H、 F,则HF⊥l2.
由题意知AB⊥BC,BC⊥CD,又AE⊥AB, ∴四边形ABCE为矩形, ∴AE=BC,AB=EC. (2分) ∴DE=DC+CE=DC+AB=50. 又AB与l1成30°角, ∴∠EDF=30°,∠EAH=60°.
A.60° B.100° C.110° D.120° 答案 D ∵AB∥CD,∠1=60°,∴∠EFH=∠1=60°,∵EF∥GH,∴∠EFH+∠GHF=180°,∴ ∠GHF=180°-∠EFH=120°,∴∠2的补角为120°. 思路分析 根据“两直线平行,内错角相等”得∠EFH=∠1,根据“两直线平行,同旁内角互 补”得∠GHF与∠EFH互补,结合∠2与∠GHF互为邻补角即可得解. 方法总结 通过两条平行线被第三条直线所截,得到的同位角相等、内错角相等以及同旁内 角互补,实现角的转化.
.
3.(2017山西,2,3分)如图,直线a,b被直线c所截,下列条件 不 判能 定直线a与b平行的是 ( )
A.∠1=∠3 C.∠1=∠4
B.∠2+∠4=180° D.∠3=∠4
答案 D A.∵∠1=∠3,∴a∥b,故A可以判定a与b平行; B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B可以判定a与 b平行; C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C可以判定a与b平行; D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误. 故选D.
答案 150°42'(或150.7°) 解析 ∠AOC=180°-∠BOC=180°-29°18'=150°42'(150°42'=150.7°).
.
3.(2017江西,8,3分)图1是一把园林剪刀,把它抽象为图2,其中OA=OB,若剪刀张开的角为30°,则
∠A=
度.
答案 75 解析 由对顶角相等可得∠AOB=30°,∵OA=OB,∴∠A=180= 753°0 .
.
2.(2014贵州贵阳,2,3分)如图,直线a,b相交于点O,若∠1等于50°,则∠2等于 ( )
A.50° B.40° C.140° D.130° 答案 A 从题图可知∠1和∠2是对顶角,根据对顶角相等可得∠2=∠1=50°,故选A.
.
考点三 平行线
1.(2018辽宁沈阳,6,2分)如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是 ( )
.
考点三 平行线
1.(2018陕西,3,3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有 ( )
A.1个 B.2个 C.3个 D.4个 .
答案 D 如图,∵l1∥l2,l3∥l4,∴∠2=∠4,∠1+∠2=180°,∵∠4=∠5,∠2=∠3,∴图中与∠1互补 的角有∠2,∠3,∠4,∠5,共4个.故选D.
中考数学 (河南专用)
第四章 图形的认识
§4.1 角、相交线与平行线
.
五年中考 A组 2014-2018年河南中考题组
1.(2015河南,4,3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数为 ( )
A.55° C.70°
B.60° D.75°
.
答案 A 如图,∵∠1=∠2,∴a∥b.∴∠5=∠3=125°, ∴∠4=180°-∠5=180°-125°=55°.故选A. 评析 本题考查了平行线的性质与判定以及邻补角的关系,属容易题.
.
3.(2018北京,9,2分)如图所示的网格是正方形网格,∠BAC ∠DAE.(填“>”“=”或“<”) .
答案 > 解析 如图.设网格小正方形的边长为1,可得AC=BC=2, MN=AN= 5,AM= ,∵1 0 ∠ACB=90°, ∴∠BAC=45°,∵AM2=AN2+MN2, ∴∠MNA=90°,∴∠MAD=45°. 显然,∠DAE<∠MAD,∴∠BAC>∠DAE.
三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于
度.
答案 30 解析 ∵AB∥CD,∴∠END=∠EMB=75°,∴∠PNM=∠END-∠PND=75°-45°=30°.
.
8.(2014安徽,18,8分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通, 其中AB段与高速公路l1成30°角,长为20 km;BC段与AB、CD段都垂直,长为10 km;CD段长为30 km,求两高速公路间的距离(结果保留根号).
.
4.(2017甘肃兰州,22,6分)在数学课上,同学们已经探究过“经过已知直线外一点作这条直线的 垂线”的尺规作图过程: 已知:直线l和l外一点P.
求作:直线l的垂线,使它经过点P. 作法:如图. (1)在直线l上任取两点A,B; (2)分别以点A,B为圆心,AP,BP长为半径画弧,两弧相交于点Q; (3)作直线PQ. 所以直线PQ就是所要求作的垂线.
一题多解 本题还可以直接使用量角器度量角的大小. .
考点二 相交线
1.(2014江苏苏州,2,3分)已知∠α和∠β是对顶角.若∠α=30°,则∠β的度数为 ( )
A.30° B.60° C.70° D.150° 答案 A 因为“对顶角相等”,所以∠β=∠α=30°,故选A.
.
2.(2014上海,4,4分)如图,已知直线a、b被直线c所截,那么∠1的同位角是 ( )
考点一 角
1.(2016北京,1,3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为 ( )
A.45° B.55° C.125° D.135°
答案 B 由题图可知∠AOB=55°.
.
2.(2018云南昆明,3,3分)如图,过直线AB上一点O作射线OC,∠BOC=29°18',则∠AOC的度数为 .
答案 C 如图,由∠1=25°,∠ABC=90°可得∠3=65°.因为a∥b,所以∠2=∠3=65°.故选C.
.
4.(2016福建福州,3,3分)如图,直线a,b被直线c所截,∠1与∠2的位置关系是 ( ) A.同位角 B.内错角 C.同旁内角 D.对顶角 答案 B ∠1与∠2是内错角.故选B.
.
.
参考以上材料作图的方法,解决以下问题: (1)以上材料作图的依据是: . (2)已知:直线l和l外一点P. 求作:☉P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹)
.
解析 (1)到线段两个端点距离相等的点在线段的垂直平分线上;或线段垂直平分线的性质. (2分) (2)如图:
(6分) 提示:①在直线l上任取两点A,B,分别以A,B为圆心,AP,BP长为半径画弧,两弧相交于点Q; ②作直线PQ交AB于点C; ③以P为圆心,PC长为半径作圆. ∴☉P就是所要求作的图形.
2
.
4.(2015江西南昌,7,3分)一个角的度数为20°,则它的补角的度数为
.
答案 160° 解析 互补的两个角的度数和为180°,所以所求角的度数为180°-20°=160°.
.
考点二 相交线
1.(2017北京,1,3分)如图所示,点P到直线l的距离是 ( )
A.线段PA的长度 B.线段PB的长度 C.线段PC的长度 D.线段PD的长度 答案 B 直线外一点到这条直线的垂线段的长度,叫做该点到这条直线的距离.因为PB⊥l, 所以点P到直线l的距离为线段PB的长度.故选B.
.
在Rt△DEF中,EF=DE·sin 30°=50×1 2
在Rt△AEH中,EH=AE·sin 60°=10×3 2
所以HF=EF+HE=25+5 .3
=25, (5分) =53 ,
答:两高速公路间的距离为(25+5 )3km. (8分)
.
考点一 角
C组 教师专用题组
1.(2017河北,3,3分)用量角器测量∠MON的度数,下列操作正确的是 ( )
相关文档
最新文档