说2020年高考数学浙江卷第19题 立足基础 回归课本

合集下载

2020年高考真题数学(浙江卷)含答案

2020年高考真题数学(浙江卷)含答案

绝密★启用前2020年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+ 如果事件A ,B 相互独立,那么()()()P AB P A P B = 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n −=−=L 台体的体积公式11221()3V S S S S h =++其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R =π 球的体积公式 343V R =π 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合P ={|14}x x <<,Q={|23}x x <<,则P I Q = A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤<D .{|14}x x <<2.已知a ∈R ,若a –1+(a –2)i(i 为虚数单位)是实数,则a =A .1B .–1C .2D .–23.若实数x ,y 满足约束条件31030x y x y −+≤⎧⎨+−≥⎩,则2z x y =+的取值范围是A .(,4]−∞B .[4,)+∞C .[5,)+∞D .(,)−∞+∞4.函数y =x cos x +sin x 在区间[–π,π]上的图象可能是5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .66.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.已知等差数列{a n }的前n 项和为S n ,公差0d ≠,且11a d≤.记12b S =,1222–n n n b S S ++=,n *∈N ,下列等式不可能...成立的是 A .4262a a a =+B .4262b b b =+C .2428a a a =D .2428b b b =8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数234y x =−图象上的点,则|OP |= A .222B .4105C .7D .109.已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x–b )(x–2a–b )≥0,则 A .a <0B .a >0C .b <0D .b >010.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则yx∈S .下列命题正确的是 A .若S 有4个元素,则S ∪T 有7个元素 B .若S 有4个元素,则S ∪T 有6个元素 C .若S 有3个元素,则S ∪T 有5个元素 D .若S 有3个元素,则S ∪T 有4个元素非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2020年浙江省高考数学试卷(解析版)

2020年浙江省高考数学试卷(解析版)
【详解】因为 ,所以 且 ,设 ,则 的零点

当 时,则 , ,要使 ,必有 ,且 ,
即 ,且 ,所以 ;
当 时,则 , ,要使 ,必有 .
综上一定有 .
故选:C
【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题.
10.设集合S,T,S N*,T N*,S,T中至少有两个元素,且S,T满足:
【详解】依题意 是空间不过同一点的三条直线,
当 在同一平面时,可能 ,故不能得出 两两相交.
当 两两相交时,设 ,根据公理 可知 确定一个平面 ,而 ,根据公理 可知,直线 即 ,所以 在同一平面.
综上所述,“ 在同一平面”是“ 两两相交”的必要不充分条件.
故选:B
【点睛】本小题主要考查充分、必要条件的判断,考查公理 和公理 的运用,属于中档题.
故选:A.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
5.某几何体 三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且 .
(I)求角B的大小;
(II)求cosA+cosB+cosC的取值范围.
【答案】(I) ;(II)
【解析】
【分析】
(I)首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B的大小;

横看成岭侧成峰 远近高低各不同——2020年高考数学浙江卷第19题线面角问题的多角度分析

横看成岭侧成峰 远近高低各不同——2020年高考数学浙江卷第19题线面角问题的多角度分析

数理化解题研究2021年第01期总第494期横看成岭侧成峰远近高低各不同2020年高考数学浙江卷第19题线面角问题的多角度分析章显联(浙江省绍兴鲁迅高级中学312000)摘 要:本文对2020年高考数学浙江卷第19题线面角问题进行多角度分析:非坐标形式的向量法(基底法)、三余弦定理法、等体积法、纯几何法、空间直角坐标系法.给出了复习的两个建议:关注最小,秒杀线面;重视非坐标形式的向量法.关键词:非坐标形式的向量法;线面角;两个原理中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)01 -0036 -04一、典型考题所成角为0 ,由已知,得0C 与平面DBC 所成角也为0.由公式,得例1(2020年浙江第19题)如图1,在三棱台ABC-DEF 中,平面 ACFD 丄平面 ABC , /ACB - /ACD -45°,DC -2B C.(1) 证明:EF 丄DB ;(2) 求直线DF 与平面DBC 所成角的正弦值.本题主要考查空间直线互 相垂直的判定和性质,以及直 线与平面所成角的几何计算问题,考查了空间想象能力和思 维能力,平面与空间互相转化 能力,几何计算能力,以及逻辑推理能力,本题属综合性较强 的中档题.笔者认为此题无论图1是试题难度、试题背景、命题立意,还是对数学核心素养 的考查,都很到位,可谓简约不简单.它也是一道解题训 练的优质题,横看成岭侧成峰,很有研究价值.解法1非坐标形式的向量法(基底法)过点D 作D0丄AC 于点0,以{ C B ,C B ,CD }为基底. 不妨设 DC - 2B C -2,贝V DB - 3 , C0 - 2 , / 0CB -:,/0CD - n , /DCB - n ,设平面DBC 的法向量为n - %-CD -0,(• C B -0 得{2% + y + 4z - 0,% + y + z - 0.C O + y C B + zC B ,贝V 由所以n - -3 C0 +2 B + CD.设直线DF 与平面DBC解法2三余弦定理法过点D 作D0丄AC 于点0,由已知,得0在平面DBC 的射影H 在/DCB 的角平分线上,设直线DF 与平面DBC 所成角为0,由已知,得0C 与平面DBC 所成角也为0.由三余弦定理,得 cos n - cos n • cos 0,cos 0 - f •463所以sin 0 -耳.解法3等体积法.过点D 作D0丄AC 于点0,设直线DF 与平面DBC 所 成角为0,由已知,得0C 与平面DBC 所成角也为0.由 % - DBC 二 % - 0BC ,解得 h 二专,sin 0 二豊二专.解法4坐标形式的向量法以0为原点,0D 为Z 轴,0C 为Y 轴,在平面ABC 内, 过点0作0C 垂线为Z 轴,易求D ,C ,B 坐标,从而求得平面DBC 的法向量,利用线面角公式sin 0 - 3 •解法5纯几何法分析(1)题根据已知条件,作DH 丄AC ,根据面面垂直,可得DH 丄BC ,进一步根据直角三角形的知识可判断收稿日期:2020 -10 -05作者简介:章显联(1972. 12 -),男,浙江省龙港人,本科,中学高级教师,从事高中数学教学研究.—36—2021年第01期总第494期数理化解题研究出厶BHC是直角三角形,且Z HBC_90°,则HB丄BC,从而可证出BC丄面DHB,最后根据棱台的定义有EF〃BC,根据平行线的性质可得EF丄DB.(2)题可先设BC_1,根据解直角三角形可得BH_1,HC_2,DH_2,DC_2,DB_3,然后找到CH与面DBC的夹角即为Z HCG,根据棱台的特点可知DF与面DBC所成角与CH与面DBC的夹角相图2等,通过计算乙HCG的正弦值,即可得到DF与面DBC所成角的正弦值.二、考题赏析本题建系有些困难,不存在明显的过同一点的两两垂直的直线.这种情况下,非坐标形式的向量法(基底法)显得更实用.本题解法以{CO,C B,CD}为基底,因为它们不共面长度可求,且它们的夹角也可求.应用此法,可使求解过程更自由.若CO,C B,CD是单位向量且两两垂直,就是通常的坐标形式的向量法了.坐标形式的向量法可以看作是非坐标形式的向量法的一种特殊情形.解法2中0在平面DBC的射影H在Z DCB的角平分线上,利用三余弦定理可求出0C与平面DBC所成角.B图4三正弦定理(最大角定理)设二面角M-AB-N的度数为Y,在平面M上有一条射线AC,它和棱AB所成的角为0,和平面N所成的角为//a,贝V sin a_si叩•sin y.(为了力便于记忆,我们约定:0为线棱角,a为线面角,Y为二面角)证明如图4,C0丄平面N,0B丄AB,BC丄AB,0C△0BC,△0AC,△ABC均为直角三角形,sin y_,si叩_BCBCAC,sin a_器,易得sin a_sin S•sin y.说明由sin a_sin S•sin y且sin S W1,知sin a W sin y,a W y,所以二面角的半平面M内的任意一条直线与另一个半平面N所成的线面角不大于二面角,即二面角是线面角中最大的角.若平面斜线上异于斜足的点在平面上的射影不易确定,则可转换为其他点如是操作或利用等体积法求出垂线段的长,利用公式sin O_h求得.如本题解法3.其实不管是纯几何法还是坐标形式的向量法,都能解决线面角问题,高考试题的参考答案一贯都是纯几何法与坐标形式的向量法,每种方法的学习都可促进学生能力的提高,只是各有侧重.如解法4与解法5.三余弦定理(最小角定理或爪子定理)设点A为平面a上一点,过点A的斜线在平面a上的射影为B0,BC为平面a上的任意直线,那E么Z ABC,乙0BC,乙0BA三、复习建议三角的余弦关系为cosZ ABC图3_cos Z0BC•cos Z0BA.即斜线与平面内一条直线夹角0的余弦值等于斜线与平面所成角a的余弦值乘以射影与平面内直线夹角O的余弦值,cos0_cos a-cos O.(为了便于记忆,我们约定:0为斜线角,a为线面角,O为射影角)证明如图3,^0AB,△0BC,△ABC均为直角三角形,cosQ BCAB,cosaB0AB,cosO B0,易知cosQ_cos a•cos O,得证.说明这三个角中,角0是最大的,其余弦值最小,等于另外两个角的余弦值之积.斜线与平面所成角a是斜线与平面内所有直线所成角中最小的角.1.紧扣最小,秒杀线面在研究空间角的最值与求值问题时,我们应关注最大角与最小角定理,三余弦公式与三正弦公式.这样的考查在近几年的学考、高考试题中已多次出现:例2(2019年浙江高考第8题)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为a,直线PB与平面ABC所成的角为S,二面角P-AC-B的平面角为Y,则().A.S<Y,a<yB.S<a,0<yC.S<a,y<aD.a<0,y<0解法1由最小角原理,得S<a,记二面角V-AB-C的平面角为y'(显然y_y'),由最大角原理,得S<y,故选B.解法2(特殊位置)取V-ABC为正四面体,P是棱VA上的中点,算出a,0,y的正弦值,可得选项B.例3(2018年浙江高考第8题)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段—37—数理化解题研究2021年第01期总第494期AB上的点(不含端点),设SE与BC所成的角为O],SE 与平面ABCD所成的角为O2,二面角S-AB-C的平面角为O3,则()•A.O1W O2W O3B.O3W O2W O1C.O1W O3W O2D.O2W O3W O1解法1作出三个角,通过定量计算得出答案为D.解法2由最小角与最大角原理知:O1M O2,O3M O2,故选D.例4(2014年浙江高考第17题)如图5,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面的射击线CM-移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角O的大小•若AB=15m,图5AC=25m,Z BCM=30°,贝卩tan O的最大值解析由线面角W面面角,求tan O的最大值转化为求二面角M-AC-Q的平面角•易求最大值为5j•例5(2018年11月浙江学考)四边形ABCD为矩形,沿AC将A ADC翻折成A AD'C.设二面角D'-AB-C 的平面角为O,直线AD'与BC所成的角为O1,直线AD'与平面ABC所成的角为O2,当O为锐角时,有()•A.O2W O1W OB.O2W O W O1C.O1W O2W OD.O W O2W O1解析由最小角原理,得O1M O2,由最大角原理,得O M O2,下面比较O]与O的大小即可•故选B.例6(2018年全国高考n卷理科第20题)如图6,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=4,0为AC的中点•(1)证明:PO丄平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面图6PAM所成角的正弦值.解析(1)略.(2)由题意,知线棱角Z CPA=60°,二面角M-PA-C为30°,由三正弦定理,得sin a=sin60°sin30°=例7(2009年浙江高考理科第17题)如图7,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点•现将△AFD沿AF折起,使平面—38—ABD丄平面ABC.在平面ABD内过点D作DK丄AB,K为垂足•设AK=£,则t的取值范围是•」___E.$____C d/一A B A K B图7解析由三余弦定理及已知,得cos Z DAF= cosZ DAK・cosZ BAF,又Z DAF+Z BAF二;,则cos Z DAK=tan Z BAF.在Rt△DAK中t=cos Z DAB,因此t=tanZ BAF,又由折叠前的图形,知0<Z CAB<Z BAFn<Z EAB=;.4所以tan Z CAB<tan Z BAF<tan Z EAB.所以1<t<1.考查这类空间角的大小是命题者难以割舍的情结,其本质是考查线面角与面面角定义的合理性,是考查学生数学核心素养的有效途径•2.非坐标形式的向量法非坐标形式的向量法比坐标形式的向量法应用更自由,更广泛•相比较纯几何法可避免令人深感畏惧的辅助线的添加技巧等.当然,解题方法中的选择也是当用则用,不分彼此,有时多种方法可揉合于同一道题中,特别是向量与几何的紧密联系与转化•应用非坐标形式的向量法解题的基本步骤:(1)会选基底.只需要不共面的三条线段长度可求,且它们的夹角也可求即可.(2)会表示•会用基底表示其他向量,一般只涉及向量的三角形式及其推广(闭合回路),数乘与平行,数量积与垂直两个定理•特别是要掌握好平面法向量的求法,方法可参考高考真题解法1•(3)会用公式•运算过程中无论是平面向量还是空间向量操作完全一致,运用的公式与坐标形式的向量法一致.笔者尝试用非坐标形式的向量法研究高考数学卷,发现非坐标向量法作为解答立体几何的方法有着诸多的可取之处.例8(2018年浙江高考第19题)如图8,已知多面体ABCA1B1C1中,A1A,B1B,C1C均垂直于平面ABC, Z ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB】丄平面A]B]C];(2)求直线AC】与平面ABB]所成的角的正弦值.解析以{BA,B C,B—}为基底,可证明(1),也可求2021年第01期总第494期数理化解题研究得直线AC]与平面ABB1所成的角的正弦值为晋•例9(2019年浙江高考第19题)如图9,已知三棱柱ABC-A1B1C1,平面A1ACC1丄平面ABC,/ABC-90°,/BAC-30°,A1A二A1C-AC,E,F分别是AC,A]B]的中点(1)证明:EF丄BC;(2)求直线EF与平面A1BC所成角的余弦值.解析以{E b]c B,C B}为基底,可证明(1),也可求得直线EF与平面A]BC所成角的余弦值是3•我们研究的向量是自由向图9量,运用非坐标形式的向量法无需考虑建立空间直角坐标系所需要的特殊要求,使解题过程更自由•例10(2009年浙江高考理科第17题)如图10,在长方形ABCD中,AB-2,BC-1,E为DC的中点,F为线段EC(端点除外)上一动点•现将△AFD沿AF折起,使平面ABD丄平面ABC.在平面ABD内过点D作DK丄AB,K为垂足•设AK-t,则t的取值范围是•图10解析以{K4,KD,KF}为基底,设DF-m,抓住折叠过程中的不变量AD-1,AB-2,由于平面ABD丄平面ABC,DK丄AB,从而DK丄平面ABC.由DF二D A+AF二d K+k A+AF,得m2二(d K+K4+AF)2.化简,得mt-1,即t——.由1<m<2,得<t<1.m2利用非坐标形式的向量法进行的上述解答,化动为静,简捷别致,令人耳目一新.例11(2000年全国高考理科第18题)如图11,已知平行六面体ABCD-A1B1C1D1的底面AB­CD是菱形,且/C1CB-/C1CD-/BCD-60°.(1)证明:C]C丄BD;3(2)假定CD-2,CC]-3,记Bi Ai图11面C]BD为a,面CBD为0,求二面角a-BD-0的平面角的余弦值;(3)当CD的值为多少时,能使A]C丄平面C]BD?请给出证明.解析以{Cc1,CD,C B}为基底,则CA]-C c]+CD+CB.(1)由BD-CD-CB,得C2C・BD-0,所以C2C丄BD.(2)易知平面a的法向量为C B;--8CC]+CD+C B,所以平面S的法向量为n--4CC]+CD+C B,从而求得a-D-S的平面角的余弦值为3•(3)当CD-1时,能使A]C丄平面C]BD.设CD-2,可证A]C丄BD,再由A]C丄BC2求得CC2-2.例12(2015年浙江省高考理科第13题)如图12,三棱锥A-BCD中,AB二AC二BD二CD-3,AD-BC-2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是•解析以{BA,BC,BD}为基底,在△ABD,由余弦定理得cos图12/ABD-7,同理得cos/CBD-[,cos/ABC-[,BA・933B C-2,BA・B D-7,B C・BD-2.用基底表示A N,C M,AN--BA+2BC,C M-2(BD+BA-2BC),异面直线AN,CM所成的角的余弦值是简]CM-T•平面向量仅是空间向量的一种特殊情形•“平面向量”可向“空间向量”自然转化.用向量方法求解空间角度与距离问题,为某些位置关系的判断问题创立了一种新的方法•在向量的运算中,要注意数形结合,灵活运用图形的几何意义、向量的几何意义去解题.《新课程标准(2017年版)》对空间向量的应用提出了更多、更高的要求,可见非坐标形式的向量法用于解决立体几何问题,完全符合新课程标准对学生的要求•如何使非坐标形式的向量法成为学生解决立体几何问题的又一个通用的好方法,还需要我们建一步地探索与总结•参考文献:[1]章显联.高考复习要注意回归教材[J].数理化解题研究,2020(13):15-18.[责任编辑:李璟]—39—。

2020年浙江省高考数学试卷 试题+答案详解

2020年浙江省高考数学试卷 试题+答案详解
2020年普通高等学校招生全国统一考试(浙江卷)
数学
本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页;非选择题部分3至4页.满分150分.考试用时120分钟、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.
球的表面积公式
球的体积公式
其中 表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则P Q=()
A. B. C. D.
2.已知a∈R,若a–1+(a–2)i(i为虚数单位)是实数,则a=()
A. 1B. –1C. 2D. –2
17.设 , 为单位向量,满足 , , ,设 , 的夹角为 ,则 的最小值为_______.
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且 .
(I)求角B;
(II)求cosA+cosB+cosC的取值范围.
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
7.已知等差数列{an}的前n项和Sn,公差 , .记b1=S2,bn+1=Sn+2–S2n, ,下列等式不可能成立的是()
A. 2a4=a2+a6B. 2b4=b2+b6C. D.
8.已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y= 图像上的点,则|OP|=()

2020年浙江高考数学试题及答案

2020年浙江高考数学试题及答案

2020年浙江高考数学试题及答案本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+ 如果事件A ,B 相互独立,那么()()()P AB P A P B = 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合P ={|14}x x <<,Q={|23}x x <<,则P Q =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<2.已知a ∈R ,若a –1+(a –2)i(i 为虚数单位)是实数,则a =A .1B .–1C .2D .–23.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是A .(,4]-∞B .[4,)+∞C .[5,)+∞D .(,)-∞+∞4.函数y =x cos x +sin x 在区间[–π,π]上的图象可能是5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .66.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件7.已知等差数列{a n }的前n 项和为S n ,公差0d ≠,且11a d≤.记12b S =,1222–n n n b S S ++=,n *∈N ,下列等式不可能...成立的是 A .4262a a a =+B .4262b b b =+C .2428a a a =D .2428b b b =8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数234y x =-图象上的点,则|OP |= A .222B 410C 7D 109.已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x –b )(x –2a –b )≥0,则 A .a <0B .a >0C .b <0D .b >010.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则yx∈S .下列命题正确的是 A .若S 有4个元素,则S ∪T 有7个元素 B .若S 有4个元素,则S ∪T 有6个元素 C .若S 有3个元素,则S ∪T 有5个元素 D .若S 有3个元素,则S ∪T 有4个元素非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2020年高考卷 数学(浙江卷)附答案

2020年高考卷 数学(浙江卷)附答案

20201.已知集合,,则ABCD2.已知,若(i为虚数单位)是实数,则a=A1B-1C2D-23.若实数x,y满足约束条件,则的取值范围是ABCD4. 函数在区间的图像大致为ABCD5. 某几何体的三视图(单位:)如图所示,则该几何体的体积(单位:)是ABCD6. 已知空间中不过同一点的三条直线则“在同一平面” 是“两两相交”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件7.已知等差数列的前项的和,公差,.记下列等式不可能成立的是ABCD8.已知点, ,.设点满足,且为函数的图像上的点,则ABCD9.已知,若在上恒成立,则ABCDA若S有4个元素,则有7个元素B若S有4个元素,则有6个元素C若S有3个元素,则有4个元素D若S有3个元素,则有5个元素11.已知数列满足,则______12.设,则=_______;_______.13.已知=2,则=______;=______.14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为______.15.设直线l:y=kx+b(k>0),圆:,:,若直线l与,都相切,则k=______;b=______.16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为,则;;17.设,为单位向量,满足,,,设的夹角为,则的最小值为.18.(本题满分14分)19(本题满分15分)如图,三棱台中,面面,,。

(Ⅰ)证明:;(Ⅱ)求与面所成角的正弦值。

(第19题图)20.(本题满分15分)已知中,.(I)若数列为等比数列,且公比,且,求与的通项公式;(Ⅱ)若数列为等差数列,且公差,证明:21.(15分)如图,已知椭圆,抛物线,点是椭圆与抛物线的交点,过点的直线交椭圆于点,交抛物线于(不同于).(I)若,求抛物线的焦点坐标;(Ⅱ)若存在不过原点的直线使为线段的中点;求的最大值. 22.(本题满分15 分)已知函数,其中为自然对数的底数.(Ⅰ)证明:函数在上有唯一零点;(Ⅱ)记为函数在上的零点,证明:(i)(ⅱ).参考答案1.B2.C3.B4.A5.A6.B7.D8.D9.C 10.A 11.10 12.80 ,12213. 14.1 15. 16.17.282918 正确答案及相关解析正确答案19 正确答案及相关解析正确答案20 正确答案及相关解析正确答案21 正确答案及相关解析正确答案22 正确答案及相关解析正确答案。

2024年高考数学19题新模式新结构新题型数学与阅读理解 解析版

2024年高考数学19题新模式新结构新题型数学与阅读理解  解析版

2024年高考数学19题新模式新结构新题型1(2023上·北京朝阳·高三统考期中/24南通)已知A m =a 1,1a 1,2⋯a 1,m a 2,1a 2,2⋯a 2,m ⋮⋮⋱⋮a m ,1a m ,2⋯a m ,m(m ≥2)是m 2个正整数组成的m 行m 列的数表,当1≤i <s ≤m ,1≤j <t ≤m 时,记d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t .设n ∈N *,若A m 满足如下两个性质:①a i ,j ∈1,2,3;⋯,n (i =1,2,⋯,m ;j =1,2,⋯,m );②对任意k ∈1,2,3,⋯,n ,存在i ∈1,2,⋯,m ,j ∈1,2,⋯,m ,使得a i ,j =k ,则称A m 为Γn 数表.(1)判断A 3=123231312是否为Γ3数表,并求d a 1,1,a 2,2 +d a 2,2,a 3,3 的值;(2)若Γ2数表A 4满足d a i ,j ,a i +1,j +1 =1(i =1,2,3;j =1,2,3),求A 4中各数之和的最小值;(3)证明:对任意Γ4数表A 10,存在1≤i <s ≤10,1≤j <t ≤10,使得d a i ,j ,a s ,t =0.【答案】(1)是;5(2)22(3)证明见详解【分析】(1)根据题中条件可判断结果,根据题中公式进行计算即可;(2)根据条件讨论a i +1,j 的值,根据d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t ,得到相关的值,进行最小值求和即可;(3)当r i ≥2时,将横向相邻两个k 用从左向右的有向线段连接,则该行有r i -1条有向线段,得到横向有向线段的起点总数,同样的方法得到纵向有向线段的起点总数,根据条件建立不等关系,即可证明.【详解】(1)A 3=123231312是Γ3数表,d a 1,1,a 2,2 +d a 2,2,a 3,3 =2+3=5.(2)由题可知d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t =1(i =1,2,3;j =1,2,3).当a i +1,j =1时,有d a i ,j ,a i +1,j +1 =(a i ,j -1)(a i +1,j +1-1)=1,所以a i ,j +a i +1,j +1=3.当a i +1,j =2时,有d a i ,j ,a i +1,j +1 =(2-a i ,j )(2-a i +1,j +1)=1,所以a i ,j +a i +1,j +1=3.所以a i ,j +a i +1,j +1=3(i =1,2,3;j =1,2,3).所以a 1,1+a 2,2+a 3,3+a 4,4=3+3=6,a 1,3+a 2,4=3,a 3,1+a 4,2=3.a 1,2+a 2,3+a 3,4=3+1=4或者a 1,2+a 2,3+a 3,4=3+2=5,a 2,1+a 3,2+a 4,3=3+1=4或者a 2,1+a 3,2+a 4,3=3+2=5,a 1,4=1或a 1,4=2,a 4,1=1或a 4,1=2,故各数之和≥6+3+3+4+4+1+1=22,当A 4=1111122212111212时,各数之和取得最小值22.(3)由于Γ4数表A 10中共100个数字,必然存在k ∈1,2,3,4 ,使得数表中k 的个数满足T ≥25.设第i 行中k 的个数为r i (i =1,2,⋅⋅⋅,10).当r i ≥2时,将横向相邻两个k 用从左向右的有向线段连接,则该行有r i -1条有向线段,所以横向有向线段的起点总数R =∑r i ≥2(r i -1)≥∑i =110(r i -1)=T -10.设第j 列中k 的个数为c j (j =1,2,⋅⋅⋅,10).当c j ≥2时,将纵向相邻两个k 用从上到下的有向线段连接,则该列有c j -1条有向线段,所以纵向有向线段的起点总数C =∑c j ≥2(c j -1)≥∑j =110(c j -1)=T -10.所以R +C ≥2T -20,因为T ≥25,所以R +C -T ≥2T -20-T =T -20>0.所以必存在某个k 既是横向有向线段的起点,又是纵向有向线段的终点,即存在1<u <v ≤10,1<p <q ≤10,使得a u ,p =a v ,p =a v ,q =k ,所以d a u ,p ,a v ,q =a u ,p -a v ,p +a v ,p -a v ,q =0,则命题得证.2(镇海高三期末)在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs =y 1+y 2 32(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y1+y3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.【答案】(1)1(2)16749(3)2e ,1 【解析】【分析】(1)依据所给定义求解即可.(2)直接利用定义求解即可.(3)合理构造给定式子,转化为一元函数,结合高观点极限方法求解即可.【小问1详解】K =ΔθΔs=π3π3=1.【小问2详解】y =1-x 24,y=-x 41-x 24 -12,y =-141-x 24 -12-x 2161-x 24-32,故y x =3=-32,y x =3=-2,故K =21+3432=16749.【小问3详解】fx =ln x -1,fx =1x ,故φy =22y 1+y3=22x ln x 3=2233s ln s 3,其中s =3x ,令t 1=3x 1,t 2=3x 2,则t 1ln t 1=t 2ln t 2,则ln t 1=-t ln tt -1,其中t =t 2t 1>1(不妨t 2>t 1)令p x =x ln x ,p x =1+ln x ⇒p x 在0,1e 递减,在1e ,+∞ 递增,故1>t 2>1e>t 1>0;令h t =ln t 1+t 2 =ln t +1 -t ln tt -1,h 't =1t -1 2ln t -2t -1 t +1 ,令m (t )=ln t -2t -1 t +1(t >1),则m(t )=t -1 2t (t +1),当t >1时,m (t )>0恒成立,故m (t )在(1,+∞)上单调递增,可得m (t )>m (1)=0,即ln t -2t -1t +1>0,故有h t =1t -1 2ln t -2t -1 t +1>0,则h t 在1,+∞ 递增,又lim t →1h t =ln2-1,lim t →+∞h t =0,故ln t 1+t 2 ∈ln2-1,0 ,故3x 1+3x 2=t 1+t 2∈2e ,1.【点睛】关键点点睛:本题考查求导数新定义,解题关键是将给定式子合理转化为一元函数,然后利用极限方法求得关键函数值域,最终即可求解.3(合肥一中期末)同余定理是数论中的重要内容.同余的定义为:设a ,b ∈Z ,m ∈N *且m >1.若m a -b 则称a 与b 关于模m 同余,记作a ≡b (mod m )(“|”为整除符号).(1)解同余方程x 2-x ≡0(mod3);(2)设(1)中方程的所有正根构成数列a n ,其中a 1<a 2<a 3<⋯<a n .①若b n =a n +1-a n (n ∈N *),数列b n 的前n 项和为S n ,求S 2024;②若c n =tan a 2n +1⋅tan a 2n -1(n ∈N *),求数列c n 的前n 项和T n .解:(1)由题意x x -1 ≡0(mod3),所以x =3k 或x -1=3k (k ∈Z ),即x =3k 或x =3k +1(k ∈Z ).(2)由(1)可得a n 为3,4,6,7,9,10,⋯ ,所以a n =3×n +12n 为奇数3×n 2+1n 为偶数.①因为b n =a n +1-a n (n ∈N *),所以b n =1n 为奇数2n 为偶数.S 2024=b 1+b 2+b 3+⋯+b 2024=3×1012=3036.②c n =tan a 2n +1⋅tan a 2n -1=tan3n ⋅tan3n +1 (n ∈N *).因为tan3n ⋅tan3n +1 =tan3n +1 -tan3ntan3-1,所以T n =c 1+c 2+⋯c n =tan6-tan3tan3-1 +tan9-tan6tan3-1 +⋯+tan3n +1 -tan3n tan3-1=tan3n +1 -tan3tan3-n =tan3n +1 tan3-n -1.4(北京西城)给定正整数N ≥3,已知项数为m 且无重复项的数对序列A :x 1,y 1 ,x 2,y 2 ,⋅⋅⋅,x m ,y m 满足如下三个性质:①x i ,y i ∈1,2,⋅⋅⋅,N ,且x i ≠y i i =1,2,⋅⋅⋅,m ;②x i +1=y i i =1,2,⋅⋅⋅,m -1 ;③p ,q 与q ,p 不同时在数对序列A 中.(1)当N =3,m =3时,写出所有满足x 1=1的数对序列A ;(2)当N =6时,证明:m ≤13;(3)当N 为奇数时,记m 的最大值为T N ,求T N .【答案】(1)A :1,2 ,2,3 ,3,1 或A :1,3 ,3,2 ,2,1(2)证明详见解析(3)T N =12N N -1【解析】【分析】(1)利用列举法求得正确答案.(2)利用组合数公式求得m 的一个大致范围,然后根据序列A 满足的性质证得m ≤13.(3)先证明T N +2 =T N +2N +1,然后利用累加法求得T N .【小问1详解】依题意,当N =3,m =3时有:A :1,2 ,2,3 ,3,1 或A :1,3 ,3,2 ,2,1 .【小问2详解】当N =6时,因为p ,q 与q ,p 不同时在数对序列A 中,所以m ≤C 26=15,所以1,2,3,4,5,6每个数至多出现5次,又因为x i +1=y i i =1,2,⋯,m -1 ,所以只有x 1,y m 对应的数可以出现5次,所以m ≤12×4×4+2×5 =13.【小问3详解】当N 为奇数时,先证明T N +2 =T N +2N +1.因为p ,q 与q ,p 不同时在数对序列A 中,所以T N ≤C 2N =12N N -1 ,当N =3时,构造A :1,2 ,2,3 ,3,1 恰有C 23项,且首项的第1个分量与末项的第2个分量都为1.对奇数N ,如果和可以构造一个恰有C 2N 项的序列A ,且首项的第1个分量与末项的第2个分量都为1,那么多奇数N +2而言,可按如下方式构造满足条件的序列A :首先,对于如下2N +1个数对集合:1,N +1 ,N +1,1 ,1,N +2 ,N +2,1 ,2,N +1 ,N +1,2 ,2,N +2 ,N +2,2 ,⋯⋯N ,N +1 ,N +1,N ,N ,N +2 ,N +2,N ,N +1,N +2 ,N +2,N +1 ,每个集合中都至多有一个数对出现在序列A 中,所以T N +2 ≤T N +2N +1,其次,对每个不大于N 的偶数i ∈2,4,6,⋯,N -1 ,将如下4个数对并为一组:N +1,i ,i ,N +2 ,N +2,i +1 ,i +1,N +1 ,共得到N -12组,将这N -12组对数以及1,N +1 ,N +1,N +2 ,N +2,1 ,按如下方式补充到A 的后面,即A ,1,N +1 ,N +1,2 ,2,N +2 ,N +2,3 ,3,n +1 ,⋯,(N +1,N -1),(N -1,N +2),(N +2,N ),(N ,N +1),(N +1,N +2),(N +2,1).此时恰有T N +2N +1项,所以T N +2 =T N +2N +1.综上,当N 为奇数时,T N =T N -T N -2 +T N -2 -T N -4 +⋯+T 5 -T 3 +T 3 =2N -2 +1 +2N -4 +1 +⋯+2×3+1 +3=2N -2 +1 +2N -4 +1 +⋯+2×3+1 +2×1+1 =2N -3 +2N -7 +⋯+7+3=2N -3+32×N -2+12=12N N -1 .【点睛】方法点睛:解新定义题型的步骤:(1)理解“新定义”--明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.5(如皋市)对于给定的正整数n ,记集合R n ={α |α=(x 1,x 2,x 3,⋅⋅⋅,x n ),x j ∈R ,j =1,2,3,⋅⋅⋅,n },其中元素α称为一个n 维向量.特别地,0 =(0,0,⋅⋅⋅,0)称为零向量.设k ∈R ,α =(a 1,a 2,⋅⋅⋅,a n )∈R n ,β =(b 1,b 2,⋅⋅⋅,b n )∈R n ,定义加法和数乘:kα =(ka 1,ka 2,⋅⋅⋅,ka n ),α +β=(a 1+b 1,a 2+b 2,⋅⋅⋅,a n +b n ).对一组向量α1 ,α2 ,⋯,αs (s ∈N +,s ≥2),若存在一组不全为零的实数k 1,k 2,⋯,k s ,使得k 1α1 +k 2α2+⋅⋅⋅+k s αs =0 ,则称这组向量线性相关.否则,称为线性无关.(1)对n =3,判断下列各组向量是线性相关还是线性无关,并说明理由.①α=(1,1,1),β =(2,2,2);②α =(1,1,1),β =(2,2,2),γ=(5,1,4);③α =(1,1,0),β =(1,0,1),γ=(0,1,1),δ =(1,1,1).(2)已知α ,β ,γ 线性无关,判断α +β ,β +γ ,α +γ是线性相关还是线性无关,并说明理由.(3)已知m (m ≥2)个向量α1 ,α2 ,⋯,αm线性相关,但其中任意m -1个都线性无关,证明:①如果存在等式k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0(k i ∈R ,i =1,2,3,⋅⋅⋅,m ),则这些系数k 1,k 2,⋯,k m 或者全为零,或者全不为零;②如果两个等式k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0 ,l 1α1 +l 2α2 +⋅⋅⋅+l m αm =0 (k i ∈R ,l i ∈R ,i =1,2,3,⋅⋅⋅,m )同时成立,其中l 1≠0,则k 1l 1=k 2l 2=⋅⋅⋅=km l m.(1)解:对于①,设k 1α +k 2β =0 ,则可得k 1+2k 2=0,所以α ,β线性相关;对于②,设k 1α +k 2β +k 3γ =0,则可得k 1+2k 2+5k 3=0k 1+2k 2+k 3=0k 1+2k 2+4k 3=0 ,所以k 1+2k 2=0,k 3=0,所以α ,β ,γ线性相关;对于③,设k 1α +k 2β +k 3γ+k 4δ =0 ,则可得k 1+k 2+k 4=0k 1+k 3+k 4=0k 2+k 3+k 4=0 ,解得k 1=k 2=k 3=-12k 4,所以α ,β ,γ ,δ 线性相关;(2)解:设k 1(α +β )+k 2(β +γ )+k 3(α +γ)=0 ,则(k 1+k 3)α +(k 1+k 2)β +(k 2+k 3)γ =0,因为向量α ,β ,γ线性无关,所以k 1+k 3=0k 1+k 2=0k 2+k 3=0 ,解得k 1=k 2=k 3=0,所以向量α +β ,β +γ ,α +γ线性无关,(3)①k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0,如果某个k i =0,i =1,2,⋯,m ,则k 1α1 +k 2α2 +⋯+k i -1αi -1 +k i +1αi +1 +⋅⋅⋅+k m αm =0 ,因为任意m -1个都线性无关,所以k 1,k 2,⋯k i -1,k i +1,⋅⋅⋅,k m 都等于0,所以这些系数k 1,k 2,⋅⋅⋅,k m 或者全为零,或者全不为零,②因为l 1≠0,所以l 1,l 2,⋅⋅⋅,l m 全不为零,所以由l 1α1 +l 2α2 +⋅⋅⋅+l m αm =0 可得α1 =-l 2l 1α2 -⋅⋅⋅-l m l 1αm,代入k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0 可得k 1-l 2l 1α2 -⋅⋅⋅-l m l 1αm+k 2α2 +⋅⋅⋅+k m αm =0 ,所以-l 2l 1k 1+k 2 α2 +⋅⋅⋅+-lm l 1k 1+k mαm =0 ,所以-l 2l 1k 1+k 2=0,⋯,-lm l 1k 1+k m =0,所以k 1l 1=k 2l 2=⋅⋅⋅=km l m.6(江苏四校)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D四点的交比,记为(A ,B ;C ,D ).(1)证明:1-(D ,B ;C ,A )=1(B ,A ;C ,D );(2)若l1,l2,l3,l4为平面上过定点P且互异的四条直线,L1,L2为不过点P且互异的两条直线,L1与l1,l2,l3,l4的交点分别为A1,B1,C1,D1,L2与l1,l2,l3,l4的交点分别为A2,B2,C2,D2,证明:(A1,B1;C1,D1)= (A2,B2;C2,D2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG与ΔE F G 的对应边不平行,对应顶点的连线交于同一点,则ΔEFG与ΔE F G 对应边的交点在一条直线上.解:(1)1-(D,B;C,A)=1-DC⋅BABC⋅DA=BC⋅AD+DC⋅BABC⋅AD=BC⋅(AC+CD)+CD⋅ABBC⋅AD=BC⋅AC+BC⋅CD+CD⋅ABBC⋅AD =BC⋅AC+AC⋅CDBC⋅AD=AC⋅BDBC⋅AD=1(B,A;C,D);(2)(A1,B1;C1,D1)=A1C1⋅B1D1B1C1⋅A1D1=SΔPA1C1⋅SΔPB1D1SΔPB1C1⋅SΔPA1D1=12⋅PA1⋅PC1⋅sin∠A1PC1⋅12⋅PB1⋅PD1⋅sin∠B1PD112⋅PB1⋅PC1⋅sin∠B1PC1⋅12⋅PA1⋅PD1⋅sin∠A1PD1=sin∠A1PC1⋅sin∠B1PD1sin∠B1PC1⋅sin∠A1PD1=sin∠A2PC2⋅sin∠B2PD2sin∠B2PC2⋅sin∠A2PD2=SΔPA2C2⋅SΔPB2D2SΔPB2C2⋅SΔPA2D2==A2C2⋅B2D2B2C2⋅A2D2=(A2,B2;C2,D2);第(2)问图第(3)问图(3)设EF与E F 交于X,FG与F G 交于Y,EG与E G 交于Z,连接XY,FF 与XY交于L,EE 与XY交于M,GG 与XY交于N,欲证X,Y,Z三点共线,只需证Z在直线XY上.考虑线束XP,XE,XM,XE ,由第(2)问知(P,F;L,F )=(P,E;M,E ),再考虑线束YP,YF,YL,YF ,由第(2)问知(P,F;L, F )=(P,G;N,G ),从而得到(P,E;M,E )=(P,G;N,G ),于是由第(2)问的逆命题知,EG,MN,E G 交于一点,即为点Z,从而MN过点Z,故Z在直线XY上,X,Y,Z三点共线.7(高考仿真)已知无穷数列a n满足a n=max a n+1,a n+2-min a n+1,a n+2(n=1,2,3,⋯),其中max {x,y}表示x,y中最大的数,min{x,y}表示x,y中最小的数.(1)当a1=1,a2=2时,写出a4的所有可能值;(2)若数列a n中的项存在最大值,证明:0为数列a n中的项;(3)若a n>0(n=1,2,3,⋯),是否存在正实数M,使得对任意的正整数n,都有a n≤M?如果存在,写出一个满足条件的M;如果不存在,说明理由.【答案】(1){1,3,5}(2)证明见解析(3)不存在,理由见解析【解析】【分析】(1)根据定义知a n≥0,讨论a3>2、a3<2及a3,a4大小求所有a4可能值;(2)由a n≥0,假设存在n0∈N*使a n≤a n0,进而有a n≤max{a n+1,a n+2}≤a n,可得min{a n+1,a n+2}=0,即可证结论;(3)由题设a n ≠a n +1(n =2,3,⋯),令S ={n |a n >a n +1,n ≥1},讨论S =∅、S ≠∅求证a n >M 即可判断存在性.【小问1详解】由a n =max a n +1,a n +2 -min a n +1,a n +2 ≥0,a 1=max {2,a 3}-min {2,a 3}=1,若a 3>2,则a 3-2=1,即a 3=3,此时a 2=max {3,a 4}-min {3,a 4}=2,当a 4>3,则a 4-3=2,即a 4=5;当a 4<3,则3-a 4=2,即a 4=1;若a 3<2,则2-a 3=1,即a 3=1,此时a 2=max {1,a 4}-min {1,a 4}=2,当a 4>1,则a 4-1=2,即a 4=3;当a 4<1,则1-a 4=2,即a 4=-1(舍);综上,a 4的所有可能值为{1,3,5}.【小问2详解】由(1)知:a n ≥0,则min a n +1,a n +2 ≥0,数列a n 中的项存在最大值,故存在n 0∈N *使a n ≤a n 0,(n =1,2,3,⋯),由a n 0=max {a n 0+1,a n 0+2}-min {a n 0+1,a n 0+2}≤max {a n 0+1,a n 0+2}≤a n 0,所以min {a n 0+1,a n 0+2}=0,故存在k ∈{n 0+1,n 0+2}使a k =0,所以0为数列a n 中的项;【小问3详解】不存在,理由如下:由a n >0(n =1,2,3,⋯),则a n ≠a n +1(n =2,3,⋯),设S ={n |a n >a n +1,n ≥1},若S =∅,则a 1≤a 2,a i <a i +1(i =2,3,⋯),对任意M >0,取n 1=Ma 1+2([x ]表示不超过x 的最大整数),当n >n 1时,a n =(a n -a n -1)+(a n -1-a n -2)+...+(a 3-a 2)+a 2=a n -2+a n -3+...+a 1+a 2≥(n -1)a 1>M ;若S ≠∅,则S 为有限集,设m =max {n |a n >a n +1,n ≥1},a m +i <a m +i +1(i =1,2,3,⋯),对任意M >0,取n 2=M a m +1+m +1([x ]表示不超过x 的最大整数),当n >n 2时,a n =(a n -a n -1)+(a n -1-a n -2)+...+(a m +2-a m +1)+a m +1=a n -2+a n -3+...+a m +a m +1≥(n -m )a m +1>M ;综上,不存在正实数M ,使得对任意的正整数n ,都有a n ≤M .【点睛】关键点点睛:第三问,首选确定a n ≠a n +1(n =2,3,⋯),并构造集合S ={n |a n >a n +1,n ≥1},讨论S =∅、S ≠∅研究存在性.8(高考仿真)若项数为k (k ∈N *,k ≥3)的有穷数列{a n }满足:0≤a 1<a 2<a 3<⋅⋅⋅<a k ,且对任意的i ,j (1≤i ≤j ≤k ),a j +a i 或a j -a i 是数列{a n }中的项,则称数列{a n }具有性质P .(1)判断数列0,1,2是否具有性质P ,并说明理由;(2)设数列{a n }具有性质P ,a i (i =1,2,⋯,k )是{a n }中的任意一项,证明:a k -a i 一定是{a n }中的项;(3)若数列{a n }具有性质P ,证明:当k ≥5时,数列{a n }是等差数列.解析:(1)数列0,1,2具有性质P .理由:根据有穷数列a n满足:0≤a1<a2<a3<⋅⋅⋅<a k,且对任意的i,j(1≤i≤j≤k),a j+a i或a j-a i是数列a n中的项,则称数列a n具有性质P,对于数列0,1,2中,若对任意的i,j(1≤i≤j≤k),可得a j-a i=0或1或2,可得a j-a i一定是数列a n中的项,所以数列0,1,2具有性质P.⋯⋯⋯⋯⋯4分(2)证明:由a i(i=1,2,⋯,k)是数列a n中的任意一项,因为数列{a n}具有性质P,即a j+a i或a j-a i是数列a n中的项,令j=k,可得a k+a i或a k-a i是数列a n中的项,又因为0≤a1<a2<⋯<a k,可得a k+a i一定不是数列a n中的项,所以a k-a i一定是数列a n中的项. ⋯⋯⋯⋯⋯8分(3)由数列{a n}具有性质P,可得a k+a k∉a n,所以a k-a k∈a n,则0∈a n,且a1=0,又由a k+a i∉a n,所以a k-a i∈a n,又由0=a k-a k<a k-a k-1<a k-a k-2<⋯<a k-a2<a k-a1,①设2≤i≤k,因为0≤a1<a2<⋯<a k可得a k-a k=0,a k-a k-1=a2,a k-a k-2=a3,⋯,a k-a2=a k-1,a k-a1=a k,当k≥5时,可得a k-a k-i=a i+11≤i≤k-1, (∗)②设3≤i≤k-2,则a k-1+a i>a k-1+a2=a k,所以a k-1+a i∉a n,由0=a k-1-a k-1<a k-1-a k-2<⋯<a k-1-a3<a k-a3=a k-2,又由0≤a1<a2<⋯<a k-3<a k-2,可得a k-1-a k-1=a1,a k-1-a k-2=a2⋯<a k-1-a k-3=a3,a k-1-a3=a k-3,所以a k-1-a k-i=a i(1≤i≤k-3),因为k≥5,由以上可知:a k-1-a k-1=a1且a k-1-a k-2=a2,所以a k-1-a1=a k-1且a k-1-a2=a k-2,所以a k-1-a k-i=a i(1≤i≤k-1),(∗∗)由(∗)知,a k-a k-i=a i+11≤i≤k-1两式相减,可得a k-a k-1=a i+1-a i1≤i≤k-1,所以当k≥5时,数列a n为等差数列. ⋯⋯⋯⋯⋯17分.9(安徽)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M与两定点Q,P的距离之比MQMP=λ(λ>0,λ≠1),λ是一个常数,那么动点M的轨迹就是阿波罗尼斯圆,圆心在直线PQ上.已知动点M的轨迹是阿波罗尼斯圆,其方程为x2+y2=4,定点分别为椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F与右顶点A,且椭圆C的离心率为e=1 2.(1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为k (k >0)的直线l 与椭圆C 相交于B ,D (点B 在x 轴上方),点S ,T 是椭圆C 上异于B ,D 的两点,SF 平分∠BSD ,TF 平分∠BTD .①求BSDS的取值范围;②将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为81π8,求直线l 的方程.【答案】(1)x 28+y 26=1(2)①13,1 ②y =52x -102【解析】(1)方法①特殊值法,令M ±2,0 ,c -2 a -2=c +2a +2,且a =2c ,解得c 2=2.∴a 2=8,b 2=a 2-c 2=6,椭圆C 的方程为x 28+y 26=1,方法②设M x ,y ,由题意MFMA =(x -c )2+y 2(x -a )2+y 2=λ(常数),整理得:x 2+y 2+2c -2aλ2λ2-1x +λ2a 2-c2λ2-1=0,故2c -2aλ2λ2-1=0λ2a 2-c 2λ2-1=-4,又c a =12,解得:a =22,c = 2.∴b 2=a 2-c 2=6,椭圆C 的方程为x 28+y 26=1.(2)①由S △SBF S △SDF =12SB⋅SF ⋅sin ∠BSF 12SD⋅SF ⋅sin ∠DSF =SB SD ,又S △SBF S △SDF =BF DF ,∴BS DS=BF DF(或由角平分线定理得),令BF DF=λ,则BF =λFD,设D x 0,y 0 ,则有3x 20+4y 20=24,又直线l 的斜率k >0,则x 0∈-22,2 ,x B =2λ+1 -λx 0y B =-λy 0代入3x 2+4y 2-24=0得:321+λ -λx 0 2+4λ2y 20-24=0,即λ+1 5λ-3-2λx 0 =0,∵λ>0,∴λ=35-2x 0∈13,1 .②由(1)知,SB SD=TB TD=BF DF,由阿波罗尼斯圆定义知,S ,T ,F 在以B ,D 为定点的阿波罗尼斯圆上,设该圆圆心为C 1,半径为r ,与直线l 的另一个交点为N ,则有BF DF =NB ND ,即BF DF =2r -BF 2r +DF ,解得:r =11BF-1DF.又S 圆C 1=πr 2=818π,故r =922,∴1BF -1DF=229又DF =x 0-2 2+y 20=x 0-2 2+6-34x 20=22-12x 0,∴1BF -1DF =1λDF -1DF =5-2x 0322-12x 0 -122-12x 0=2-2x 0322-12x 0=229.解得:x 0=-22,y 0=-6-34x 20=-3104,∴k =-y 02-x 0=52,∴直线l 的方程为y =52x -102.10(郑州外国语)记U ={1,2,⋯,100}.对数列a n n ∈N * 和U 的子集T ,若T =∅,定义S T =0;若T =t 1,t 2,⋯,t k ,定义S T =a t 1+a t 2+⋯+a tk .例如:T =1,3,66 时,S T =a 1+a 3+a 66.现设a n n ∈N * 是公比为3的等比数列,且当T =2,4 时,S T =30.(1)求数列a n 的通项公式;(2)对任意正整数k 1≤k ≤100 ,若T 1,2,⋯,k ,求证:S T <a k +1;(3)设C ⊆U ,D ⊆U ,SC ≥SD ,求证:S C +S C ∩D ≥2S D .解:(1)当T =2,4 时,S T =a 2+a 4=a 2+9a 2=30,因此a 2=3,从而a 1=a 23=1,a n =3n -1;(2)S T ≤a 1+a 2+⋯a k =1+3+32+⋯+3k -1=3k -12<3k =a k +1;(3)设A =∁C C ∩D ,B =∁D C ∩D ,则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B ,因此原题就等价于证明S A ≥2S B .由条件S C ≥S D 可知S A ≥S B .①若B =∅,则S B =0,所以S A ≥2S B .②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m ,若m ≥l +1,则由第(2)小题,S A <a l +1≤a m ≤S B ,矛盾.因为A ∩B =∅,所以l ≠m ,所以l ≥m +1,S B ≤a 1+a 2+⋯+a m =1+3+32+⋯+3m -1=3m -12<a m +12≤a l 2≤S A 2,即S A >2S B .综上所述,S A ≥2S B ,因此S C +S C ∩D ≥2S D .11(福建模拟)2022年北京冬奥会标志性场馆--国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带”,就像速度滑冰运动员高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带”又象征北京2022年冬奥会.其中“冰丝带”呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,体现了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如《九章算术》中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖眶父子在《缀术》提出祖暅原理:“幂势既同,则积不容异”,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.(Ⅰ)利用祖暅原理推导半径为R 的球的体积公式时,可以构造如图所示的几何体M ,几何体M 的底面半径和高都为R ,其底面和半球体的底面同在平面α内.设与平面α平行且距离为d 的平面β截两个几何体得到两个截面,请在图中用阴影画出与图中阴影截面面积相等的图形并给出证明;(Ⅱ)现将椭圆x 2a 2+y 2b2=1a >b >0 所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球A ,B (如图),类比(Ⅰ)中的方法,探究椭球A 的体积公式,并写出椭球A ,B 的体积之比.【答案】解: (Ⅰ)由图可知,图①几何体的为半径为R 的半球,图②几何体为底面半径和高都为R 的圆柱中挖掉了一个圆锥,与图①截面面积相等的图形是圆环(如阴影部分)证明如下:在图①中,设截面圆的圆心为O 1,易得截面圆O 1的面积为πR 2-d 2 ,在图②中,截面截圆锥得到的小圆的半径为d ,所以,圆环的面积为πR 2-d 2 ,所以,截得的截面的面积相等(Ⅱ)类比(Ⅰ)可知,椭圆的长半轴为a ,短半轴为b ,构造一个底面半径为b ,高为a 的圆柱,把半椭球与圆柱放在同一个平面上(如图),在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,即挖去的圆锥底面半径为b ,高为a ;在半椭球截面圆的面积πb 2a2a 2-d 2 ,在圆柱内圆环的面积为πb 2-πb 2a 2d 2=πb 2a2a 2-d 2 ∴距离平面α为d 的平面截取两个几何体的平面面积相等,根据祖暅原理得出椭球A 的体积为:V A =2V 圆柱-V 圆锥 =2π⋅b 2⋅a -13π⋅b 2⋅a =4π3ab 2,同理:椭球B 的体积为V B =4π3a 2b 所以,两个椭球A ,B 的体积之比为b a. 【解析】本题考查新定义问题,解题的关键是读懂题意,构建圆柱,通过计算得到高相等时截面面积相等,考查学生的空间想象能力与运算求解能力,属于中档题.(Ⅰ)由题意,直接画出阴影即可,然后分别求出图①中圆的面积及图②中圆环的面积即可证明;(Ⅱ)类比(Ⅰ)可知,椭圆的长半轴为a ,短半轴为b ,构造一个底面半径为b ,高为a 的圆柱,把半椭球与圆柱放在同一个平面上,在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,即挖去的圆锥底面半径为b ,高为a ,证明截面面积相等,由祖暅原理求出出椭球A 的体积,同理求出椭球B 的体积,作比得出答案.12用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f 'x 是f x 的导函数,f ''x 是f 'x 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =|f (x )|1+[f (x )]232.(1)若曲线f x =ln x+x与g x =x在1,1处的曲率分别为K1,K2,比较K1,K2的大小;(2)求正弦曲线h x =sin x(x∈R)曲率的平方K2的最大值.【答案】解:(1)由题意,得f'(x)=1x+1,f''(x)=-1x2,g'(x)=12x-12,g''(x)=-14x-32,∴K1=f''(1)1+f'(1)232=-11+2232=1125,K2=g''(1)1+g'(1)232=-141+12232=1412564=2125,∴K1<K2;(2)由h(x)=sin x(x∈R),得h'(x)=cos x,h''(x)=-sin x,则K=-sin x1+cos2x32,K2=sin2x1+cos2x3=sin2x2-sin2x3,令t=2-sin2x,则t∈1,2,K2=2-tt3,设p t =2-tt3,t∈1,2,则p't =-t3-32-tt2t6=2t-6t4,所以p't <0,p t 在1,2上单调递减,则p(t)max=p1 =1,即当sin2x=1,cos x=0时,即x=nπ+π2,n∈Z时,K2取最大值1.【解析】本题考查了导数的运算、指数幂运算、三角函数的性质、利用导数求函数的最值,属于中档题.(1)利用曲率的定义分别求出K1,K2,然后比较即可;(2)利用曲率的定义求出K,再求出K2,然后利用正弦函数的性质结合利用导数求最值即可求解.13设P为多面体M的一个顶点,定义多面体M在点P处的离散曲率为1-12π(∠Q1PQ2+∠Q2PQ3+⋯+∠Q k-1PQ k+∠Q k PQ1),其中Q i(i=1,2,⋯,k,k≥3)为多面体M的所有与点P相邻的顶点,且平面Q ​1PQ ​2,平面Q ​2PQ 3,⋯,平面Q k -1PQ k和平面Q k PQ ​1遍历多面体M的所有以P为公共点的面.(1)任取正四面体的一个顶点,求该点处的离散曲率;(2)如图1,已知长方体A ​1B ​1C ​1D ​1-ABCD,AB=BC=1,AA1=22,点P为底面A ​1B ​1C ​1D ​1内的一个动点,则求四棱锥P-ABCD在点P处的离散曲率的最小值;(3)图2为对某个女孩面部识别过程中的三角剖分结果,所谓三角剖分,就是先在面部取若干采样点,然后用短小的直线段连接相邻三个采样点形成三角形网格.区域α和区域β中点的离散曲率的平均值更大的是哪个区域?(只需确定“区域α”还是“区域β”)【答案】解:记∠Q1PQ2+∠Q2PQ3+⋯+∠Q n PQ1=θ,则离散曲率为1-θ2π,θ越大离散曲率越小.(1)对于正四面体而言,每个面都是正三角形,所以∠Q1PQ2=∠Q2PQ3=∠Q3PQ1=60°,所以离散曲率为1-1 2ππ3×3=12;(2)P在底面ABCD的投影记为H,通过直观想象,当H点在平面ABCD中逐渐远离正方形ABCD的中心,以至于到无穷远时,θ逐渐减小以至于趋近于0.所以当H点正好位于正方形ABCD的中心时,θ最大,离散曲率最小.此时HA=HB=22=PH,所以PA=PB=1=AB,所以∠APB=60°,θ=4π3,离散曲率为1-12π×4π3=13;(3)区域β比区域α更加平坦,所以θ更大,离散曲率更小,故区域α和区域β中点的离散曲率的平均值更大的是区域α.【解析】本题考查空间几何体的性质以及新定义,正四面体的几何特征和曲率的计算公式,考查分析问题的能力以及空间想象能力,综合性较强,属于较难题.(1)利用离散曲率为1-θ2π,以及三角形的内角和公式求解;(2)记∠Q1PQ2+∠Q2PQ3+⋯+∠Q n PQ1=θ,于是θ越大离散曲率越小,进而求得结果;(3)区域β比区域α更加平坦,所以θ更大,离散曲率更小,进而得答案.14近些年来,三维扫描技术得到空前发展,从而催生了数字几何这一新兴学科.数字几何是传统几何和计算机科学相结合的产物.数字几何中的一个重要概念是曲率,用曲率来刻画几何体的弯曲程度.规定:多面体在顶点处的曲率等于2π与多面体在该点的所有面角之和的差(多面体的面角是指多面体的面上的多边形的内角的大小,用弧度制表示),多面体在面上非顶点处的曲率均为零.由此可知,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正方体在每个顶点有3个面角,每个面角是π2,所以正方体在各顶点的曲率为2π-3×π2=π2,故其总曲率为4π.(1)求四棱锥的总曲率;(2)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有:D -L +M =2.利用此定理试证明:简单多面体的总曲率是常数.【答案】解:(1)四棱锥有5个顶点,4个三角形面,1个凸四边形面,故其总曲率为2π×5-4×π-2π=4π.(2)设多面体有M 个面,给组成多面体的多边形编号,分别为1,2,⋯,M 号.设第i 号(1≤i ≤M )多边形有L i 条边.则多面体共有L =L 1+L 2+⋯+L M2条棱.由题意,多面体共有D =2-M +L =2-M +L 1+L 2+⋯+L M2个顶点.i 号多边形的内角之和为πL i -2π,故所有多边形的内角之和为π(L 1+L 2+⋯+L M )-2πM ,故多面体的总曲率为2πD -πL 1+L 2+⋯+L M -2πM=2π2-M +L 1+L 2+⋯+L M2 -πL 1+L 2+⋯+L M -2πM =4π所以满足题目要求的多面体的总曲率为4π.【解析】本题考查棱锥与简单组合体的结构特征,属于较难题.(1)利用总曲率定义即可得到结果;(1)利用总曲率定义及欧拉定理即可证明其为常数.。

(新课标全国卷)2020年高考数学考试说明 理

(新课标全国卷)2020年高考数学考试说明 理

2020年高考考试说明——数学(理)根据教育部考试中心《2020年普通高等学校招生全国统一考试大纲(理科)》(以下简称《大纲》),结合基础教育的实际情况,制定了《2020年普通高等学校招生全国统一考试大纲的说明(理科)》(以下简称《说明》)的数学科部分。

制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作指导方案和普通高中课程改革试验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。

Ⅰ.命题指导思想1.普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.3.命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性.既要考查考生的共同基础,又要满足不同考生的选择需求.合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡.4.试卷应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.二、试卷结构全卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分.1.试题类型试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右.2.难度控制试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.Ⅲ.考核目标与要求一、知识要求知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,能够利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题。

2020年 全国普通高等学校招生统一考试数学试卷 浙江卷 (含答案)

2020年 全国普通高等学校招生统一考试数学试卷 浙江卷 (含答案)

2020年全国普通高等学校招生统一考试试卷(浙江卷)数 学一、选择题1.已知集合{}=14P x x <<,则=P Q ( ) A. {}12x x <≤B. {}23x x <<C. {}23x x <≤D. {}14x x <<2.已知a R ∈,若()12a a i -+-(i 为虚数单位)是实数,则a =( ) A.1B.-1C.2D.-23.若实数,x y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是( )A.(],4-∞B.[)4,+∞C.[)5,+∞D.(),-∞+∞4.函 数cos sin y x x x =+在区间[-π,+π]的图像大致为( ) A. B.C. D.5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )是( )A.73B.143C. 3D. 66.已知空间中不过同一点的三条直线 ,,m n l 则“,,m n l 在同一平面” 是“,,m n l 两两相交”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件7.已知等差数列{}n a 的前n 项的和n S ,公差0d ≠,11a d≤.记12122,,,n n n b S b S S n N *++==-∈下列等式不可能成立的是( )A.4262a a a =+B.4262b b b =+C.2428a a a = D .2428b b b =8.已知点()0,0O , ()2,0A -,()2,0B .设点P 满足2PA PB -=,且P 为函数234y x =-OP =( )A.2224107109.已知,0a b R ab ∈≠且,若()()()20x a x b x a b ----≥在0x ≥上恒成立,则( ) A.0a <B.0a >C.0b <D.0b >10.设集合S,T ,*S N ⊆,*T N ⊆,S,T 中至少有两个元素,且S,T 满足: ①对于任意,x y S ∈,若x y ≠,都有xy T ∈;②对于任意,x y T ∈,若x y <,则y S x∈,下列命题正确的是( ) A.若S 有4个元素,则S T ⋃有7个元素 B.若S 有4个元素,则S T ⋃有6个元素C.若S 有3个元素,则S T ⋃有4个元素D.若S 有3个元素,则S T ⋃有5个元素 二、填空题11.已知数列{}n a 满足(1)2n n n a +=,则3=S ______. 12.设5234512345612x a a x a x a x a x a x +=++++++(),则5a =_______;123a a a ++=-_______.13.已知tan θ=2,则cos2θ=______;πtan()4θ- =______.14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为______.15.设直线():0l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =______;b =______.16.一个盒子里有 1个红 1个绿 2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则()0P ξ== ;()E ξ=.17.设1e ,2e 为单位向量,满足1222e e -≤,12a e e =+, 123b e e =+,设,a b 的夹角为θ,则2cos θ的最小值为.三、解答题18.在锐角ABC △中,角,,A B C 的对边分别为,,a b c ,且2sin 3b A a =. (Ⅰ)求角B(Ⅱ)求cos cos cos A B C ++的取值范围。

高三数学温习教授教化的十个关键词[精品]

高三数学温习教授教化的十个关键词[精品]

高三数学复习教学的十个关键词张健高三数学复习教学不仅要使学生对所学知识分门别类地归纳、巩固、熟练,使之系统化,更要使学生侧重把握知识的内在规律,提高思维品质,提高分析和解决问题的能力。

它是使学生深入理解和巩固所学数学知识的重要方式,是学生提高高考应试能力、提高数学素养的重要手段。

高效率的高三数学复习教学必须是“教得有效,学得轻松,考得满意,素质提升”。

那么,怎样才能做到高三数学复习教学高效率呢?笔者认为,教师必须深入把握以下十个关键词。

1 两纲一题“两纲一题”是指《普通高中数学课程标准(实验)》(以下简称“课标”)、《高考数学科考试说明》(以下简称“考纲”)和“高考数学试题”(以下简称“考题”)。

教师只有认真研究“两纲一题”,才能明确复习方向,提高复习教学的针对性。

“课标”是高中数学新课程的“宪法”,是数学教学的基本依据。

新课程方案实施“一标多本”(即同一课标下的多种版本教材),不同版本的教材尽管是在“课标”的统一要求下,但是其差别很大。

无论使用哪个版本的高中数学教材,都要以“课标”中的“内容与要求”为教学的基本依据。

事实上,高考命题也是以此为基本依据的。

因此,高三数学复习教学应该“以标施教”,认真地落实“课标”中的教学“内容与要求”。

“考纲”是高三数学复习教学的“航标”,是高考命题的基本依据。

“考纲”的制订是依据“课标”,“考纲”和“课标”在教学“内容与要求”上基本是一致的,高考命题尊重“课标”,遵循“考纲”.“考纲”对高考要考查的知识范围及知识点的能力层次都有明确的要求,复习中必须予以尊重,教师不能随意提高或降低复习要求,更不能随意扩大或缩小复习范围.“两纲”是高三数学教师案头的工具性资料,在平时的备课中,教师要依据它们来制定复习目标,把握复习要求,考量复习的深度和广度。

脱离了“两纲”的复习,会使复习偏离方向,往往会导致出现“深入有余,浅出不足”的针对性不强问题。

“考题”是高考数学考查要求的“标尺”,是复习教学的基本范例。

2020年浙江省高考数学试卷及答案

2020年浙江省高考数学试卷及答案

2020年普通高等学校招生全国统一考试(浙江卷)数学参考公式:2)S h +选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P={|14}<<x x,{}23Q x=<<,则P Q=()A. {|12}x x<≤ B. {|23}x x<<C. {|34}x x≤< D. {|14}<<x x【答案】B【解析】根据集合交集定义求解【详解】(1,4)(2,3)(2,3)P Q==,故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.2.已知a∈R,若a–1+(a–2)i(i为虚数单位)是实数,则a=()A. 1B. –1C. 2D. –2 【答案】C【解析】根据复数为实数列式求解即可.【详解】因为(1)(2)a a i-+-为实数,所以202a a-=∴=,,故选:C .点睛】本题考查复数概念,考查基本分析求解能力,属基础题.3.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则z =2x +y 的取值范围是( ) A. (,4]-∞B. [4,)+∞C. [5,)+∞D.(,)-∞+∞【答案】B【解析】首先画出可行域,然后结合目标函数的几何意义确定目标函数在何处能够取得最大值和最小值从而确定目标函数的取值范围即可. 【详解】绘制不等式组表示的平面区域如图所示,目标函数即:1122y x z =-+, 其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大,z 取得最小值时,其几何意义表示直线系在y 轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点A 处取得最小值,联立直线方程:31030x y x y -+=⎧⎨+-=⎩,可得点A 的坐标为:()2,1A ,据此可知目标函数的最小值为:min 2214z =+⨯=,且目标函数没有最大值. 故目标函数的取值范围是[)4,+∞.故选:B【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大. 4.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为( )A.B.C. D.【答案】A【.【解析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误; 且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143C. 3D. 6【答案】A【解析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱, 且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B 【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.7.已知等差数列{a n }的前n 项和S n ,公差d ≠0,11a d≤.记b 1=S 2,b n+1=S n+2–S 2n ,n *∈N ,下列等式不可能成立的是( )A. 2a 4=a 2+a 6B. 2b 4=b 2+b 6C. 2428a a a =D.2428b b b =【答案】D【解析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+.∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-,当1a d =时,2428a a a =,C 正确;对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D【点睛】本题主要考查等差数列的性质应用,属于基础题.8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y=|OP |=( )A. 2B. 5【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =由()22103y x x y ⎧⎪⎨->==⎪⎩,解得2x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == D. 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.9.已知a ,b ∈R 且ab ≠0,若(x –a )(x –b )(x –2a –b )≥0在x ≥0上恒成立,则( ) A. a <0 B. a >0C. b <0D. b >0【答案】C【解析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案. 【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 零点为123,,2x a x b x a b ===+,当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题.10.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A. 若S 有4个元素,则S ∪T 有7个元素B. 若S 有4个元素,则S ∪T 有6个元素C. 若S 有3个元素,则S ∪T 有4个元素的D. 若S 有3个元素,则S ∪T 有5个元素 【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可. 【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项D ;若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即ST 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.非选择题部分(共110分)二、填空题:本大题共7小题,共36分.多空题每小题6分,单空题每小题4分.11.已知数列{a n }满足(1)=2n n n a +,则S 3=________. 【答案】10【解析】根据通项公式可求出数列{}n a 的前三项,即可求出.【详解】因为()12n n n a +=,所以1231,3,6a a a ===.即312313610S a a a =++=++=.故答案为:10.【点睛】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题. 12.设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.【答案】 (1). 80 (2). 122【解析】利用二项式展开式的通项公式计算即可.【详解】5(12)x +的通项为155(2)2r r r r r r T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=.故答案为:80;122【点晴】本题主要考查利用二项式定理求指定项的系数问题,考查学生的数学运算能力,是一道基础题.13.已知tan 2θ=,则cos2θ=________;πtan()4θ-=______.【答案】 (1).35 (2). 13【解析】利用二倍角余弦公式以及弦化切得cos2θ,根据两角差正切公式得tan()4πθ-【详解】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++,tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53-【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______. 【答案】1【解析】利用题目所给圆锥侧面展开图的条件列方程组,由此求得底面半径.【详解】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题. 15.设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】3- 【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可.【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.【答案】 (1).13(2). 1 【解析】先确定0ξ=对应事件,再求对应概率得结果;第二空,先确定随机变量,再求对应概率,最后根据数学期望公式求结果.【详解】因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球,所以1111(0)4433P ξ==+⨯=,随机变量0,1,2ξ=,212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=,111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.故答案为:1;13.【点睛】本题考查古典概型概率、互斥事件概率加法公式、数学期望,考查基本分析求解能力,属基础题.17.设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】利用复数模的平方等于复数的平方化简条件得1234e e ⋅≥,再根据向量夹角公式求2cos θ函数关系式,根据函数单调性求最值.【详解】12|2|2e e -≤,124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯.故答案为:2829.【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,且2sin b A =. (I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II)13,22⎛⎤⎥ ⎝⎦ 【解析】(I )首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B 的大小;(II )结合(1)的结论将含有三个角的三角函数式化简为只含有∠A 的三角函数式,然后由三角形为锐角三角形确定∠A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin B A A B =∴=△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos sin 222A A A =-++11cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭. 由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 3A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,13sin 232A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是13,22⎛⎤ ⎥ ⎝⎦.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.19.如图,三棱台DEF —ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I )证明:EF ⊥DB ;(II )求DF 与面DBC 所成角的正弦值.【答案】(I )证明见解析;(II【解析】【分析】(I )作DH AC ⊥交AC 于H ,连接BH ,由题意可知DH ⊥平面ABC ,即有DH BC ⊥,根据勾股定理可证得BC BH ⊥,又//EF BC ,可得DH EF ⊥,BH EF ⊥,即得EF ⊥平面BHD ,即证得EF DB ⊥;(II )由//DF CH ,所以DF 与平面DBC 所成角即为CH 与平面DBC 所成角,作HG BD ⊥于G ,连接CG ,即可知HCG ∠即为所求角,再解三角形即可求出DF 与平面DBC 所成角的正弦值.【详解】(Ⅰ)作DH AC ⊥交AC 于H ,连接BH . ∵平面ADFC ⊥平面ABC ,而平面ADFC平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥. ∵45ACB ACD ∠=∠=︒,∴2CD BC CH ==⇒=. 在CBH 中,22222cos 45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥.由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H =,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥.(Ⅱ)因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角. 作HG BD ⊥于G ,连接CG ,由(1)可知,BC ⊥平面BHD , 因为所以平面BCD ⊥平面BHD ,而平面BCD平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD .即CH 在平面DBC 内的射影为CG ,HCG ∠即为所求角.在Rt HGC △中,设BC a =,则CH =,BH DH HG BD ⋅===,∴sin HG HCG CH ∠===. 故DF 与平面DBC【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.20.已知数列{a n },{b n },{c n }中,1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与a n 的通项公式;(Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d+++<+. 【答案】(I )1142,.23n n q a -+==;(II )证明见解析.【解析】(I )根据1236b b b +=,求得q ,进而求得数列{}n c 的通项公式,利用累加法求得数列{}n a 的通项公式.(II )利用累乘法求得数列{}n c 的表达式,结合裂项求和法证得不等式成立.【详解】(I )依题意21231,,b b q b q ===,而1236b b b +=,即216q q +=,由于0q >,所以解得12q =,所以112n n b -=. 所以2112n n b ++=,故11112412n n n n n c c c -++=⋅=⋅,所以数列{}n c 是首项为1,公比为4的等比数列,所以14n n c -=.所以114n n n n a a c -+==-(*2,n n N ≥∈).所以12142144.3n n n a a --+=+++⋅⋅⋅+=(II )依题意设()111n b n d dn d =+-=+-,由于12n nn n c b c b ++=, 所以111n n n n c b c b --+=()*2,n n N ≥∈, 故13211221n n n n n c c c c c c c c c c ---=⋅⋅⋅⋅⋅1232111143n n n n n n b b b b b c b b b b b ---+-=⋅⋅⋅⋅⋅ 121111111111n n n n n n b b d b b d b b d b b +++⎛⎫⎛⎫+⎛⎫==-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以121223*********n nn c c c d b b b b b b +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 11111n d b +⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭.由于10,1d b >=,所以10n b +>,所以1111111n d b d +⎛⎫⎛⎫+-<+⎪ ⎪⎝⎭⎝⎭. 即1211n c c c d++⋯+<+,*n N ∈. 【点睛】本小题主要考查累加法、累乘法求数列的通项公式,考查裂项求和法,属于中档题.21.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;(Ⅱ)40【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32; (Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm m p λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=, 所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.22.已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明: (ⅰ0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.【答案】(I )证明见解析,(II )(i )证明见解析,(ii )证明见解析. 【解析】(I )先利用导数研究函数单调性,再结合零点存在定理证明结论; (II )(i )先根据零点化简不等式,转化求两个不等式恒成立,构造差函数,利用导数求其单调性,根据单调性确定最值,即可证得不等式;(ii )先根据零点条件转化:0000()()xx f e x f x a =+,再根据12a <≤放缩,转化为证明不等式224(2)(1)(1)a e e a -≥--,最后构造差函数,利用导数进行证明.【详解】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点;(II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10x g x e x x =---≤,因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),xxe x x e x x ∴--≤≤--≤≤(ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--,即只需证明224(2)(1)(1)a e e a -≥--,令22()4(2)(1)(1),(12)a s a e e a a =----<≤,则22()8(2)(1)8(2)(1)0a a s a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x0e (e 1)(1)x f a a ≥--.【点睛】本题考查利用导数研究函数零点、利用导数证明不等式,考查综合分析论证与求解能力描述难题.。

2020年浙江卷数学高考真题

2020年浙江卷数学高考真题

2020年普通高等学校招生全国统一考试数学选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}P=14x x <<,Q={x|2<x<3},则=P Q {}P=14x x << A. {}12x x <≤ B. {}23x x << C. {}23x x <≤ D. {}14x x <<2.已知a R ∈,若()12a a i -+-(i 为虚数单位)是实数,则a =A.1B.-1C.2D.-23.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则z=x+2y 的取值范围是A. (],4-∞B. [)4,+∞C. [)5,+∞D. (),-∞+∞4. 函数y xcosx sinx =+在区间[],ππ-+的图像大致为A.B.C.D.5. 某几何体的三视图(单位: c m )如图所示,则该几何体的体积(单位:3 c m )是A. 73B. 143C. 3D. 66. 已知空间中不过同一点的三条直线 ,,m n l 则“,,m n l 在同一平面” 是“,,m n l 两两相交”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7.已知等差数列{}n a 的前n 项的和n S ,公差0d ≠,11a d≤.记12122,,,n n n b S b S S n N *++==-∈下列等式不可能成立的是A. 4262a a a =+B. 4262b b b =+C. 2428a a a =D. 2428b b b =8.已知点()0,0O , ()2,0A -,()2,0B .设点P 满足2PA PB -=,且P 为函数y =OP =A.B. 5C.D.9.已知,0a b R ab ∈≠且,若()()()20x a x b x a b ----≥在0x ≥上恒成立,则A. 0a <B. 0a >C. 0b <D. 0b >10.设集合S,T ,*S N ⊆,*T N ⊆,S,T 中至少有两个元素,且S,T 满足: ○1对于任意,x y S ∈,若x y ≠,都有xy T ∈; ○2对于任意,x y T ∈,若x y <,则y S x∈,下列命题正确的是 A. 若S 有4个元素,则S T ⋃有7个元素B. 若S 有4个元素,则S T ⋃有6个元素C. 若S 有3个元素,则S T ⋃有4个元素D. 若S 有3个元素,则S T ⋃有5个元素非选择题部分(共110分)二、填空题:本大题共7道小题,共36分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线
CA
与平面
DBC
所成角的正弦值为
3. 3
直线 DF 与平面 DBC 所成角的正弦值为 3. 3
12
方法六:向量法(1)
∠ACB=∠ACD=45°, CA在平面 DBC 上的射影在 DCB 的
角平分线上,设 CA a ,设直线 CA 与平面 DBC 所成角为 ,
设 m CB 1 CD 2
由题意知,各点坐标如下:
O(0,0,0),B(1,1,0),C(0,2,0),D(0,0,2).
因此 BC (1,1,0) , DB (1,1,2)
BC DB 0 BC DB
EF // BC EF DB
6
方法三:三面角定理
cos(D AC B) cosBCD cosACD cosACB 0 sinACD sinACB
考查内容
本题主要涉及空间中线线垂直的证明及直线与平面所成角的 正弦值,考查学生的空间想象能力,逻辑推理能力与运算求 解能力。
难点分析
线面角的构造,位置关系的处理和数量关系的运算。
3
试题背景
1.11.1本. 题的关键是过点D作AC的垂线,垂足为O,得DO垂直平面 ABC,这是面面垂直的性质定理,也是线面位置关系的基本性 质之一。同时《考试说明》也要求考生能对几何图形的几何 量进行计算求解。
成角为 ,
1
1
SOBC
OB BC 2

2
2
2 1
VDOBC
1 3
S
OBC
DO
1 1 2 3
2 3
SDBC
1 DB BC 2
1 2
6
2
3
VDOBC VODBC
2 h 3 2 3
13 3 3
23 sin h 3 3
OC 2 3
因此,直线 DF 与平面 DBC 所成角的正弦值为 3. 3
10
方法四:三余弦定理 设直线 CO 与平面 DBC 所成角为 ,
∠ACB=∠ACD=45°,CO 在平面 DBC上的射影在 DCB
的角平分线上,设点 O 在平面 BCD 上的射影为点 H , 则 cosOCB cosBCH cos
2 3 cos ,cos 6 ,
22
3
直线 OC 与平面 DBC 所成角的正弦值为 3. 3
立足基础 回归课本
——说2020年高考数学浙江卷第19题
1
试题呈现 试题背景 解题方法 变式探究
教学启示 回归课本 链接高考
2
试题呈现
如图,在三棱台 ABC-DEF 中,平面 ACFD⊥平面 ABC,∠ACB =∠ACD=45°,DC=2BC. (1)证明: EF⊥DB ; (2)求直线 DF 与平面 DBC 所成角的正弦值.
由平面 ACFD⊥平面 ABC,得 DO⊥平面 ABC,
所以 DO⊥BC.由∠ACB=45°,BC=1CD= 2CO,
22
得 BO⊥BC.所以 BC⊥平面 BDO,故 BC⊥DB.
由 ABC-DEF 为三棱台,
得 BC∥EF,所以 EF⊥DB.
5
方法二:坐标法
如图,以 O 为原点,分别以射线 OC,OD 为 y,z 轴的正半轴,建 立空间直角坐标系 O-xyz. 设 CD=2 2,
cos BCD 2 2 0 cos BCD 1
22
2
BCD 60 又 BC 1 CD 2
BC DB
EF // BC EF DB
cos(B AO C) cos BOC cosAOB cosAOC sinAOB sinAOC
7
(2)解: 方法一:综合法 如图,过点 O 作 OH⊥BD,交直线 BD 于点 H,连接 CH. 由 ABC-DEF 为三棱台,得 DF∥CO, 所以直线 DF 与平面 DBC 所成角等于直线 CO 与平面 DBC 所成角. 由 BC⊥平面 BDO,得 OH⊥BC, 故 OH⊥平面 DBC, 所以∠OCH 为直线 CO 与平面 DBC 所成角. 设 CD=2 2, 则 DO=OC=2,BO=BC= 2, 得 BD= 6,OH=2 3,
建立空间直角坐标系 O-xyz.
设 CD=2 2,由题意知各点坐标如下:
O(0,0,0),B(1,1,0),C(0,2,0),D(0,0,2).
因此O→C=(0,2,0),B→C=(-1,1,0),C→D=(0,-2,2).
设平面 DBC 的一个法向量为 n=(x,y,z),
n·B→C=0, 由 n·C→D=0,
2.四面体DOBC的四个面均为直角三角形,《九章算术》中,将 四个面均为直角三角形的四面体称为“鳖臑”,在本题中, 命题者将其巧妙地隐藏在一个底边长度不定的三棱台中。
4
(1)证明
解题方法
方法一: 综合法
如图,过点 D 作 DO⊥AC,交直线 AC 于点 O,连接 OB.
由∠ACD=45°,DO⊥AC,得 CD= 2CO.
c os
CA m
CA (CB
1 CD) 2
aa
6
CA m CA CB 1 CD
6a 3
2
直线
CA
与平面
DBC
所成角的正弦值为
3. 3
DF // AC
直线 DF 与平面 DBC 所成角的正弦值为 3. 3
13
方法七 :向量法(2)
设 p 为平面内 CBD 任意一个向量, 设 p xCB CD (x 0) ,设直线 CA 与平面 DBC 所成角为 ,
3 所以 sin∠OCH=OH= 3.
OC 3 因此,直线 DF 与平面 DBC 所成角的正弦值为 3
3
8
方法二: 坐标法
由 ABC-DEF 为三棱台,得 DF∥CO,
所以直线 DF 与平面 DBC 所成角等于直线 CO 与平面 DBC 所成
角,记为θ.
如图,以 O 为原点,分别以射线 OC,OD 为 y,z 轴的正半轴,
即 -x+y=0, -2y+2z=0,
可取 n=(1,1,1),
所以
sin
θ=|cos〈O→C,n〉|=||OO→→CC|··n|n||=
3. 3
因此,直线 DF 与平面 DBC 所成角的正弦值为 3. 3
9
方法三:等积法
过点 D 作 DO⊥AC,交直线 AC 于点 O,连接 OB.
可得 BO⊥BC.,BC⊥DB 设 CD=2 2,设直线 CO 与平面 DBC 所
直线 DF 与平面 DBC 所成角的正弦值为 3. 3
11
方法五 :三正弦定理
设直线 CA 与平面 DBC 所成角为 , 设二面角 B CD A为 ,
设二面角C AB O 为 ,
直线CA与平面 OAB所成的叫为
sin sin sinBAC
可得sin
6 3,
sin sinACD sin 2 6 3 23 3
相关文档
最新文档