人教版八年级初二数学下学期勾股定理单元测试综合卷学能测试

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级初二数学下学期勾股定理单元测试综合卷学能测试
一、选择题
1.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()
A.0.8米B.2米C.2.2米D.2.7米
2.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD的长为()
A.3 B.11C.23D.4
3.已知等边三角形的边长为a,则它边上的高、面积分别是()
A.
2
,
24
a a
B.
2
3
,
4
a a
C.
2
33
,
a a
D.
2
33
,
4
a a
4.如图,□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为()
A.1 B2C.3
2
D3
5.如图,已知AB是⊙O的弦,AC是⊙O的直径,D为⊙O上一点,过D作⊙O的切线交BA 的延长线于P,且DP⊥BP于P.若PD+PA=6,AB=6,则⊙O的直径AC的长为()
A .5
B .8
C .10
D .12 6.已知,等边三角形ΔABC 中,边长为2,则面积为( )
A .1
B .2
C .2
D .3
7.已知,,a b c 是ABC ∆的三边,且满足2
2
2
()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
8.如图,在数轴上点A 所表示的数为a ,则a 的值为( )
A .15--
B .15-
C .5-
D .15-+
9.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )
A .
245
B .5
C .6
D .8
10.下列四组线段中,可以构成直角三角形的是( ) A .1、2、3
B .2、3、4
C .1、2、3
D .4、5、6
二、填空题
11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.
12.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若
22AB =,42AC =,则DA 的长为______.
13.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.
14.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.
15.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.
16.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线l
AB ,F 是l 上的一
点,且AB AF =,则FC =__________.
17.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.
18.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若
12315S S S ++=,则2S 的值是__________.
19.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.
20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.
三、解答题
21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE
长;(2)∠BDC 的度数:(3)AC 的长.
22.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O . (1)“距离坐标”为(1,0)的点有 个;
(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;
(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.
23.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .
(1)若∠AED =20°,则∠DEC = 度;
(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.
24.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______. (2)求证:BED CDF △≌△.
(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.
25.在等腰Rt△ABC中,AB=AC,∠BAC=90°
(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF
①求证:△AED≌△AFD;
②当BE=3,CE=7时,求DE的长;
(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.
26.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.
(1)求证:AE=BD;
(2)试探究线段AD、BD与CD之间的数量关系;
(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD36,求线段AB 的长.
27.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足PA=PB时,求出此时t的值;
(2)若点P恰好在∠BAC的角平分线上,求t的值;
(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.
28.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在
ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.
下列结论:
①E 、P 、D 共线时,点B 到直线AE 的距离为5; ②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;
=5
32
ABD S ∆+③;
④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为
5+232-;
⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得
AN BN =,连接 ED ,则AN ED ⊥.
其中正确结论的序号是___.
29.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题? (2)已知ABC 为优三角形,AB c =,AC b =,BC a =,
①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值. ②如图2,若c b a ≥≥,求优比k 的取值范围.
(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积. 30.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .
(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形. (2)如图1,求AF 的长.
(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.
①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.
②若点Q 的速度为每秒0.8cm ,当A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【分析】
先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.
【详解】
解:如图,由题意可得:
AD2=0.72+2.42=6.25,
在Rt△ABC中,
∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,
∴AB2+1.52=6.25,
∴AB=±2,
∵AB>0,
∴AB=2米,
∴小巷的宽度为:0.7+2=2.7(米).
故选:D.
【点睛】
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.
2.B
解析:B
【分析】
过点A作AE⊥AD交CD于E,连接BE,利用SAS可证明△BAE≌△CAD,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD.
【详解】
解:如图,过点A作AE⊥AD交CD于E,连接BE.
∵∠DAE=90°,∠ADE=45°,
∴∠ADE=∠AED=45°,
∴AE=AD=1,
∴在Rt △ADE 中,DE=22112+=,
∵∠DAE=∠BAC=90°,
∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE , 又∵AB=AC,
∴△BAE ≌△CAD(SAS), ∴CD=BE=3,∠AEB=∠ADC=45°, ∴∠BED=90°,
∴在Rt △BED 中, BD=()
2
2223211BE DE +=+=.
故选B. 【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.
3.C
解析:C 【分析】
作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题. 【详解】
解:如图作AD ⊥BC 于点D . ∵△ABC 为等边三角形, ∴∠B =60°,∠B AD =30° ∴1122
BD AB a =
= 由勾股定理得,2222213
()2AD AB BD a a a =
-=-=
∴边长为a 的等边三角形的面积为12×a ×32a =34
a 2
, 故选:C .
【点睛】
本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.
4.B
解析:B
【解析】
【分析】
如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=2BE.又B′E是BD 的中垂线,则DB′=BB′.
【详解】
∵四边形ABCD是平行四边形,BD=2,
∴BE=1
2
BD=1.
如图2,连接BB′.
根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.
∴∠BEB′=90°,
∴△BB′E是等腰直角三角形,则BB′=2BE=2,
又∵BE=DE,B′E⊥BD,
∴DB′=BB′=2.
故选B.
【点睛】
考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
5.C
解析:C
【解析】
分析:通过切线的性质表示出EC的长度,用相似三角形的性质表示出OE的长度,由已知条件表示出OC的长度即可通过勾股定理求出结果.
详解:如图:连接BC,并连接OD交BC于点E:
∵DP⊥BP,AC为直径;
∴∠DPB=∠PBC=90°.
∴PD ∥BC,且PD 为⊙O 的切线.
∴∠PDE=90°=∠DEB,
∴四边形PDEB 为矩形,
∴AB ∥OE ,且O 为AC 中点,AB=6.
∴PD=BE=EC.
∴OE=12
AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x.
.在Rt △OEC 中:
222OE EC OC +=,
即:()()22
2363x x +-=+,解得x=2.
所以AC=2OC=2×(3+x )=10.
点睛:本题考查了切线的性质,相似三角形的性质,勾股定理. 6.D
解析:D
【解析】
根据题意可画图为:过点A 作AD ⊥BC ,垂足为D ,
∵∠B=60°,
∴∠BAD=30°,
∵AB=2,
∴3,
∴S △ABC =
12BC·AD=12
33 故选D. 7.D
解析:D
【分析】
由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形.
【详解】
解:∵(a-b )(a 2-b 2-c 2)=0,
∴a-b=0,或a 2-b 2-c 2=0,
即a=b 或a 2=b 2+c 2,
∴△ABC的形状为等腰三角形或直角三角形.
故选:D.
【点睛】
本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.
8.A
解析:A
【分析】
首先根据勾股定理得出圆弧的半径,然后得出点A的坐标.
【详解】
∴由图可知:点A所表示的数为: 1-
故选:A
【点睛】
本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.
9.A
解析:A
【分析】
过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出
PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.
【详解】
过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,
∵AD是∠BAC的平分线,
∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,
∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴由勾股定理得:AB=10,

11
22
ABC
S AB CM AC BC
==



6824
105 CM

==,
∴PC+PQ的最小值为24
5

故选:A.
【点睛】
本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.
10.A
解析:A
【分析】
求出两小边的平方和、最长边的平方,看看是否相等即可.
【详解】
A、12+(2)2=(3)2
∴以1、2、3为边组成的三角形是直角三角形,故本选项正确;
B、22+32≠42
∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误;
C、12+22≠32
∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;
D、42+52≠62
∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;
故选A..
【点睛】
本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.二、填空题
11.5
【解析】
试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的
逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.
考点:勾股定理的逆定理,
12.6或2.
【分析】
由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:
①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;
②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.
【详解】
解:分两种情况讨论:
①当D点在BC上方时,如图1所示,
把△ABD绕点D逆时针旋转90°,得到△DCE,
则∠ABD=∠ECD,CE=AB=22,AD=DE,且∠ADE=90°
在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,
∴∠ABD+∠ACD=360°-180°=180°,
∴∠ACD+∠ECD=180°,
∴A、C、E三点共线.
∴AE=AC+CE=42+22=62
在等腰Rt△ADE中,AD2+DE2=AE2,
即2AD2=(62)2,解得AD=6
②当D点在BC下方时,如图2所示,
把△BAD绕点D顺时针旋转90°得到△CED,
则2,∠BAD=∠CED,AD=AE且∠ADE=90°,
所以∠EAD=∠AED=45°,
∴∠BAD=90°+45°=135°,即∠CED=135°,
∴∠CED+∠AED=180°,即A 、E 、C 三点共线.
∴AE=AC-CE=42-22=22
在等腰Rt △ADE 中,2AD 2=AE 2=8,解得AD=2.
故答案为:6或2.
【点睛】
本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解. 13.【分析】
根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.
【详解】
∵AB =13,EF =7,
∴大正方形的面积是169,小正方形的面积是49,
∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202
ab ⨯
=, ∴2ab =120,a 2+b 2=169,
∴(a +b )2=a 2+b 2+2ab =169+120=289,
∴a +b =17,
∵a ﹣b =7,
解得:a =12,b =5,
∴AE =12,DE =5,
∴AH =12﹣7=5.
故答案为:5.
【点睛】
此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 14.4
【分析】
根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可
【详解】
∵AC的垂直平分线FG,
∴AE=EC,∠AEG=∠AEF=90°,
∵∠BAC=120°,
∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,
∴∠B=∠C=1
2
(180°-∠BAC)=30°,
∴∠B=∠G,
∴BF=FG,
∵在Rt△AEG中,∠G=30°,EG=3,
∴AG=2AE,
即(2AE)2=AE2+32,
∴AE=3(负值舍去)
即CE=3,
同理在Rt△CEF中,∠C=30°,CF=2EF,
(2EF)2=EF2+(3)2,
∴EF=1(负值舍去),
∴BF=GF=EF+CE=1+3=4,
故答案为4.
【点睛】
本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
15.7
【解析】
【分析】
通过作辅助线转化BM,MN的值,从而找出其最小值求解.
【详解】
解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:
∵等边△ABC的边长为6,AN=2,
∴BN=AC﹣AN=6﹣2=4,
∴BE=EN=AN=2,
又∵AD是BC边上的中线,
∴DE是△BCN的中位线,
∴CN =2DE ,CN ∥DE ,
又∵N 为AE 的中点,
∴M 为AD 的中点,
∴MN 是△ADE 的中位线,
∴DE =2MN ,
∴CN =2DE =4MN ,
∴CM =34CN . 在直角△CDM 中,CD =12BC =3,DM =12AD =33, ∴CM =22372CD MD +=
, ∴CN =4372732
⨯=. ∵BM +MN =CN ,
∴BM +MN 的最小值为27.
故答案是:27.
【点睛】
考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.
16.31+或31-
【解析】
如图,l AB ,2AC =,作AD l ⊥于点D ,
∴1AD =,
∵222AF AB ==
=,且F 有2个, ∴2212213DF DF ==-=
∵1DC AD ==,
∴1113
CF CD DF =+= 2231CF DF CD =-=.
点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.
17.485
【解析】
试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得
111012822BD ⨯⨯=⨯⨯,解得BD=485. 18.5
【分析】
根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.
【详解】
解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,
∴得出1
8S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y
, 154=53
x y , 所以2
45S x y , 故答案为:5.
【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.
19.【分析】
如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.
【详解】
如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .
∵P(1,2),G(7.﹣2),
∴OA=1,PA=GM=2,OM=7,AM=6,
∵PA∥GM,
∴∠PAN=∠GMN,
∵∠ANP=∠MNG,
∴△ANP≌△MNG(AAS),
∴AN=MN=3,PN=NG,
∵∠PAH=45°,
∴PH=AH=2,
∴HN=1,
∴2222
215
PN PH NH
=+=+=
∴PG=2PN=5.
故答案为5
【点睛】
本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
20.2
【分析】
根据三角形等面积法求出
3
2
AC
BC
=,在Rt△ACD中根据勾股定理得出AC2=
1
4
BC2+36,依据
这两个式子求出AC、BC的值.
【详解】
∵AD是BC边上的高,BE是AC边上的高,
∴1
2
AC•BE=
1
2
BC•AD,
∵AD=6,BE=4,
∴AC
BC

3
2

∴22AC BC =94, ∵AB=AC ,AD⊥BC,
∴BD=DC =
12
BC , ∵AC 2﹣CD 2=AD 2,
∴AC 2=14BC 2+36, ∴22
1364BC BC +=94, 整理得,BC 2=3648
⨯, 解得:BC

∴△ABC 的面积为12
×
cm 2
故答案为:
【点睛】
本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.
三、解答题
21.(1
2)150°;(3
【分析】
(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;
(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;
(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.
【详解】
解:(1)∵△ABC 和△EDC 都是等边三角形,
∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,
∴∠BCD =∠ACE ,
在△BCD 与△ACE 中,
∵BC =AC ,∠BCD =∠ACE ,CD =CE ,
∴△BCD ≌△ACE ,
∴AE =BD =3; (2)在△ADE 中,∵7,3,2AD AE DE =
==, ∴DE 2+AE 2=()()222237+==AD 2
, ∴∠AED =90°,
∵∠DEC =60°,
∴∠AEC =150°,
∵△BCD ≌△ACE ,
∴∠BDC =∠AEC =150°;
(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,
∵△CDE 是等边三角形,
∴PE =12DE =1,CP 22213-=,
∴AE =CP ,
在△AEG 与△CPG 中,
∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,
∴△AEG ≌△CPG ,
∴AG =CG ,PG =EG =12
, ∴AG ()2
22211332AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG 13
【点睛】
本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.
22.(1)2;(2)3q p =
;(3)27OM =【分析】
(1)根据“距离坐标”的定义结合图形判断即可;
(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根
据含30度直角三角形的性质和勾股定理求出2232MN MO NO p =-=即可解决问题; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.
【详解】
解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,
故答案为:2;
(2)过M 作MN CD ⊥于N ,
∵直线l AB ⊥于O ,150BOD ∠=︒,
∴60MON ∠=︒,
∵MN q =,OM p =,
∴1122NO MO p =
=, ∴223MN MO NO p =
-=, ∴32
q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.
∴OFP OMP △≌△,OEQ OMQ △≌△,
∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,
∴260EOF BOD ∠=∠=︒,
∴△OEF 是等边三角形,
∴OM OE OF EF ===,
∵1MP =,3MQ =
∴2MF =,23ME =, ∵30BOD ∠=︒,
∴150PMQ ∠=︒,
过F 作FG QM ⊥,交QM 延长线于G ,
∴30FMG ∠=︒,
在Rt FMG △中,112FG MF ==,则3MG =,
在Rt EGF 中,1FG =,33EG ME MG =+=, ∴22(33)127EF =+=,
∴27OM =.
【点睛】
本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.
23.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析
【分析】
(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;
(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;
(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.
【详解】
解:(1)∵AB =AC ,AE =AB ,
∴AB =AC =AE ,
∴∠ABE =∠AEB ,∠ACE =∠AEC ,
∵∠AED =20°,
∴∠ABE =∠AED =20°,
∴∠BAE =140°,且∠BAC =90°
∴∠CAE =50°,
∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,
∴∠AEC =∠ACE =65°,
∴∠DEC =∠AEC ﹣∠AED =45°,
故答案为:45;
(2)猜想:∠AEC﹣∠AED=45°,
理由如下:∵∠AED=∠ABE=α,
∴∠BAE=180°﹣2α,
∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=45°+α,
∴∠AEC﹣∠AED=45°;
(3)如图,过点C作CG⊥AH于G,
∵∠AEC﹣∠AED=45°,
∴∠FEH=45°,
∵AH⊥BE,
∴∠FHE=∠FEH=45°,
∴EF=FH,且∠EFH=90°,
∴EH2EF,
∵∠FHE=45°,CG⊥FH,
∴∠GCH=∠FHE=45°,
∴GC=GH,
∴CH2CG,
∵∠BAC=∠CGA=90°,
∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,
∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,
∴△AFB≌△CGA(AAS)
∴AF=CG,
∴CH2AF,
∵在Rt△AEF中,AE2=AF2+EF2,
2AF)2+2EF)2=2AE2,
∴EH2+CH2=2AE2.
【点睛】
本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.
24.(1)90°;(2)证明见解析;(3
)变化,24l +≤<.
【分析】
(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求
DAE=∠DEA=30°,由三角形内角和定理可求解;
(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;
(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.
【详解】
解:(1)∵△ABC 是等边三角形,
∴AB=AC=BC=2,∠ABC=∠ACB=60°,
∵AD=DE
∴∠DAE=∠DEA=30°,
∴∠ADB=180°-∠BAD-∠ABD=90°,
故答案为:90°;
(2)∵AD=DE=DF ,
∴∠DAE=∠DEA ,∠DAF=∠DFA ,
∵∠DAE+∠DAF=∠BAC=60°,
∴∠DEA+∠DFA=60°,
∵∠ABC=∠DEA+∠EDB=60°,
∴∠EDB=∠DFA ,
∵∠ACB=∠DFA+∠CDF=60°,
∴∠CDF=∠DEA ,
在△BDE 和△CFD 中
∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩

∴△BDE ≌△CFD (ASA )
(3)∵△BDE ≌△CFD ,
∴BE=CD ,
∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,
当D 点在C 或B 点时,
AD=AC=AB=2,
此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;
当D 点在BC 的中点时,
∵AB=AC ,
∴BD=112
BC =
,AD ==
此时22l AD =+=
综上可知24l +≤<.
【点睛】
本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.
25.(1)①见解析;②DE =
297;(2)DE 的值为 【分析】
(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;
(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.
【详解】
(1)①如图1中,
∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,
∴△BAE ≌△CAF ,
∴AE =AF ,∠BAE =∠CAF ,
∵∠BAC =90°,∠EAD =45°,
∴∠CAD +∠BAE =∠CAD +∠CAF =45°,
∴∠DAE =∠DAF ,
∵DA =DA ,AE =AF ,
∴△AED ≌△AFD (SAS );
②如图1中,设DE =x ,则CD =7﹣x .
∵AB =AC ,∠BAC =90°,
∴∠B =∠ACB =45°,
∵∠ABE =∠ACF =45°,
∴∠DCF =90°,
∵△AED ≌△AFD (SAS ),
∴DE =DF =x ,
∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,
∴x 2=(7﹣x )2+32,
∴x =297
, ∴DE =
297; (2)∵BD =3,BC =9,
∴分两种情况如下:
①当点E在线段BC上时,如图2中,连接BE.
∵∠BAC=∠EAD=90°,
∴∠EAB=∠DAC,
∵AE=AD,AB=AC,
∴△EAB≌△DAC(SAS),
∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,
∴∠EBD=90°,
∴DE2=BE2+BD2=62+32=45,
∴DE=35;
②当点D在CB的延长线上时,如图3中,连接BE.
同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,
∴DE2=EB2+BD2=144+9=153,
∴DE=317,
综上所述,DE的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.
26.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.
【分析】
(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;
(2)利用全等三角形的性质及勾股定理即可证得结论;
(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.
【详解】
(1)证明:∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∴∠ACB﹣∠ACD=∠ECD﹣∠ACD
∴∠ACE=∠BCD,
∴△ACE≌△BCD(SAS),
∴AE =BD .
(2)解:由(1)得△ACE ≌△BCD ,
∴∠CAE =∠CBD ,
又∵△ABC 是等腰直角三角形,
∴∠CAB =∠CBA =∠CAE =45°,
∴∠EAD =90°,
在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,
∴BD 2+AD 2=ED 2,
∵ED =2CD ,
∴BD 2+AD 2=2CD 2,
(3)解:连接EF ,设BD =x ,
∵BD :AF =1:2AF =2x ,
∵△ECD 都是等腰直角三角形,CF ⊥DE ,
∴DF =EF ,
由 (1)、(2)可得,在Rt △FAE 中,
EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,
∴222(223)2(36)x x x ++=,
解得x =1,
∴AB =2+4.
【点睛】
此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.
27.(1)
2516;(2)83t =或6;(3)当153,5,210t =或194
时,△BCP 为等腰三角形. 【分析】
(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;
(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC
上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194
t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程
2234352
t --=
⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,
4AC cm ∴=,
(1)设存在点P ,使得PA PB =,
此时2PA PB t ==,42PC t =-,
在Rt PCB 中,222PC CB PB +=,
即:222(42)3(2)t t -+=,
解得:2516
t =, ∴当2516
t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,
此时72BP t =-,24PE PC t ==-,541BE =-=,
在Rt BEP 中,222PE BE BP +=,
即:222(24)1(72)t t -+=-,
解得:83
t =, 当6t =时,点P 与A 重合,也符合条件,
∴当83
t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,
当P 在AC 上时,BCP 为等腰三角形,
PC BC ∴=,即423t -=,
12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,
CP PB =①,点P 在BC 的垂直平分线上,
如图2,过P 作PE BC ⊥于E ,
1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194
t =, PB BC =②,即2343t --=,
解得:5t =,
PC BC =③,如图3,过C 作CF AB ⊥于F ,
12
BF BP ∴=, 90ACB ∠=︒,
由射影定理得;2BC BF AB =⋅,
即2234352
t --=⨯, 解得:5310t =
, ∴当15319,5,2104
t =或时,BCP 为等腰三角形. 【点睛】
本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.
28.②③⑤
【分析】
①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利
用勾股定理求出BE ,即可求得点B 到直线AE 的距离;
②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;
⑤先证得
ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利
用互余的关系即可证得结论.
【详解】
①∵ABD 与AEP 都是等腰直角三角形,
∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,
∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,
∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,
∴222PE BE PB +=,
∵2AE AP ==
,90EAP ∠=︒, ∴22PE AE =
=, ∴()22227BE +=, 解得:3BE =,
作BH ⊥AE 交AE 的延长线于点H ,
∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,
∴26sin 453
HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =
∴APD ABP ABE APB S S S S ∆∆∆∆+=+
AEP BEP S S ∆∆=+ 1122AE AP PE EB =⨯⨯+⨯⨯
11222322
=⨯⨯+⨯⨯ 13=+,故②正确;
③在Rt AHB 中,由①知:6EH HB ==
, ∴622
AH AE EH =+=+, 22
222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222
ABD S AB AD AB ∆=
⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,
∵A C 、关于 BD 的对称,
∴523AB BC ==+
∴225231043AC BC ==+=+
∴ min PC AC AP =-,
10432=+
⑤∵
ABD 与AEP 都是等腰直角三角形,
∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩

∴()ABP ADE SAS ≅,
∴ABP ADE ∠=∠,
∵AN BN =,
∴ABP NAB ∠=∠,
∴EAN ADE ∠=∠,
∵90EAN DAN ∠+∠=︒,
∴90ADE DAN ∠+∠=︒,
∴AN DE ⊥,故⑤正确;
综上,②③⑤正确,
故答案为:②③⑤.
【点睛】
本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.
29.(1)该命题是真命题,理由见解析;(2)①a 的值为92
;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为
2033或1235
. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;
(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;
②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;
(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.
【详解】
(1)该命题是真命题,理由如下:
设等边三角形的三边边长为a
则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形
又因该两条边相等,则这两条边的比为1,即其优比为1。

相关文档
最新文档