高一下册机械能守恒定律同步单元检测(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第八章 机械能守恒定律易错题培优(难)
1.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )
A .滑块a 和滑块b 所组成的系统机械能守恒
B .滑块b 的速度为零时,滑块a 的加速度大小一定等于g
C .滑块b 3gL
D .滑块a 2gL
【答案】AC 【解析】 【分析】 【详解】
A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;
B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;
C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律
o 21(1sin 30)2
b mgL mv +=
解得
3b v gL =C 正确;
D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律
o 2211(sin 30sin )22
a b mgL mv mv θ+=
+ 而两个物体沿杆方向速度相等
cos sin b a v v θθ=
两式联立,利用三角函数整理得
21
2(sin )cos 2
a v gL θθ=+
利用特殊值,将o =30θ 代入上式可得
.521a v gL gL =>
因此最大值不是2gL ,D 错误。
故选AC 。
2.如图所示,劲度数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了0x ,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为40x .物体与水平面间的动摩擦因数为μ,重力加速度为g .则( )
A .撤去F 后,物体先做匀加速运动,再做匀减速运动
B .撤去F 后,物体刚运动时的加速度大小为0
kx g m
μ- C .物体做匀减速运动的时间为0
2
x g
μD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为0()mg
mg x k
μμ-
【答案】BD 【解析】 【分析】 【详解】
A .撤去F 后,物体水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,弹力先大于滑动摩擦力,后小于滑动摩擦力,则物体向左先做加速运动后做减速运动,随着弹力的减小,合外力先减小后增大,则加速度先减小后增大,故物体先做变加速运动,再做变减速运动,最后物体离开弹簧后做匀减速运动,A 错误;
B .刚开始时,由牛顿第二定律有:
0kx mg ma μ-=
解得:0
kx a g m
μ=
-
C .由题意知,物体离开弹簧后通过的最大距离为3x 0,由牛顿第二定律得:
1a g μ=
将此运动看成向右的初速度为零的匀加速运动,则:
20112
3x a t =
联立解得:0
6x t g
μ=
,C 错误; D .当弹簧的弹力与滑动摩擦力大小相等、方向相反时,速度速度最大时合力为零,则有
F mg kx μ==
解得mg
x k
μ=
,所以物体开始向左运动到速度最大的过程中克服摩擦力做的功为:
()f 00(mg W mg x x mg x k μμμ=⎛
⎫=- ⎪⎝⎭
- D 正确。
故选BD 。
3.如图所示,劲度系数k =40N/m 的轻质弹簧放置在光滑的水平面上,左端固定在竖直墙上,物块A 、B 在水平向左的推力F =10N 作用下,压迫弹簧处于静止状态,已知两物块不粘连,质量均为m =3kg 。
现突然撤去力F ,同时用水平向右的拉力F '作用在物块B 上,同时控制F '的大小使A 、B 一起以a =2m/s 2的加速度向右做匀加速运动,直到A 、B 分离,此过程弹簧对物块做的功为W 弹=0.8J 。
则下列说法正确的是( )
A .两物块刚开始向右匀加速运动时,拉力F '=2N
B .弹簧刚好恢复原长时,两物块正好分离
C 10
s 刚好分离 D .两物块一起匀加速运动到分离,拉力F '对物块做的功为0.6J 【答案】AC 【解析】 【分析】 【详解】
A .两物块刚开始向右匀加速运动时,对A
B 整体,由牛顿第二定律可知
2F F ma '+=
解得
2232N 10N 2N F ma F '=-=⨯⨯-=
BC .两物体刚好分离的临界条件;两物体之间的弹力为零且加速度相等。
设此时弹簧的压缩量为x ,则有
kx ma =
代入数据,可得
32
m 0.15m 40
ma x k ⨯=
== 弹簧最初的压缩量
010
m=0.25m 40
F x k =
= 故两物块一起匀加速运动到分离的时间为
2
012
at x x =- 解得
02()2(0.250.15)10
s s 2x x t a --=
== 故B 错误,C 正确;
D .对AB 整体,从一起匀加速运动到分离,由动能定理可得
21
22
F W W mv '+=⨯弹
10102m/s v at ==⨯
= 解得
22
1110223()J 0.8J 0.4J 225
F W mv W '=⨯-=⨯⨯⨯-=弹
故D 错误。
故选AC 。
4.如图1所示,遥控小车在平直路面上做直线运动,所受恒定阻力f =4N ,经过A 点时,小车受到的牵引力F A =2N ,运动到B 点时小车正好匀速,且速度v B =2m/s ;图2是小车从A 点运动到B 点牵引力F 与速度v 的反比例函数关系图像。
下列说法正确的是( )
A .从A 到
B ,牵引力的功率保持不变 B .从A 到B ,牵引力的功率越来越小
C .小车在
A 点的速度为4m/s
D .从A 到B ,小车的速度减小得越来越慢 【答案】ACD 【解析】 【分析】 【详解】
AB .遥控小车牵引力的功率P =Fv ,而题目中,已知小车从A 点运动到B 点牵引力F 与速度v 成反比例,则可知F 与v 的乘积保持不变,即功率P 不变,故A 正确,B 错误; C .小车运动到B 点时正好匀速,则牵引力等于阻力,且速度v B =2m/s ,则小车的功率为
8W B P Fv fv ===
则在A 点时速度
8
m/s 4m/s 2
A A P v F =
== 故C 正确;
D .小车从A 到B 的过程中,因速度从4m/s 减小到2m/s ,在这一过程中,功率始终保持不变,故牵引力增大,小车所受的合外力
F f F =-合
可知,合外力减小,由牛顿第二定律F a m
=
合
可知,小车的加速度减小,所以从A 到B ,
小车的速度减小得越来越慢,故D 正确。
故选ACD 。
5.如图所示,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球,B 处固定质量为m 的小球,支架悬挂在O 点,可绕过O 点并与支架所在平面相垂直的固定轴转动,开始时OB 与地面相垂直。
放手后开始运动,在不计任何阻力的情况下,下列说法正确的是( )
A .A 处小球到达最低点时速度为0
B .A 处小球机械能的减少量等于B 处小球机械能的增加量
C .B 处小球向左摆动所能达到的最高位置应高于A 处小球开始运动时的高度
D .当支架从左向右回摆时,A 处小球能回到起始高度 【答案】BCD 【解析】 【分析】
【详解】
BD .因A 处小球质量大,位置高,所以三角支架处于不稳定状态,释放后支架就会向左摆动,摆动过程中只有小球受到的重力做功,故系统的机械能守恒,A 处小球机械能的减少量等于B 处小球机械能的增加量,当支架从左向右回摆时,A 处小球能回到起始高度,选项B 、D 正确;
A .设支架边长是L ,则A 处小球到最低点时小球下落的高度为1
2
L ,B 处小球上升的高度也是
12L ,但A 处小球的质量比B 处小球的大,故有1
2mgL 的重力势能转化为小球的动能,因而此时A 处小球的速度不为0,选项A 错误;
C .当A 处小球到达最低点时有向左运动的速度,还要继续向左摆,B 处小球仍要继续上升,因此B 处小球能达到的最高位置比A 处小球的最高位置还要高,选项C 正确。
故选BC
D 。
6.如图所示,一根劲度系数为k 的轻弹簧竖直固定在水平地面上,轻弹簧上端正上方h 高度处A 点有一个质量为m 的小球。
现让小球由静止开始下落,在B 点接触轻弹簧的上端,在C 点时小球所受的弹力大小等于重力大小,在D 点时小球速度减为零,此后小球向上运动返回到最初点,已知小球在竖直方向上做周期性运动。
若轻弹簧储存的弹性势能与其形变量x 间的关系为2
12
p E kx =,不计空气阻力,重力加速度为g ,则下列说法正确的是( )
A .在D 点时小球的加速度大小大于重力加速度g 的大小
B .小球从B 点到D 点的过程中,其速度和加速度均先增大后减小
C .从A 点到C 点小球重力势能的减少量等于小球动能的增加量
D .小球在D (2)
mg mg mg kh ++
【答案】AD 【解析】 【分析】 【详解】
A .若小球从
B 点由静止释放,则最低点应该在D ′位置且满足B
C =C
D ′,由对称可知,在D ′点的加速度为向上的g ;若小球从A 点释放,则最低点的位置在D 点,则D 点应该在D ′点的下方,则在D 点时小球的加速度大小大于在D ′点的加速度,即大于重力加速度g 的大
小,选项A 正确;
B .小球从B 点到D 点的过程中,在B
C 段重力大于弹力,加速度向下且逐渐减小,速度逐渐变大;在C
D 段,重力小于弹力,加速度向上且逐渐变大,速度逐渐减小,即小球从B 点到D 点的过程中,加速度先减小后增加,速度先增加后减小,选项B 错误; C .由能量守恒定律可知,从A 点到C 点小球重力势能的减少量等于小球动能的增加量与弹簧的弹性势能的增加量之和,选项C 错误; D .由能量关系可知从A 到D 满足
21()2
mg h x kx +=
解得小球在D 点时弹簧的压缩量为
(2)
mg mg mg kh x ++=
(另一值舍掉)选项D 正确。
故选AD 。
7.如图所示,一轻绳系着可视为质点的小球在竖直平面内做圆周运动,已知绳长为l ,重力加速度为g ,小球在最低点Q 的速度为v 0,忽略空气阻力,则( )
A .若小球恰好通过最高点,速度大小刚好为0
B .小球的速度v 0越大,则在P 、Q 两点绳对小球的拉力差越大
C .当06v gl >P
D .当0v gl <
【答案】CD 【解析】 【分析】
本题小球做变速圆周运动,在最高点和最低点重力和拉力的合力提供向心力,同时结合动能定理列式研究。
要注意绳子绷紧,小球可能通过最高点,也可以在下半圆内运动。
【详解】
A .小球在最高点时,由于是绳拉小球,合力不可能为0,速度也不可能为0,选项A 错误;
C .设小球恰好到达最高点时的速度为v 1,最低点的速度为v 2,由动能定理得
22
1211(2)22
mg l mv mv -=-①
小球恰经过最高点P 时,有
2
1v mg m l
=
联立解得
25v gl =
因为
0265v gl v gl >>=
所以小球一定能通过最高点P ,选项C 正确;
B .球经过最低点Q 时,受重力和绳子的拉力,根据牛顿第二定律得到
2
22v F mg m l
-=②
球经过最高点P 时
2
11v mg F m l
+=③
联立①②③解得
F 2-F 1=6mg
与小球的初速度无关。
选项B 错误; D .设小球运动到N 点时,由机械能守恒得
2012
mgl mv =
解得
02v gl =
所以当0v gl <时,小球上升的最高点达不到与O 等高的高度,所以细绳始终处于绷紧状
态,选项D 正确。
故选CD 。
8.如图甲所示,质量为0.1 kg 的小球从最低点A 冲入竖直放置在水平地面上、半径为0.4 m 的半圆轨道,小球速度的平方与其高度的关系图象如图乙所示.已知小球恰能到达最高点C ,轨道粗糙程度处处相同,空气阻力不计.g 取10 m/s 2,B 为AC 轨道中点.下列说法正确的是( )
A .图乙中x =4 m 2s -2
B .小球从B 到
C 损失了0.125 J 的机械能 C .小球从A 到C 合外力对其做的功为-1.05J
D .小球从C 抛出后,落地点到A 的距离为0.8 m 【答案】ACD 【解析】 【分析】 【详解】
A.当h =0.8 m 时小球在C 点,由于小球恰能到达最高点C ,故
mg =2C
mv R
所以C v gR =
2C v gR ==4 m 2·s -2
故选项A 正确;
B.由已知条件无法计算出小球从B 到C 损失了0.125 J 的机械能,故选项B 错误;
C.小球从A 到C ,由动能定理可知
W 合=
22
1122
C A mv mv -=-1.05 J 故选项C 正确;
D.小球离开C 点后做平抛运动,故
2R =
2
12
gt 落地点到A 的距离x 1=v C t ,解得x 1=0.8 m ,故选项D 正确.
9.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 为水平的,其距离0.50m d =,盆边缘的高度为0.30m h =.在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为0.10μ=.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为( ).
A .0.50m
B .0.25m
C .0.10m
D .0
【答案】D 【解析】 【分析】
小物块滑动过程中,重力做功和摩擦阻力做功,全过程应用动能定理可进行求解。
【详解】
由小物块从A 点出发到最后停下来,设小物块在BC 面上运动的总路程为S ,整个过程用动能定理有:
0mgh mgs μ-=
所以小物块在BC 面上运动的总路程为
0.3
m 3m 0.1
h
s μ
=
=
= 而d =0.5 m ,刚好3个来回,所以最终停在B 点,即距离B 点为0 m 。
故选D 。
【点睛】
本题对全过程应用动能定理,关键要抓住滑动摩擦力做功与总路程的关系。
10.如图所示,细线上挂着小球,用水平恒力F 将小球从竖直位置P 拉到位置Q ,小球在Q 点垂直绳方向所受的合力恰好为零,此时细绳与竖直方向的夹角为θ,则( )
A .恒力做功等于小球重力势能的增量
B .小球将静止在Q 点
C .细线对小球做的功为零
D .若在Q 点将外力F 撤去,小球来回摆动的角度将等于θ 【答案】C 【解析】 【分析】
小球在Q 点所受的合力恰好为零,由此可分析恒力F 和重力的关系,再根据动能定理可分析小球的运动情况。
【详解】
A .小球在Q 点垂直绳方向所受的合力恰好为零,由图可知恒力F 和重力G 的关系为
tan F G θ=
从竖直位置P 拉到位置Q 过程中位移为s ,恒力F 做功
c tan tan os
cos 2
2
F
W Gs G s θ
θ
θθ
重力G 做功的大小
sin
2
G
W Gh Gs θ
90θ<︒所以
2
2
2
tan cos tan 21sin
2
2
tan
1
tan
F G
G W W G s s θ
θθθ
θ
θ
即有
F
G W W
而小球重力势能的增量等于重力G 做功的大小,因此恒力做功大于小球重力势能的增量,
选项A 错误; B .因为F
G W W ,根据动能定理可知小球到达Q 点时动能不为零,小球具有一定速度,
不会静止在Q 点,选项B 错误;
C .因为小球的轨迹是圆弧,其速度方向始终与细线垂直,因此细线的拉力始终与速度垂直,对小球做的功为零,选项C 正确;
D .因为小球在Q 点速度不为零,若在Q 点将外力F 撤去,小球还会向上运动一段距离,到最高点后再回落。
之后的摆动过程中只有重力做功,机械能守恒,因此小球来回摆动的角度将大于θ,选项D 错误。
故选C 。
【点睛】
抓住小球在Q 点所受的合力恰好为零是分析问题的关键。
11.物块在水平面上以初速度v 0直线滑行,前进x 0后恰好停止运动,已知物块与水平面之间的动摩擦因数为μ,且μ的大小与物块滑行的距离x 的关系为μ=kx (k 为常数),重力加速度为g 。
则( )
A .200
v kgx =
B .200
2v kgx =
C .20
02
kgx v =
D .2
002v kgx =
【答案】A 【解析】 【分析】 【详解】
因动摩擦因数kx μ=,则滑动摩擦力为
f m
g kmgx μ==
即滑动摩擦力随位移均匀变化,故摩擦力的功的功可用平均力乘以位移表示,由动能定理
2
00001022
kmgx f x x mv +-=-
⋅=- 解得
2
00
v kgx = 故A 正确,BCD 错误。
故选A 。
12.如图,在竖直平面内有一光滑水平直轨道,与半径为R 的光滑半圆形轨道相切于B 点,一质量为m (可视为质点)的小球从A 点通过B 点进入半径为R 的半圆,恰好能通 过轨道的最高点M ,从M 点飞出后落在水平面上,不计空气阻力,则( )
A .小球在 A 点时的速度为 2gR
B .小球到达B 点时对轨道的压力大小为mg
C .小球从B 点到达M 点的过程中合力的冲量大小为6m gR
D .小球运动到与圆心等高处对轨道的压力大小为3mg 【答案】D 【解析】 【分析】 【详解】
A .小球恰好能通过半圆的最高点M ,由重力提供向心力,由牛顿第二定律得
2M
v mg m R
= 解得
M v gR
由A 到M ,由动能定理得
22M A 11222
mg R mv mv -⋅=
- 解得
A v 故A 错误;
B .由A 到B ,速度不变
B A v v =在B 点时,对B 点进行受力分析重力提供向心力,由牛顿第二定律得
2
B
N v F mg m R
-=
所以
2
2B
=+=6N v
F mg m mg m
mg R
R
+=
由牛顿第三定律得,小球到达B 点时对轨道的压力大小为
==6N F F mg 压
故B 错误;
C .小球在B 点时速度向右,大小为B v =,在M 点时,速度向左,大小为
M v =B 点到达M 点的过程中,取向右为正,合力的冲量为动量的变化
=M B I mv mv --=-
故C 错误;
D .小球运动到与圆心等高处时,由动能定理知
22A 1122
mg R mv mv -⋅=
- 在那一点,弹力提供向心力
2
3mv F mg R
==
由牛顿第三定律得,小球到达B 点时对轨道的压力大小为
==3F F mg 压
故D 正确; 故选:D 。
13.如图所示,特战队员在进行训练时抓住一不可伸长的绳索,绳索的另一端固定,特战队员从高度一定的平台由静止开始下摆,悬点与平台在同一水平而上,在下摆过程中绳索始终处于绷紧状态,由于悬点位置不同,每次下摆的绳长可以发生变化,在到达竖直状态
时特战队员松开绳索,特战队员被水平抛出直到落地。
(不计绳索质量和空气阻力,特战队员可看成质点,绳索与队员的运动轨迹在同一竖直面内)下列说法正确的是( )
A .绳索越长,特战队员落地时的水平位移越大
B .绳索越长,特战队员在到达竖直状态时绳索拉力越大
C .绳索越长,特战队员落地时的水平速度越大
D .绳索越长,特战队员落地时的速度越大 【答案】C 【解析】 【分析】 【详解】
A .设绳子长度为L ,总高度为H ,由动能定理可得特战员到达绳子最低点时的速度
212
mgL mv =
可得特战员到达绳子最低点时的速度2v gL =,而后特战队员做平抛运动
212
H L gt -=
()
()222H L x vt gL L H L g
-===-可知2
H
L =
时,水平位移最大,A 错误; B .特战队员在到达竖直状态时,由牛顿第二定律,可得
2
v T mg m L
-=
代入速度,可得3T mg =,B 错误;
C .特战队员落地时的水平速度为2v gL =,故绳索越长,特战队员落地时的水平速度越大,C 正确;
D .整个过程,由动能定理,可得
211
2
mgH mv =
特战队员落地时的速度与绳子长度无关,D 错误。
故选C 。
14.某踢出的足球在空中运动轨迹如图所示,足球视为质点,空气阻力不计。
用v y 、E 、E k 、P 分别表示足球的竖直分速度大小、机械能、动能、重力的瞬时功率大小,用t 表示足球在空中的运动时间,下列图像中可能正确的是( )
A .
B .
C .
D .
【答案】D 【解析】 【分析】 【详解】
A .足球做斜抛运动,在竖直方向上做加速度为g 的匀变速直线运动,其速度-时间关系为, 上升阶段
0y y v v gt =-
下落阶段
y gt =v
由关系式可知,速度与时间成一次函数关系,图像是一条倾斜直线,A 错误; B .不考虑空气阻力,足球只受重力作用,机械能守恒,E 不变,B 错误; C .足球在水平方向上一直有速度,则足球的动能不能为零,C 错误; D .足球在竖直方向上的速度满足 上升阶段
0y y v v gt =-
下落阶段
y gt =v
再由重力的瞬时功率
y P mgv =
可得重力的瞬时功率与时间成一次函数关系,且在最高点重力的瞬时功率为零,D 正确; 故选D .
15.如图所示,一竖直轻质弹簧固定在水平地面上,其上端放有一质量为m 的小球,小球可视为质点且和弹簧不拴接。
现把小球往下按至A 位置,迅速松手后,弹簧把小球弹起,小球上升至最高位置C ,图中经过位置B 时弹簧正好处于自由状态。
已知B 、A 的高度差为1h ,C 、B 的高度差为2h ,重力加速度为g ,空气阻力忽略不计。
下列说法正确的是( )
A .从A 位置上升到
B 位置的过程中,小球的动能一直增大 B .从A 位置上升到
C 位置的过程中,小球的机械能守恒 C .小球在A 位置时,弹簧的弹性势能等于()12mg h h +
D .小球在A 位置时,弹簧的弹性势能小于()12mg h h + 【答案】C 【解析】 【分析】 【详解】
A .小球从A 位置上升到
B 位置的过程中,先加速,当弹簧的弹力k x mg ∆=时,合力为零,加速度减小到零,速度达到最大;之后小球继续上升,弹簧的弹力小于重力,小球做减速运动,故小球从A 上升到B 的过程中,动能先增大后减小,选项A 错误; B .从A 运动到B 的过程中,弹簧对小球做正功,小球的机械能增加。
从B 运动到
C 的过程中,只受重力,机械能守恒,选项B 错误;
CD 、根据系统的机械能守恒可知小球在A 位置时,弹簧的弹性势能等于小球由A 到C 位置时增加的重力势能,为
21p E mg h h =+()
选项C 正确,D 错误。
故选C 。