东胜区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东胜区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )
A .
B .
C .
D .
2. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当
]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则
实数的取值范围是( )111]
A .)2
2,
0( B .)33,0( C .)55,0( D .)66,0(
3. 在ABC ∆中,60A =,1b =sin sin sin a b c
A B C
++++等于( )
A .
B
C
D 4. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC
E -的体
积为1V ,多面体BCE ADF -的体积为2V ,则=2
1V V
( )1111]
A .4
1 B .31 C .21
D .不是定值,随点M 的变化而变化
5. 函数y=2|x|
的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )
A .
B .
C .
D .
6. 已知双曲线C :22
221x y a b
-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆
被双曲线C 截得劣弧长为23
a π
,则双曲线C 的离心率为( )
A .65
B
C D
7. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论
中错误的是( )
A .AC ⊥BE
B .EF ∥平面ABCD
C .三棱锥A ﹣BEF 的体积为定值
D .异面直线A
E ,B
F 所成的角为定值
8. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )
A .
B .
C .
D .
9. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )
A .2017
B .﹣8
C .
D .
10.sin 15°sin 5°-2sin 80°的值为( )
A .1
B .-1
C .2
D .-2 11.已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( )
A .1
B .2
C .3
D .4
12.现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )
A .27种
B .35种
C .29种
D .125种
二、填空题
13.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 . 14.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .
15.如果实数,x y 满足等式()2
2
23x y -+=,那么
y
x
的最大值是 . 16.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .
17.不等式()2110ax a x +++≥恒成立,则实数的值是__________. 18.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的
周长为 .
1111]
三、解答题
19.已知不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},
(1)求a ,b ;
(2)解不等式ax 2
﹣(ac+b )x+bc <0.
20.已知函数f (x )=ax 2+bx+c ,满足f (1)=﹣,且3a >2c >2b . (1)求证:a >0时,的取值范围;
(2)证明函数f (x )在区间(0,2)内至少有一个零点; (3)设x 1,x 2是函数f (x )的两个零点,求|x 1﹣x 2|的取值范围.
21.(本小题满分10分)
已知曲线22
:149x y C +=,直线2,:22,
x t l y t =+⎧⎨=-⎩(为参数). (1)写出曲线C 的参数方程,直线的普通方程;
(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.
22.(本小题满分12分)1111] 已知函数()()1
ln 0f x a x a a x
=+≠∈R ,.
(1)若1a =,求函数()f x 的极值和单调区间;
(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.
23.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)
(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.
24.已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}
(1)若A∩B=[0,3],求实数m的值;
(2)若p是¬q的充分条件,求实数m的取值范围.
东胜区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】A
【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段, 上、下平面也是线段,轮廓是正方形,AP 是虚线,左视图为:
故选A .
【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.
2. 【答案】B 【解析】
试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,
()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,
()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,
()x g 在()+∞,0上单调递减,则⎩⎨
⎧-><<23log 10a
a ,解得:33
0<<a 故选A .
考点:根的存在性及根的个数判断.
【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的
图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.
3. 【答案】B 【解析】
试题分析:由题意得,三角形的面积011sin sin 6022S bc A bc =
===4bc =,又1b =,所
以4c =,又由余弦定理,可得222220
2cos 14214cos6013a b c bc A =+-=+-⨯⨯=,所以a =
sin sin sin sin a b c a A B C A ++===++B . 考点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到sin sin sin sin a b c a
A B C A
++=++是解答的关键,属于中档试题.
4. 【答案】B 【




点:棱柱、棱锥、棱台的体积. 5. 【答案】B
【解析】解:根据选项可知a ≤0
a 变动时,函数y=2|x|的定义域为[a ,b],值域为[1,16],
∴2|b|
=16,b=4
故选B .
【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.
6.【答案】B
考点:双曲线的性质.
7.【答案】D
【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;
∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;
∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面
直线AE、BF所成的角不是定值,故D错误;
故选D.
8.【答案】C
【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,
所以共有4×6=24个,
而在8个点中选3个点的有C83=56,
所以所求概率为=
故选:C
【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.
9.【答案】D
【解析】解:∵f(x+2)=﹣f(x),
∴f(x+4)=﹣f(x+2)=f(x),
即f(x+4)=f(x),
即函数的周期是4.
∴a2017=f(2017)=f(504×4+1)=f(1),
∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,
∴f(1)=f(﹣1)=,
∴a2017=f(1)=,
故选:D .
【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.
10.【答案】
【解析】解析:选A.sin 15°
sin 5°-2 sin 80°
=sin (10°+5°)sin 5°
-2cos 10°=
sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5°
sin 5°
=sin 10°cos 5°-cos 10°sin 5°sin5 °=sin (10°-5°)sin 5°=1,选A.
11.【答案】A
【解析】解:∵向量与的夹角为60°,||=2,||=6, ∴(2﹣)•=2

=2×22﹣6×2×cos60°=2,
∴2﹣在方向上的投影为=

故选:A .
【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.
12.【答案】 B
【解析】
排列、组合及简单计数问题.
【专题】计算题.
【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.
【解答】解:根据题意,7台型号相同的健身设备是相同的元素,
首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,
余下的三台设备任意分给五个社区,
分三种情况讨论:
①当三台设备都给一个社区时,有5种结果,
②当三台设备分为1和2两份分给2个社区时,有2×C 52=20种结果, ③当三台设备按1、1、1分成三份时分给三个社区时,有C 53=10种结果,
∴不同的分配方案有5+20+10=35种结果;
故选B .
【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.
二、填空题
13.【答案】1,22⎡⎤⎢⎥⎣⎦
【解析】
试题分析:依题意得11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦
.
考点:抽象函数定义域.
14.【答案】3
2
【解析】
试题分析:由题意得11,422
k α
α==⇒=∴32k α+=
考点:幂函数定义
15.【解析】
考点:直线与圆的位置关系的应用. 1
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把
y
x
的最值转化为直线与圆相切是解答的关键,属于中档试题. 16.【答案】 6 .
【解析】解:∵|z|=1,
|z ﹣3+4i|=|z ﹣(3﹣4i )|≤|z|+|3﹣4i|=1+=1+5=6,
∴|z ﹣3+4i|的最大值为6,
故答案为:6.
【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.
17.【答案】1a = 【解析】
试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;
当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2
(1)0
a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题. 18.【答案】8cm 【解析】
考点:平面图形的直观图.
三、解答题
19.【答案】
【解析】解:(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2﹣3x+2=0的两个实数根,
且b>1.由根与系的关系得,解得,所以得.
(2)由于a=1且b=2,所以不等式ax2﹣(ac+b)x+bc<0,
即x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0.
①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};
②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};
③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.
综上所述:当c>2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|2<x<c};
当c<2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|c<x<2};
当c=2时,不等式ax2﹣(ac+b)x+bc<0的解集为∅.
【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.
20.【答案】
【解析】解:(1)∵f(1)=a+b+c=﹣,
∴3a+2b+2c=0.
又3a>2c>2b,
故3a>0,2b<0,
从而a>0,b<0,
又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b
∵a>0,∴3>﹣3﹣>2,
即﹣3<<﹣.
(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.
下面对c的正负情况进行讨论:
①当c>0时,∵a>0,
∴f(0)=c>0,f(1)=﹣<0
所以函数f(x)在区间(0,1)内至少有一个零点;
②当c≤0时,∵a>0,
∴f(1)=﹣<0,f(2)=a﹣c>0
所以函数f (x )在区间(1,2)内至少有一个零点; 综合①②得函数f (x )在区间(0,2)内至少有一个零点; (3).∵x 1,x 2是函数f (x )的两个零点 ∴x 1,x 2是方程ax 2+bx+c=0的两根. 故x 1+x 2=﹣,x 1x 2===
从而|x 1﹣x 2|==
=

∵﹣3<<﹣,

|x 1﹣x 2|

【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x 轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.
21.【答案】(1)2cos 3sin x y θθ
=⎧⎨=⎩,26y x =-+;(2)2255,25
5.
【解析】
试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θ
θ
=⎧⎨
=⎩,(为参数),直线的普通方程为26y x =-+.
(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为5
4cos 3sin 6|d θθ=
+-. 则25
|||5sin()6|sin 30d PA θα=
=+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取225.当sin()1θα+=时,||PA 25
考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.
22.【答案】(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)
()1a e e ⎛
⎫∈-∞-+∞ ⎪⎝
⎭,,.
【解析】
试题分析:(1)由1a =⇒()22111
'x f x x x x
-=-
+=.令()'0f x =⇒1x =.再利用导数工具可得:极小值和
单调区间;(2)求导并令()'0f x =⇒1x a =
,再将命题转化为()f x 在区间(0]e ,上的最小值小于.当10x a
=<,即0a <时,()'0f x <恒成立,即()f x 在区间(0]e ,上单调递减,再利用导数工具对的取值进行分类讨论.111]

若1
e a

,则()'0f x ≤对(0]x e ∈,
成立,所以()f x 在区间(0]e ,上单调递减, 则()f x 在区间(0]e ,上的最小值为()11
ln 0f e a e a e e
=+=+>,
显然,()f x 在区间(0]e ,的最小值小于0不成立. ②若10e <<,即1
a >时,则有
所以()f x 在区间(0]e ,上的最小值为ln f a a a a ⎛⎫
=+ ⎪⎝⎭

由()11ln 1ln 0f a a a a a a ⎛⎫
=+=-< ⎪⎝⎭
,得1ln 0a -<,解得a e >,即()a e ∈+∞,,
综上,由①②可知,()1a e e ⎛
⎫∈-∞-+∞ ⎪⎝
⎭,,符合题意.……………………………………12分
考点:1、函数的极值;2、函数的单调性;3、函数与不等式.
【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用. 23.【答案】
【解析】(1)解:赞成率为

被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43 (2)解:由题意知ξ的可能取值为0,1,2,3,




∴ξ的分布列为:


【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.
24.【答案】
【解析】解:由已知得:A={x|﹣1≤x ≤3}, B={x|m ﹣2≤x ≤m+2}.
(1)∵A∩B=[0,3]

∴,
∴m=2;
(2)∵p是¬q的充分条件,∴A⊆∁R B,而C R B={x|x<m﹣2,或x>m+2}
∴m﹣2>3,或m+2<﹣1,
∴m>5,或m<﹣3.。

相关文档
最新文档