四川省资阳市高三数学第二次模拟考试理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资阳市2010—2011学年度高中三年级第二次高考模拟考试数 学(理
工农医类)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.全卷共150分,考试时间为120分钟.
第Ⅰ卷(选择题 共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把选择题答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.
3.考试结束时,监考人将第Ⅰ卷的机读答题卡和第Ⅱ卷的答题卡一并收回. 参考公式:
如果事件A 、B 互斥,那么 球是表面积公式
()()()P A B P A P B +=+ 24S R π=
如果事件A 、B 相互独立,那么 其中R 表示球的半径
()()()P A B P A P B ⋅=⋅ 球的体积公式
如果事件A 在一次试验中发生的概率是P ,那么
34
3
V R π=
n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径
()(1)k k
n k
n n P k C P P -=-
一、选择题:本大题共12个小题,每小题5分,共60分.在每个小题给出的四个选项
中,只有一项是符合题目的要求的.
1.已知全集U=R ,集合1
{|}2
A x x =≥,集合{|1}
B x x =≤,那么U ()A B =ð
(A )1{|1}2x x x ≤≥或 (B )1
{|1}2x x x <>或
(C )1{|1}2x x << (D )1
{|1}2
x x ≤≤
2.已知i 是虚数单位,且,a b ∈R ,若2i
i 1i
a b -+=+,则a +b =
(A )0 (B )1
2
- (C )1- (D )2-
3.设函数lg(),0,
(),0,x x f x x x -<⎧=⎨>⎩
则下列结论不正确的是
(A )10
lim ()1x f x →-=
(B )1
lim ()1x f x -
→= (C )2
lim ()2x f x +
→=(D )0
lim ()0x f x →= 4.“2a =”是“直线1l :410ax y +-=与直线2l :30x ay ++=平行”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件
(D )既不充分也不必要条件
5.函数()sin()(0)3f x x π
ωω=+>的最小正周期为π,则该函数图象
(A )关于直线4
x π
=
对称 (B )关于直线3
x π
=
对称
(C )关于点(,0)4π对称 (D )关于点(,0)3
π
对称
6.已知向量(2,1)=--a ,10⋅=a b ,||-a b ||=b
(A )
(B )
(C )20
(D )40
7.过抛物线2x y =焦点的直线l 交抛物线于A 、B 两点,且||4AB =,则线段AB 中点到
x 轴的距离是
(A )1
(B )
32 (C )74
(D )2 8.三棱锥S -ABC 三条侧棱两两垂直,且2SA SB ==,SC =若该三棱锥的四个顶
点都在球O 的表面上,则B 、C 间的球面距离是
(A )
23
π (B )
43
π (C )
2
π (D )π
9.过椭圆左焦点F 且倾斜角为60的直线与椭圆交于A 、B 两点,若3
2
AF FB =,则椭圆的离心率等于
(A )
25
(B (C )
12
(D )
23
10.若函数()f x =,a b ∈R )定义域为R ,则3a b +的取值范围是 (A )[2,)-+∞
(B )[6,)-+∞
(C )[6,)+∞
(D )[0,)+∞
11.设{a n }是等差数列,从{a 1,a 2,a 3,··· ,a 20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有
(A )90个
(B )120个
(C )160个
(D )180个
12.已知数列{}
n a 的通项公式为*2()n a n n =∈N ,现将该数列{}n a 的各项排列成如图的三角数阵:记(,)M s t 表示该数阵中第s 行
的第t 个数,则数阵中的偶数2010对应于
(A )(46,16)M (B )(46,25)M (C )(45,15)M
(D )(45,25)M
第Ⅱ卷(非选择题 共90分)
注意事项:
1.第Ⅱ卷共2页,请用0.5mm 的黑色墨水签字笔在答题卡上作答,不能直接答在此试题卷上.
2.答卷前将答题卡密封线内的项目填写清楚.
二、填空题:本大题共4个小题,每小题4分,共16分. 把答案直接填在题目中的横线上.
13.若2822100110(1)(1)x x a a x ax a x ++=+++
+,则1210a a a ++
+的值为_______.
14.若正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于______. 15.已知圆22:890C x x y -+-=,过点(1,3)M 作直线交圆C 于,A B 两点,ABC ∆面积的最大值为_____________.
16.对于函数()f x ,若存在区间[,]M a b =(其中a b <),使得{|(),}y y f x x M M =∈=,则称区间M 为函数()f x 的一个“稳定区间”.给出下列4个函数:①2()34f x x x =-+;②()|21|x f x =-;③()cos
2
f x x π
=;④()x f x e =.其中存在“稳定区间”的函数有__________ (填
出所有满足条件的函数序号) .
三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.
17.(本小题满分12分) 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,向量(,)b c a =+m ,
(,)a b c =-n ,若//m n ,求:
(Ⅰ)角B 的大小;
(Ⅱ)cos(10)[120)]B B +︒⋅-︒的值.
18.(本小题满分12分) 如图,已知正三棱柱ABC -A 1B 1C 1的各条棱长均为2,M 是
BC 的中点.
(Ⅰ)求证:A 1C ∥面AB 1M ;
(Ⅱ)在棱CC 1上找一点N ,使MN ⊥AB 1;
(Ⅲ)在(Ⅱ)的条件下,求二面角M -AB 1-N 的大小.
19.(本小题满分12分) 在一块倾斜放置的矩形木块上钉着一个形如“等腰三角形”的五行铁钉,钉子之间留有空隙作为通道,自上而下第1行2个铁钉之间有1个空隙,第2行3个铁钉之间有2个空隙……第5行6个铁钉之间有5个空隙(如图).某人将一个玻璃球从第1行的空隙向下滚动,玻璃球碰到第2行居中的铁钉后以相等的概率滚入第2行的左空隙或右空隙,以后玻璃球按类似方式继续往下滚动,落入第5行的某一个空隙后,掉入木板下方相应的球槽.玻璃球落入不同球槽得到的分数ξ如图所示.
(Ⅰ)求E ξ;
(Ⅱ)若此人进行4次相同试验,求至少3次获得4分的概率.
20.(本小题满分12分) 等差数列{}n a 中,首项11a =,公差0d ≠,前n 项和为n S ,已知数列123,,,
,,
n k k k k a a a a 成等比数列,其中11k =,22k =,35k =.
(Ⅰ)求数列{}n a ,{}n k 的通项公式; (Ⅱ)令21
n
n n a b k =
-,数列{}n b 的前n 项和为n T .若存在一个最小正整数M ,使得当n M
>时,4n n S T >(*n ∈N )恒成立,试求出这个最小正整数M 的值.
21.(本小题满分12分) 已知一动圆P 与圆1M :22(4)25x y ++=和圆2M :22(4)1x y -+=均外切(其中1M 、2M 分别为圆1M 和圆2M 的圆心)
. (Ⅰ)求动圆圆心P 的轨迹E 的方程;
(Ⅱ)若过点2M 的直线l 与曲线E 有两个交点A 、B ,求11||||AM BM ⋅的取值范围.
22.(本小题满分14分) 已知函数()1ln f x x x =--. (Ⅰ)求函数()f x 的最小值;
(Ⅱ)比较111
(1)(1)(1)2!3!!
n ++⋅⋅+与e 的大小(*,2n n ∈>N ,e 是自然对数的底数);
(Ⅲ)对于函数()h x 和()g x 定义域上的任意实数x ,若存在常数k ,b ,使得不等式()h x kx b ≥+和()g x kx b ≤+都成立,则称直线y kx b =+是函数()h x 和()g x 的“分界线”.设
函数21
()2
h x x =,()[1()]g x e x
f x =--,试问函数()h x 和()
g x 是否存在“分界线”?若存在,
求出常数k,b的值.若不存在,说明理由.
资阳市2010—2011学年度高中三年级第二次高考模拟考试数学(理工农医类)参考答案及评分意见
一、选择题:本大题共12个小题,每小题5分,共60分.
1-5. BCDAD;6-10. ACBAB;11-12. DC.
二、填空题:本大题共4个小题,每小题4分,共16分.
13.511;14;15.25
;16.②③.
2
三、解答题:本大题共6个小题,共74分.
17.解:(Ⅰ)∵//m n
,∴()()()b c b c a a +-=, ······························································2分
即2
2
2
b c a -=
,∴222cos 2a c b B ac +-==30B =︒. ·································6分
(Ⅱ
)cos(10)[120)]B B +︒⋅-
︒cos40(1)=︒⋅︒
cos 40=︒ ··········································································································8分
2sin 40cos40cos10︒
=︒⋅

······························································································································10分
sin801cos10︒
==︒

······································································································································12分
18.(Ⅰ)证明:连结A 1B ,交AB 1于P ,则PM //A 1C ,又PM ⊂面AB 1M ,A 1C ⊄面AB 1M ,
∴A 1C ∥面AB 1M . ····························································································································4分 (Ⅱ)解:取B 1C 1中点H ,连接MH ,在正三棱柱ABC -A 1B 1C 1
中,MB 、MA 、MH 两两垂直,故分别以MB 、MA 、MH 为x 、y 、z 轴,建立如图空间坐标系.设C N a =(02a <<)
,则0)A ,1(1,0,2)B ,(0,0,0)M ,(1,0,)N a -,
∴1(1,AB =,(1,0,)MN a =-.
由1(1,(1,0,)0AB MN a ⋅=⋅-=,有120a -+=,解得1
2
a =,故在棱CC 1上的点N 满足1
2
CN =
,使MN ⊥AB 1. ······································································8分 (Ⅲ)解:由(Ⅱ)
,(0,3,
0)MA =,1
(1,0,)2
MN =-,则0MA MN ⋅=,MN MA ⊥,又
1MN AB ⊥,则面AB 1M 一个法向量11
(1,0,)2
n MN ==-.
设面AB 1N 的一个法向量2(,,)n x y z =
,1(1,AB =
,1
(1,)2
AN =-,
由1220,0,AB n AN n ⎧⋅=⎪⎨⋅=⎪⎩
即20,
1
0,2
x z x z ⎧-+=⎪⎨--+=⎪⎩
取2912()55n =-, ·············································10分
则12
12
12
96
cos,
||||
n n
n n
n n
+

<>===


故二面角M-AB1-N 的大小为.·········································································12分
19.解:(Ⅰ)从第1行开始,玻璃球从一个空隙向下滚动,碰到此空隙下方的一个铁钉后以1
2
的概率落入铁钉左边的空隙,同样以
1
2
的概率落入铁钉右边的空隙.玻璃球继续往下滚动时,总有落入铁钉左边和右边空隙的两种结果.到最后落入某一个球槽内,一共进行了4次独立重复试验,设4次独立重复试验中落入左边空隙的次数为η,则
1
(4,)
2
B
η.
(6)(0,4)(0)(4)
P P P P
ξηηηη
======+=
或004440
44
11111
C()()+C()()
22228
==,·················2分
(4)(1,3)(1)(3)
P P P P
ξηηηη
======+=
或113331
44
11111
C()()+C()()
22222
==,··················4分
(2)(2)
P P
ξη
===222
4
1163
C()()
22168
===.·············································································6分则
113
642 3.5
828
Eξ=⨯+⨯+⨯=.································································································8分(Ⅱ)由(Ⅰ)知,此人一次试验获得4分的概率
1
2
P=,他进行4次相同试验可以看着他进行了4次独立重复试验,················································································································10分
则至少3次获得4分的概率33144
44
1115
C()()+C()
22216
P==.·············································12分
20.解:(Ⅰ)由2
215
a a a
=⋅,得2
(1)1(14)
d d
+=⋅+,解得2
d=,21
n
a n
∴=-,··········2分
21
n
k n
a k
=-,又在等比数列中,公比2
1
3
a
q
a
==,∴1
3
n
n
k
a-
=,
1
213n
n
k-
∴-=,
1
31
2
n
n
k
-+
∴=.··································································································6分
(Ⅱ)
1
21
213
n
n n
n
a n
b
k-
-
==
-


0121
13521
3333
n n
n
T
-
-
=++++,
1231
11352321
333333
n n n
n n
T
-
--
=+++++,两式相减得:1231
2222221
1
333333
n n n
n
T
-
-
=+++++-
11
2122
33
122
233
3
n n
n n
-
-+
=+⨯-=-,∴
1
1
3
3
n n
n
T
-
+
=-.·······················································8分

11
2121
3(3)0
333
n n n n n
n n n
T T
+-
+++
-=---=>,

n
T单调递增,∴13
n
T
≤<.又2
n
S n
=在*
n∈N时单调递增.······································10分

1
1
S=,
1
44
T=;
2
4
S=,
2
48
T=;
3
9
S=,
3
92
4
9
T=;
4
1612
S=>,
4
412
T<;….
故当3n >时,4n n S T >恒成立,则所求最小正整数M 的值为3. ·································12分
21.解:(Ⅰ)动圆P 的半径为r ,则1||5P M r =+,2||1PM r =+,1212||||4||PM PM M M -=<,故点P 的轨迹E 是以1M 、2M 为焦点的双曲线的右支. ·····························································2分
设方程为22
221()x y x a a b
-=≥,知24a =,28c =,所以2a =,4c =,22212b c a =-=,
故轨迹E 的方程为22
1(2)412
x y x -=≥.
·······························································································4分 (Ⅱ)当直线l 的斜率存在时,设其方程为(4)y k x =-,
联立方程组22(4),1,412
y k x x y =-⎧⎪
⎨-
=⎪⎩消去y ,得2222(3)816120k x k x k -+--=,
设11(,)A x y ,22(,)B x y ,其中12x ≥,22x ≥,
且2422
2122
212230,644(3)(1612)0,
80,316120,
3k k k k k x x k k x x k ⎧-≠⎪∆=+-+>⎪⎪
⎨+=->-⎪
⎪--⎪=>-⎩
解得23k >. ·······························································6分
双曲线左准线方程为1x =-.离心率2e =,根据双曲线第二定义,有1112||||
211
AM BM x x ==++, ∴11121212||||2(1)2(1)4(1)AM BM x x x x x x ⋅=+⨯+=+++ ····················································8分
22
22161284(1)33k k k k --=-+--2225943
k k +=⨯
-2844(25)1003k =+>-, ····································10分 当直线l 的斜率不存在时,易求得11||||100AM BM ⋅=, ····················································11分
故11||||[100,)AM BM ⋅∈+∞.··········································································································12分
22.解:(Ⅰ)
()1ln f x x x =--,1
()1f x x
'∴=-
.∴当(0,1)x ∈时,()0f x '<,()f x 是减函数;当(1,)x ∈+∞时,()0f x '>,()f x 是增函数. 2分 ∴()f x 在(0,)+∞上的极小值也为最小值,且最小值为(1)0f =.
··································4分 (Ⅱ)据(Ⅰ)知()1ln 0f x x x =--≥,知当0x >时, ln 1x x ≤-, ·······················6分
故当2n >时,
111ln[(1)(1)(1)]2!3!!n ++⋅⋅+
111ln(1)ln(1)ln(1)2!3!!n =++++++111
(11)(11)(11)2!3!!
n ≤+-++-+++-
111
2!3!!n =+++1111122334
(1)n n ≤
++++⨯⨯⨯-⨯ 111111(1)()()112231n n n =-+-++-=-<-.
故111
(1)(1)(1)e 2!3!!
n ++⋅⋅+<. ·································································································8分
(Ⅲ)令2
1()()()ln 2
F x h x g x x e x =-=
-(0x >)
,则()e F x x x '=-=
(0x >),∴当x ∈时,()0F x '<,
()F x 是减函数;当)x ∈+∞时,()0F x '>,()F x
是增函数.∴()F x 的最小值0F =,
则()h x 与()g x 的图象在x )2e
. ···························································10分
设函数()h x 和()g x 存在“分界线”,方程为(2e y k x -=,有()2
e
h x kx ≥+-
x ∈R 时恒成立,即2220x kx e --+在x ∈R 时恒成立,由2244(2)4(0k e k ∆=-=≤,
得k =2
e
y =-. ···············································································12分
记()ln 2
e
G x e x =+(0x >),则()e G x x '=-=(0x >),
当x ∈时,()0G x '>, 函数()G x 是增函数;当)x ∈+∞时,()0G x '<,函数()G x 是减函数.
∴当x ()G x 取得最大值0,即()2
e
g x ≤-在0x >时恒成立.
综上所述,函数()h x 和()g x 存在“分界线”,其中k =2e
b =-. ························14分。

相关文档
最新文档