香山初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
香山初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)如果7年2班记作,那么表示()
A. 7年4班
B. 4年7班
C. 4年8班
D. 8年4班
【答案】D
【考点】用坐标表示地理位置
【解析】【解答】解:年2班记作,
表示8年4班,
故答案为:D.
【分析】根据7 年2班记作(7 ,2 )可知第一个数表示年级,第二个数表示班,所以(8 ,4 )表示8年4班。
2.(2分)已知关于x,y的方程组,当x+y=3时,求a的值()
A. -4
B. 4
C. 2
D.
【答案】B
【考点】解一元一次方程,解二元一次方程组
【解析】【解答】解:解方程组得:又∵x+y=3,∴a-3+2=3,∴a=4;
故答案为:B。
【分析】首先解出关于x,y的二元一次方程组,求解得出x,y的值,再将x,y,的值代入x+y=3,得出一个关于a 的方程,求解即可得出a的值。
3.(2分)在“同一平面内”的条件下,下列说法中错误的有()
①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③两条不同直线的位置关系只有相交、平行两种;④不相交的两条直线叫做平行线;⑤有公共顶点且有一条公共边的两个角互为邻补角.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】对顶角、邻补角,垂线,平行公理及推论,平面中直线位置关系
【解析】【解答】解:①同一平面内,过直线外一点有且只有一条直线与已知直线平行,故①错误;
②同一平面内,过一点有且只有一条直线与已知直线垂直,故②正确;
③同一平面内,两条不同直线的位置关系只有相交、平行两种,故③正确;
④同一平面内,不相交的两条直线叫做平行线,故④正确;
⑤有公共顶点且有一条公共边,另一边互为反向延长线的两个角互为邻补角,⑤错误;
错误的有①⑤
故答案为:B
【分析】根据平行线公理,可对①作出判断;过一点作已知直线的垂线,这点可能在直线上也可能在直线外,且只有一条,可对②作出判断;同一平面内,两条不同直线的位置关系只有相交、平行两种,可对③作出判断;根据平行线的定义,可对④作出判断;根据邻补角的定义,可对⑤作出判断。
即可得出答案。
4.(2分)用不等式表示如图所示的解集,其中正确的是()
A.x>-2
B.x<-2
C.x≥-2
D.x≤-2
【答案】C
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:图中数轴上表达的不等式的解集为:.
故答案为:C.
【分析】用不等式表示如图所示的解集都在-2的右边且用实心的圆点表示,即包括-2,应用“ ≥ ”表示。
5.(2分)有下列说法:
①任何实数都可以用分数表示;②实数与数轴上的点一一对应;③在1和3之间的无理数有且只有,,
,这4个;④是分数,它是有理数.其中正确的个数是()
A.1
B.2
C.3
D.4
【答案】A
【考点】实数及其分类,无理数的认识
【解析】【解答】解;①实数分为有理数和无理数两类,由于分数属于有理数,故不是任何实数都可以用分数表示,说法①错误;
②根据实数与数轴的关系,可知实数与数轴上的点一一对应,故说法②正确;
③在1和3之间的无理数有无数个,故说法③错误;
④无理数就是无限不循环小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,
∴不是分数,是无理数,故说法④错误;
故答案为:A.
【分析】实数分为有理数和无理数两类,任何有理数都可以用分数表示,无理数不能用分数表示;有理数可以用数轴上的点来表示,无理数也可以用数轴上的点来表示,数轴上的点所表示的数不是有理数就是无理数,故实数与数轴上的点一一对应;无理数就是无限不循环的小数,它不仅包括开方开不尽的数,以及像π、
0.1010010001…,等有这样规律的数也是无理数,故在1和3之间的无理数有无数个,也是无理数,根据定义性质即可一一判断得出答案。
6.(2分)若关于的方程组无解,则的值为()
A.-6
B.6
C.9
D.30
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:
由×3得:6x-3y=3
由得:(a+6)x=12
∵原方程组无解
∴a+6=0
解之:a=-6
故答案为:A
【分析】观察方程组中同一未知数的系数特点:y的系数存在倍数关系,因此利用加减消元法消去y求出x 的值,再根据原方程组无解,可知当a+6=0时,此方程组无解,即可求出a的值。
7.(2分)已知关于x、y的方程组,给出下列说法:
①当a =1时,方程组的解也是方程x+y=2的一个解;②当x-2y>8时,;③不论a取什么实数,2x+y
的值始终不变;④若,则。
以上说法正确的是()
A.②③④
B.①②④
C.③④
D.②③
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;
通过加减消元法可解方程组为x=3+a ,y=-2a-2,代入x-2y >8可解得a >
,故②正确;
2x+y=6+2a+(-2a-2)=4,故③正确;
代入x 、y 的值可得-2a-2=(3+a )2+5,化简整理可得a=-4,故④正确.
故答案为:A
【分析】将a 代入方程组,就可对①作出判断;利用加减消元法求出x 、y 的值,再将x 、y 代入 x-2y >8 解不等式求出a 的取值范围,就可对②作出判断;由x=3+a ,y=-2a-2,求出2x+y=4,可对③作出判断;将x 、y 的值代入y=x 2+5,求出a 的值,可对④作出判断;综上所述可得出说法正确的序号。
8. ( 2分 ) 比较2, , 的大小,正确的是( )
A. 2< <
B. 2< <
C. <2<
D. < <2 【答案】C 【考点】实数大小的比较,估算无理数的大小
【解析】【解答】解:∵1<
<2,2<<3
∴<2< 故答案为:C
【分析】根据题意判断和分别在哪两个整数之间,即可判断它们的大小。
9. ( 2分 ) 若 , ,则b-a 的值是( )
A. 31
B. -31
C. 29
D. -30
【答案】A
【考点】实数的运算
【解析】【解答】∵
, ,∴a=-27,b=4,则b-a=4+27=31,故答案为:A . 【分析】由平方根的意义可得b=4,由立方根的意义可得a=-27,再将求得的a 、b 的值代入所求代数式即可求解。
10.( 2分 ) 某商人从批发市场买了20千克肉,每千克a 元,又从肉店买了10千克肉,每千克b 元,最
后他又以元的单价把肉全部卖掉,结果赔了钱,原因是()
A.a>b
B.a<b
C.a=b
D.与a和b的大小无关
【答案】A
【考点】整式的加减运算,不等式及其性质
【解析】【解答】解:根据题意得:(20a+10b)÷30﹣= = ,当a>b,即a﹣b>0时,结果赔钱.故答案为:A.
【分析】根据单价×数量=总价,先求出两次购买肉的总价(20a+10b),再求出卖肉的总价×30,根据
肉全部卖掉,结果赔了钱可知(20a+10b)-×30<0,然后解不等式即可得出结论。
11.(2分)下列各数:,0,0.2121121112,,其中无理数的个数是()
A. 4个
B. 3个
C. 2个
D. 1个
【答案】D
【考点】无理数的认识
【解析】【解答】,0,0.2121121112,中无理数有,共计1个.
故答案为:D.
【分析】根据无理数的定义开方开不尽的数和无限不循环小数是无理数,判断即可.
12.(2分)下列选项中的调查,适合用全面调查方式的是()
A. 日光灯管厂要检测一批灯管的使用寿命
B. 了解居民对废旧电池的处理情况
C. 了解现代大学生的主要娱乐方式
D. 某公司对退休职工进行健康检查
【答案】D
【考点】全面调查与抽样调查
【解析】【解答】解:A、日光灯管厂要检测一批灯管的使用寿命,适合抽样调查,故A不符合题意;
B、了解居民对废旧电池的处理情况,适合抽样调查,故B不符合题意;
C、了解现代大学生的主要娱乐方式,适合抽样调查,故C不符合题意;
D、某公司对退休职工进行健康检查,适合全面调查,故D符合题意。
故答案为:D。
【分析】根据全面调查适合于工作量比较小,对调查结果要求比较准确,调查过程不具有破坏性,危害性,浪费等使劲的调查,即可作出判断。
二、填空题
13.(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
14.(3分)的绝对值是________,________的倒数是,的算术平方根是________.
【答案】;3;2
【考点】绝对值及有理数的绝对值,有理数的倒数,算术平方根
【解析】【解答】解:(1);(2)的倒数是3;(3),4的算术平方根是2;
【分析】一个负数的绝对值等于它的相反数;一个分数的倒数,只需要将这个分数的分子分母交换位置;将
先化简为4,再根据算数平方根的意义算出4的算数平方根即可。
15.(1分)如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.
【答案】53°
【考点】对顶角、邻补角
【解析】【解答】解:∵∠2和∠COE为对顶角
∴∠2=∠COE=32°
∵∠1+∠COE+∠BOE=180°
即95°+32°+∠BOE=180°
∴∠BOE=53°
故答案为:53°。
【分析】根据对顶角相同,可求∠COE的度数,因为∠AOB为平角,根据平角等于180度,即可求得∠1+∠COE+∠BOE的和为180°,从而得出∠BOE的度数。
16.(3分)的平方根是________,的算术平方根是________,-216的立方根是________.
【答案】±
;
;-6
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:的平方根为:±;
=3,所以的算术平方根为:;
-216的立方根为:-6
故答案为:±;;-6
【分析】根据正数的平方根有两个,它们互为相反数,正数的算术平方根是正数,及立方根的定义,即可解决问题。
17.(1分)正数的两个平方根分别是和,则正数=________.
【答案】100
【考点】平方根
【解析】【解答】解:∵正数a的两个平方根分别是2m和5-m,
∴2m+5-m=0,
解得:m=-5,
∴a=(2m)2=(-5×2)2=100.
故答案为:100.
【分析】一个正数的两个平方根互为相反数,从而可得2m+5-m=0,解之求出m值,再由a=(2m)2即可求得答案.
18.(3分)把下列各数填在相应的横线上
﹣8,π,﹣|﹣2|,,,﹣0.9,5.4,,0,﹣3.6,1.2020020002…(每两个2之间多一个0)整数________;负分数________;无理数________.
【答案】﹣8,,,0;﹣0.9,﹣3.6;π,,1.2020020002….
【考点】实数及其分类
【解析】【解答】解:整数﹣8,﹣|﹣2|,,0;
负分数﹣0.9,﹣3.6;
无理数π,,1.2020020002…;
故答案为:﹣8,﹣|﹣2|,,0;﹣0.9,﹣3.6;π,,1.2020020002….
【分析】考查无理数、有理数、整数、分数的定义。
无理数:无限不循环小数;除无理数之外的都是有理数。
另外,要记住:是无理数。
三、解答题
19.(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
20.(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,
再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
21.(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
22.(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。
(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。
【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
23.(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
24.(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。
正有理数、0、负有理数统称有理数。
非负整数包括正整数和0;无理数是无限不循环的小数。
将各个数准确填在相应的括号里。
25.(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,
∠EOD=36°,求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。
26.(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55°,最后根据三角形内角和定理得出答案。