最新苏科七年级数学下册第二学期期末测试题及答案(共五套) word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新苏科七年级数学下册第二学期期末测试题及答案(共五套) word 版
一、选择题
1.若一个多边形的每个内角都为108°,则它的边数为( )
A .5
B .8
C .6
D .10
2.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )
A .56°
B .62°
C .66°
D .68°
3.如图,能判定EB ∥AC 的条件是( )
A .∠C=∠1
B .∠A=∠2
C .∠C=∠3
D .∠A=∠1 4.下列运算正确的是( )
A .()3253a b a b =
B .a 6÷a 2=a 3
C .5y 3•3y 2=15y 5
D .a +a 2=a 3 5.下列图形中,不能通过其中一个四边形平移得到的是( )
A .
B .
C .
D .
6.下列四个等式从左到右的变形是因式分解的是 ( )
A .22()()a b a b a b +-=-
B .2()ab a a b a -=-
C .25(1)5x x x x +-=+-
D .21()x x x x x
+=+ 7.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3 B .2,3,6 C .3,4,5
D .4,5,9 8.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==- D .1
4,33
m n =-= 9.下列运算中,正确的是( )
A .a 8÷a 2=a 4
B .(﹣m)2•(﹣m 3)=﹣m 5
C .x 3+x 3=x 6
D .(a 3)3=a 6 10.下列计算不正确的是( )
A .527a a a =
B .623a a a ÷=
C .2222a a a +=
D .(a 2)4=a 8 11.一个三角形的两边长分别是2和4,则第三边的长可能是( )
A .1
B .2
C .4
D .7 12.关于x 的不等式组0233(2)x m x x ->⎧⎨
-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤<
C .01m ≤<
D .01m <≤ 二、填空题
13.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.
14.等式01a =成立的条件是________.
15.已知:123456
33,39,327,381,3243,3729,======……,设
A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________. 16.计算:312-⎛⎫ ⎪⎝⎭= . 17.()22x y --=_____.
18.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.
19.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→
1,2→()2,2…根据这个规律,则第2020个点的坐标为
_________.
20.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.
21.若29x kx -+是完全平方式,则k =_____.
22.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩
的x 与y 互为相反数,则m 的值为_____. 三、解答题
23.已知:方程组2325
x y a x y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组. (1)求该方程组的解(用含a 的代数式表示);
(2)若方程组的解满足0x <,0y >,求a 的取值范围.
24.已知下列等式:
①32-12=8,
②52-32=16,
③72-52=24,

(1)请仔细观察,写出第5个式子;
(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.
25.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.
(1)求A B 、两组工人各有多少人?
(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?
26.分解因式:
(1)3222x x y xy -+;
(2)2296(1)(1)x x y y -+++;
(3)()214(1)m m m -+-.
27.计算:(1)2201(2)3()3
----÷- (2)22(21)(21)x x -+ 28.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半. (1)求这个多边形是几边形;
(2)求这个多边形的每一个内角的度数.
29.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩
它的解是正数. (1)求m 的取值范围;
(2)化简:2|2|m --
30.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)
(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;
(2)根据(1)中的结论,若x+y=5,x•y=9
4
,则x﹣y=;
(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.
2.D
解析:D
【解析】
【分析】
两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.
【详解】
根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:
2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.
故选D.
【点睛】
注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.
3.D
解析:D
【分析】
直接根据平行线的判定定理对各选项进行逐一分析即可.
【详解】
解:A、∠C=∠1不能判定任何直线平行,故本选项错误;
B 、∠A=∠2不能判定任何直线平行,故本选项错误;
C 、∠C=∠3不能判定任何直线平行,故本选项错误;
D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确.
故选:D .
【点睛】
本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.
4.C
解析:C
【分析】
根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.
【详解】
解:A 、(a 2b )3=a 6b 3,故A 错误;
B 、a 6÷a 2=a 4,故B 错误;
C 、5y 3•3y 2=15y 5,故C 正确;
D 、a 和a 2不是同类项,不能合并,故D 错误;
故选:C .
【点睛】
此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.
5.D
解析:D
【详解】
解:A 、能通过其中一个四边形平移得到,不符合题意;
B 、能通过其中一个四边形平移得到,不符合题意;
C 、能通过其中一个四边形平移得到,不符合题意;
D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.
故选D .
6.B
解析:B
【分析】
根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.
【详解】
解:根据因式分解的概念,
A 选项属于整式的乘法,错误;
B 选项符合因式分解的概念,正确;
C 选项不符合因式分解的概念,错误;
D 选项因式分解错误,应为2(1)x x x x +=+,错误.
故选B.
【点睛】
本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.
7.C
解析:C
【分析】
构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.
【详解】
解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;
B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;
C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,
故选:C.
【点睛】
本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.
8.A
解析:A
【分析】
根据二元一次方程的概念列出关于m、n的方程组,解之即可.
【详解】
∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,

221
11
m n
m n
--=


++=


23
m n
m n
-=


+=


解得:
1
1
m
n
=


=-


故选:A.
【点睛】
本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.
9.B
解析:B
【分析】
根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.
【详解】
解:A 、a 8÷a 2=a 4不正确;
B 、(-m )2·(-m 3)=-m 5 正确;
C 、x 3+x 3=x 6合并得2x 3,故本选项错误;
D 、(a 3)3=a 9,不正确.
故选B .
【点睛】
本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.
10.B
解析:B
【分析】
根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 .
【详解】
解:∵527a a a =,∴选项A 计算正确,不符合题意;
∵624a a a ÷=,∴选项B 计算不正确,符合题意;
2222a a a ,∴选项C 计算正确,不符合题意;
428()a a =,∴选项D 计算正确,不符合题意;
故选:B .
【点睛】
此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .
11.C
解析:C
【分析】
根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..
【详解】
设第三边为x ,由三角形三条边的关系得
4-2<x <4+2,
∴2<x <6,
∴第三边的长可能是4.
故选C .
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.
12.C
解析:C
【分析】
首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.
【详解】
解:0233(2)x m x x ->⎧⎨-≥-⎩
①② 解不等式①,得x>m.
解不等式②,得x ≤3.
∴不等式组得解集为m<x ≤3.
∵不等式组有三个整数解,
∴01m ≤<.
故选C.
【点睛】
本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
二、填空题
13.20
【分析】
如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积
【详解】
解:
如图,向下平移2cm ,即AE=2,
解析:20
【分析】
如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积
【详解】
解:
如图,向下平移2cm ,即AE=2,则DE=AD-AE=6-2=4cm
向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm
则S矩形DEB'F=DE•DF=4×5=20cm2
故答案为20
【点睛】
此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.14..
【分析】
根据零指数幂有意义的条件作答即可.
【详解】
由题意得:.
故答案为:.
【点睛】
本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a≠.
解析:0
【分析】
根据零指数幂有意义的条件作答即可.
【详解】
a≠.
由题意得:0
a≠.
故答案为:0
【点睛】
本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.
15.1
【分析】
把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.
【详解】
解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1
解析:1
【分析】
把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位
数字.
【详解】
解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1
=(32-1)(32+1)(34+1)(316+1)(332+1)+1
=(34-1)(34+1)(316+1)(332+1)+1
=(316-1)(316+1)(332+1)+1
=(332-1)(332+1)+1
=364-1+1
=364,
观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A 的个位数字是1, 故答案为:1.
【点睛】
本题考查平方差公式,熟练掌握平方差公式是解本题的关键.
16.8
【解析】
分析:根据幂的负整数指数运算法则进行计算即可.
解:原式==8.
故答案为8.
点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.
解析:8
【解析】
分析:根据幂的负整数指数运算法则进行计算即可.
解:原式=3
1
12⎛⎫ ⎪⎝⎭
=8. 故答案为8.
点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.
17.x2+4xy+4y2
【分析】
根据完全平方公式进行计算即可.完全平方公式:(a±b )2=a2±2ab+b2.
【详解】
解:(﹣x ﹣2y )2=x2+4xy+4y2.
故答案为:x2+4xy+4y2
解析:x 2+4xy +4y 2
【分析】
根据完全平方公式进行计算即可.完全平方公式:(a ±b )2=a 2±2ab +b 2.
【详解】
解:(﹣x ﹣2y )2=x 2+4xy +4y 2.
故答案为:x 2+4xy +4y 2.
【点睛】
本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.
18.【分析】
首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;
【详解】
解不等式,
去括号,得,
移项,得,
合并同类项,得,
系数化为1,得,
则最小的整数解为- 解析:72
【分析】
首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;
【详解】
解不等式()()325416x x -+<-+,
去括号,得365446-+<-+x x ,
移项,得344665-<-++-x x ,
合并同类项,得3x -<,
系数化为1,得3x >-,
则最小的整数解为-2.
把2x =-代入23x ax -=中,
得423a -+=, 解得:72a =
. 故答案为72
. 【点睛】
本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.
19.【分析】
有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角
解析:()
45,5
【分析】
有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;
【详解】
有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,
∵2
45=2025,
∴第2025个点在x轴上的坐标为()
45,0,
则第2020个点在()
45,5.
故答案为()
45,5.
【点睛】
本题主要考查了规律题型点的坐标,准确判断是解题的关键.
20.【分析】
先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.
【详解】
解:
故答案为
【点睛】
此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.
解析:
1
. 3 -
【分析】
先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.
【详解】
解:()20202019133⎛⎫-⋅- ⎪⎝⎭
()2019
201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣
⎦ 1.3
=- 故答案为1.3
-
【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.
21.【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .
【详解】
解:∵是完全平方式,即

故答案为:.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式
解析:6±
【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .
【详解】
解:∵29x kx -+是完全平方式,即()2
293x kx x -+=± 236k ∴=±⨯=±.
故答案为:6±.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键
22.【分析】
把m 看做已知数表示出x 与y ,代入x+y =0计算即可求出m 的值.
【详解】
解:,
①+②得:5x =3m+2,
解得:x =,
把x =代入①得:y =,
由x 与y 互为相反数,得到=0,
去分母
解析:【分析】
把m 看做已知数表示出x 与y ,代入x +y =0计算即可求出m 的值.
【详解】
解:33221x y m x y m +=+⎧⎨-=-⎩
①②, ①+②得:5x =3m +2, 解得:x =
325m +, 把x =325m +代入①得:y =945
m -, 由x 与y 互为相反数,得到
3294+55m m +-=0, 去分母得:3m +2+9﹣4m =0,
解得:m =11,
故答案为:11
【点睛】
此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.
三、解答题
23.(1)1213x a y a
=+⎧⎨
=-⎩;(2)12a <- 【分析】
(1)利用加减消元法求解可得;
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
(1)①2⨯,得 2242x y a +=-.③
②-③,得12x a =+
把12x a =+代入①,得13y a =-
所以原方程组的解是1213x a y a =+⎧⎨=-⎩
(2)根据题意,得
120130
a a +<⎧⎨->⎩ 解不等式组,得,12
a <- 所以a 的取值范围是:12a <-
. 【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
24.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析
【分析】
(1)根据所给式子可知:
()()22
223121121181-⨯+⨯-⨯-==,
()()22225322122182-⨯+⨯-⨯-==,
()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;
(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;
【详解】
(1)∵第1个式子为: ()()22
223121121181-⨯+⨯-⨯-==
第2个式子为: ()()22
225322122182-⨯+⨯-⨯-==
第3个式子为: ()()22
227523123183-⨯+⨯-⨯-==
∴第5个式子为: ()()222225125111940⨯+-⨯-=-=
即第5个式子为:2211940-=
(2)根据题(1)的推理可得:
第n 个式子: ()()22
21218n n n +--=
∵左边=224414418n n n n n +-++-==右边
∴等式成立.
【点睛】
本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.
25.(1)A组工人有90人、B组工人有60人(2)A组工人每人每小时至少加工100只口罩
【分析】
(1)设A组工人有x人、B组工人有(150−x)人,根据题意列方程健康得到结论;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意列不等式健康得到结论.
【详解】
(1)设A组工人有x人、B组工人有(150−x)人,
根据题意得,70x+50(150−x)=9300,
解得:x=90,150−x=60,
答:A组工人有90人、B组工人有60人;
(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;
根据题意得,90a+60(200−a)≥15000,
解得:a≥100,
答:A组工人每人每小时至少加工100只口罩.
【点睛】
本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.
26.(1)x(x-y)2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).
【分析】
(1)首先提公因式x,然后利用完全平方公式即可分解;
(2)根据完全平方公式进行因式分解即可;
(3)首先提公因式(m-1)然后利用平方差公式即可分解.
【详解】
解:(1)原式=x(x2-2xy+y2)
=x(x-y)2;
(2)原式=(3x)2-2×(3x)(y+1)+(y+1)2
=(3x-y-1)2;
(3)原式=(m-1)(m2-4)
=(m-1)(m+2)(m-2).
【点睛】
本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.
27.(1)
37
4
-.(2)16x4−8x2+1.
【分析】
(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到
1
91
4
--÷,再计算即可得
到结果;
(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.
【详解】
(1)2201(2)3()3----÷-= 1914--÷=374
-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.
【点睛】
本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.
28.(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.
【分析】
(1)先设内角为x ,根据题意可得:外角为12x ,根据相邻内角和外角的关系可得:,x +12x =180°,从而解得:x =120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:36060
=6, (2)先设内角为x ,根据题意可得:外角为
12x ,根据相邻内角和外角的关系可得:,x +12
x =180°,从而解得内角:x =120°,内角和=(6﹣2)×180°=720°.
【详解】 (1)设内角为x ,则外角为12
x , 由题意得,x +
12
x =180°, 解得:x =120°, 12
x =60°, 这个多边形的边数为:
36060
=6, 答:这个多边形是六边形, (2)设内角为x ,则外角为
12x , 由题意得: x +
12
x =180°, 解得:x =120°,
答:这个多边形的每一个内角的度数是120度.
内角和=(6﹣2)×180°=720°.
【点睛】
本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟
练掌握多边形内角和外角的关系以及多边形内角和.
29.(1)213
m -
<< (2)m -
【分析】
(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;
(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.
【详解】 解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩
, 得321x m y m =+⎧⎨=-⎩
因为解为正数,则32010
m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.
【点睛】
本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.
30.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7
【分析】
(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.
(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =
94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值
(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.
【详解】
(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2 ∵图1的面积和图2中白色部分的面积相等
∴(a+b)2-(a-b)2=4ab
故答案为:(a+b)2-(a-b)2=4ab
(2)由(1)知,(x+y)2-(x-y)2=4xy
∵x+y =5,x•y =94
∴52-(x-y)2=4×9 4
∴(x-y)2=16
∴x-y=±4
故答案为:±4
(3)∵(2019﹣m)+(m﹣2020)=-1
∴[(2019﹣m)+(m﹣2020)]2=1
∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1
∵(2019﹣m)2+(m﹣2020)2=15
∴2(2019﹣m)(m﹣2020)=1-15=-14
∴(2019﹣m)(m﹣2020)=-7
故答案为:-7
【点睛】
本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.。

相关文档
最新文档